• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
  • FAUTo the central FAU website
  • RRZE
  • NHR-Geschäftsstelle
  • Gauß-Allianz

Navigation Navigation close
  • News
  • People
  • Research
    • Research Focus
    • Publications, Posters and Talks
    • Software & Tools
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • NHR PerfLab Seminar
    • Projects
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures and Seminars
    • Tutorials and Courses
    • Theses
    • HPC Cafe
    • Student Cluster Competition
    Portal Teaching
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • Success Stories from the Support
    • Training Resources
    • Summary of System Utilization
    • Reports from User Projects
    Portal Systems & Services

  1. Home
  2. Systems & Services
  3. User projects
  4. Medical research
  5. HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)

HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)

In page navigation: Systems & Services
  • Systems, Documentation & Instructions
    • Getting started with HPC
      • NHR@FAU HPC-Portal Usage
    • NHR application rules – NHR@FAU
    • HPC clusters & systems
      • Dialog server
      • Alex GPGPU cluster (NHR+Tier3)
      • Fritz parallel cluster (NHR+Tier3)
      • Meggie parallel cluster (Tier3)
      • Emmy parallel cluster (Tier3)
      • Woody throughput cluster (Tier3)
      • TinyFat cluster (Tier3)
      • TinyGPU cluster (Tier3)
      • Test cluster
      • Jupyterhub
    • SSH – Secure Shell access to HPC systems
    • File systems
    • Batch Processing
      • Job script examples – Slurm
      • Advanced topics Slurm
      • Torque batch system
    • Software environment
    • Special applications, and tips & tricks
      • Amber/AmberTools
      • ANSYS CFX
      • ANSYS Fluent
      • ANSYS Mechanical
      • Continuous Integration / Gitlab Cx
      • CP2K
      • CPMD
      • GROMACS
      • IMD
      • Intel MKL
      • LAMMPS
      • Matlab
      • NAMD
      • OpenFOAM
      • ORCA
      • Python and Jupyter
      • Quantum Espresso
      • R and R Studio
      • STAR-CCM+
      • Tensorflow and PyTorch
      • TURBOMOLE
      • VASP
        • Request access to central VASP installation
      • Working with NVIDIA GPUs
      • WRF
  • Support & Contact
    • Monthly HPC Cafe
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • Support Success Stories
      • Success story: Elmer/Ice
  • HPC User Training
  • HPC System Utilization
  • User projects
    • Biology, life sciences & pharmaceutics
      • HPC User Report from A. Bochicchio (Professorship of Computational Biology)
      • HPC User Report from A. Horn (Bioinformatics)
      • HPC User Report from C. Söldner (Professorship for Bioinformatics)
      • HPC User Report from J. Calderón (Computer Chemistry Center)
      • HPC User Report from J. Kaindl (Chair of Medicinal Chemistry)
      • HPC User Report from K. Pluhackova (Computational Biology Group)
    • Chemical & mechanical engineering
      • HPC User Report from A. Leonardi (Institute for Multiscale Simulation)
      • HPC User Report from F. Lenahan (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from F. Weber (Chair of Applied Mechanics)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from L. Eckendörfer (Catalytic Reactors and Process Technology)
      • HPC User Report from M. Klement (Institute for Multiscale Simulation)
      • HPC User Report from M. Münsch (Chair of Fluid Mechanics)
      • HPC User Report from T. Klein (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)
      • HPC User Report from U. Higgoda (Institute of Advanced Optical Technologies – Thermophysical Properties)
    • Chemistry
      • HPC User Report from B. Becit (Professorship of Theoretical Chemistry)
      • HPC User Report from B. Meyer (Computational Chemistry – ICMM)
      • HPC User Report from D. Munz (Chair of Inorganic and General Chemistry)
      • HPC User Report from J. Konrad (Professorship of Theoretical Chemistry)
      • HPC User Report from P. Schwarz (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Frühwald (Chair of Theoretical Chemistry)
      • HPC User Report from S. Maisel (Chair of Theoretical Chemistry)
      • HPC User Report from S. Sansotta (Professorship of Theoretical Chemistry)
      • HPC User Report from S. Seiler (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Trzeciak (Professorship of Theoretical Chemistry)
      • HPC User Report from T. Klöffel (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)
    • Computer science & Mathematics
      • HPC User Report from B. Jakubaß & S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from D. Schuster (Chair for System Simulation)
      • HPC User Report from F. Wein (Professorship for Mathematical Optimization)
      • HPC User Report from J. Hornich (Professur für Höchstleistungsrechnen)
      • HPC User Report from L. Folle and K. Tkotz (Chair of Computer Science 5, Pattern Recognition)
      • HPC User Report from R. Burlacu (Economics, Discrete Optimization, and Mathematics)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Falk (Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Jacob (Chair of System Simulation)
    • Electrical engineering & Audio processing
      • HPC User Report from N. Pia (AudioLabs)
      • HPC User Report from S. Balke (Audiolabs)
    • Geography & Climatology
      • HPC usage report from F. Temme, J. V. Turton, T. Mölg and T. Sauter
      • HPC usage report from J. Turton, T. Mölg and E. Collier
      • HPC usage report from N. Landshuter, T. Mölg, J. Grießinger, A. Bräuning and T. Peters
      • HPC User Report from C. Pickler and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier (Climate System Research Group)
      • HPC User Report from E. Collier and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier, T. Sauter, T. Mölg & D. Hardy (Climate System Research Group, Institute of Geography)
      • HPC User Report from E. Kropač, T. Mölg, N. J. Cullen, E. Collier, C. Pickler, and J. V. Turton (Climate System Research Group)
      • HPC User Report from J. Fürst (Department of Geography)
      • HPC User Report from P. Friedl (Department of Geography)
      • HPC User Report from T. Mölg (Climate System Research Group)
    • Linguistics
      • HPC User Report from P. Uhrig (Chair of English Linguistics)
    • Material sciences
      • HPC User Report from A. Rausch (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from D. Wei (Chair of Materials Simulation)
      • HPC User Report from J. Köpf (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from P. Baranova (Chair of General Materials Properties)
      • HPC User Report from S. Nasiri (Chair for Materials Simulation)
      • HPC User Report from S.A. Hosseini (Chair for Materials Simulation)
    • Medical research
      • HPC User Report from H. Sadeghi (Phoniatrics and Pediatric Audiology)
      • HPC User Report from P. Ritt (Imaging and Physics Group, Clinic of Nuclear Medicine)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
    • Physics
      • HPC User Report from D. Jankowsky (High-Energy Astrophysics)
      • HPC User Report from M. Maiti (Inst. Theoretische Physik 1)
      • HPC User Report from N. Vučemilović-Alagić (PULS group of the Physics Department)
      • HPC User Report from O. Malcioglu (Theoretische Festkörperphysik)
      • HPC User Report from S. Fey (Chair of Theoretical Physics I)
      • HPC User Report from S. Ninova (Theoretical Solid-State Physics)
      • HPC User Report from S. Schmidt (Erlangen Centre for Astroparticle Physics)
    • Regional users and student projects
      • HPC User Report from Dr. N. Ferruz (University of Bayreuth)
      • HPC User Report from J. Martens (Comprehensive Heart Failure Center / Universitätsklinikum Würzburg)
      • HPC User Report from M. Fritsche (HS-Coburg)
      • HPC User Report from M. Heß (TH-Nürnberg)
      • HPC User Report from M. Kögel (TH-Nürnberg)
  • NHR compute time projects

HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)

simVoice – Numerical computation of the human voice source

Contact:

Sebastian Falk, M.Sc.
Division of Phoniatrics and Pediatric Audiology
Department of Otorhinolaryngology
Friedrich-Alexander-Universität Erlangen-Nürnberg

Mainly used HPC resources at RRZE

Emmy & Meggie cluster

The central objective of this project is the development of a three dimensional aero-acoustic numerical model (simVoice) for a prospective application in a clinical environment. The larynx model considers the fluid flow through the glottis, the vocal fold motions, and the resulting acoustic signal. Thereby, we solve the partial differential equations of the fluid flow by a Finite Volume (FV) and the acoustic field by a Finite Element (FE) method.

Motivation and problem definition

Voice research is mostly carried out with an experimental setup (synthetic or ex-vivo/in-vivo animal and human larynges) which includes high personal, material and financial costs in combination with: (1) limited access to a few specific positions within the larynx, and (2) limitation to a few parameters. The main advantage of a numerical approach compared to the experimental investigations is the high spatial and temporal access to the flow as well as acoustic quantities and the generated acoustic source terms.

Figure 1a) Two-dimensional cut of the human larynx from a coronal view. The airflow from the lungs is passing the glottal region that contains the Vocal folds (VF) and the Ventricular folds (VeF).

The challenge to develop a 3D aero-acoustic model for the clinical application is the need of a short simulation wall-time in combination with sufficient accuracy of the fluid dynamic characteristics within the larynx to capture all the essential acoustic sources.

Methods and codes

Figure 1b) Experimental setup of the glottal region with a following simplified vocal tract and the four microphones placed in the far field to measure the acoustics.

The simVoice-model is a hybrid model. It consists of a fluid dynamic simulation model with an external driven vocal fold motion, based on the 3D FV method, and an aero-acoustic model, based on the 3D FE method. The commercial computational fluid dynamic (CFD) software STAR-CCM+ (Siemens) was used for the fluid dynamic calculations, and the research-driven simulation tool CFS++ for the acoustic computation.

The numerical model of simVoice considers the vocal folds, the ventricular folds and various vocal tract geometries based on a synthetic vocal fold model. The oscillation of the vocal folds, identified from in-vivo and ex-vivo high-speed imaging, is externally forced. The fluid dynamic simulation model uses the Large Eddy Simulation (LES) turbulence model to solve the incompressible fluid dynamic equations.

After that, the acoustic source terms are computed on the flow grid and a conservative interpolation to the acoustic grid, on which we solve the perturbed convective wave equation to obtain the acoustic field, is conducted. simVoice is currently optimized concerning computing time and complexity, considering the computational grid resolving all relevant turbulent scales. This optimization will achieve the prospective clinical application of the hybrid model simVoice.

Results

Figure 1c) Numerical 3D-FVM model which represents the experimental setup.

In the first step, the fluid dynamic and aero-acoustic models of simVoiceare validated with the experimental results to obtain physical correct acoustic source terms and results. After applying an efficient workflow between STAR-CCM+ and CFS++, reaching the postulated short wall-time for a clinical application and attaining a highly accurate overall model an extensive study on effects of various vocal fold motions, glottis geometries and vocal tracts on the acoustics will be following. As one of the last steps, simVoice< will be transferred to real phonation and verified with clinical data.

The fluid dynamic simulation part of simVoice is performed with seven nodes on the Emmy or Meggie cluster. With the mentioned use of HPC resources, the wall time of the LES simulations for the necessary ten vocal fold oscillations range up to 330 hours.

Figure 2: Amplitude Spectral Density of the microphone measurement points in the far field of the experiments (red) and the acoustic computations (blue). The fundamental frequency of 148 Hz can be identified, and all following spectral amplitudes show good agreements.

The innovative scientific aspects of simVoice are: (1) Analysis of the magnitude of dissolving the time-dependent turbulent fluid flows to obtain physical correct acoustic source terms; (2) To gain insight in the cause and effect of the vocal folds motion, fluid flow and acoustics; (3) An extensive study of the impact of various glottis geometries, vocal fold motions and vocal tracts on the acoustic signal.

Outreach

The project is running since August 2016.

  • S. Kniesburges, Fluid-Structure-Acoustic Interaction during Phonation in a synthetic larynx model. Dissertation, Shaker, 2014
  • H. Sadeghi, S. Kniesburges, M. Kaltenbacher, A. Schützenberger, and M. Döllinger. Computational models of laryngeal aerodynamics: Potentials and numerical costs. Journal of Voice, 2018, DOI:10.1016/j.jvoice.2018.01.001
  • H. Sadeghi, S. Kniesburges, and M. Döllinger. Aerodynamic impact of the ventricular folds in computational larynx models. Journal of Acoustical Society of America, 2019, DOI:10.1121/1.5098775
  • H. Sadeghi, S. Kniesburges, S. Falk, M. Kaltenbacher, A. Schützenberger, and M. Döllinger. Toward a Clinical Applicable Computational Larynx Model. Appl. Sci., 2019, DOI:10.3390/app9112288
  • S. Falk, S. Kniesburges, S. Schoder, B. Jakubaß, P. Maurerlehner, M. Echternach, M. Kaltenbacher, and M. Döllinger. 3D-FV-FE Aeroacoustic Larynx Model for Investigation of Functional Based Voice Disorders. Front. Physiol., 2021, DOI:10.3389/fphys.2021.616985

Funding

The project is currently funded (02/2018 – 02/2021) by the Deutsche Forschungsgemeinschaft (DFG) under project no. DO 1247/10-1.

Cooperation

Prof. Dr. techn. Dr.-Ing. habil. Manfred Kaltenbacher – Institute of Mechanics and Mechatronics at the Vienna University of Technology: Responsible for the interpolation of the fluid dynamic results to the acoustic grid, and the solving of the perturbed convective wave equation to obtain the acoustic field. This part of the project is funded by Der Wissenschaftsfonds (FWF) of Austria under the project no. I 3702.

Researcher’s Bio and Affiliation

Sebastian Falk obtained his Master degree in Mechanical Engineering at the Friedrich-Alexander University Erlangen-Nürnberg (FAU) and is currently a PhD student and scientific assistant under the supervision of PD Dr.-Ing. Stefan Kniesburges and Prof. Dr.-Ing. Michael Döllinger (Head of research) at the division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology, Head and Neck Surgery of University Hospital Erlangen and Medical Faculty of FAU.

Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
Up