• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
NHR@FAU
  • FAUTo the central FAU website
Suche öffnen
  • RRZE
  • NHR-Verein e.V.
  • Gauß-Allianz

NHR@FAU

Navigation Navigation close
  • News
  • About us
    • People
    • Funding
    • BayernKI
    • NHR Compute Time Projects
    • Tier3 User Project Reports
    • Support Success Stories
    • Annual Reports
    • NHR@FAU Newsletters
    • Previous Events
    • Jobs
    Portal About us
  • Research
    • Research Focus
    • Publications, Posters & Talks
    • Performance Tools and Libraries
    • NHR PerfLab Seminar
    • Projects
    • Workshops
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures & Seminars
    • Tutorials & Courses
    • Monthly HPC Café and Beginner’s Introduction
    • Theses
    • Student Cluster Competition
    Portal Teaching & Training
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • HPC User Training
    • HPC System Utilization
    Portal Systems & Services
  • FAQ

NHR@FAU

  1. Home
  2. About us
  3. Tier3 User Project Reports
  4. Chemistry
  5. HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)

HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)

In page navigation: About us
  • People
  • Funding
  • BayernKI
  • NHR Compute Time Projects
  • Tier3 User Project Reports
  • Support Success Stories
  • Annual Reports
  • NHR@FAU Newsletters
  • Previous Events
  • Jobs

HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)

Molecular Simulation studies on Magnetite Collagen Intergrowth

Contact:

Tina Kollmann, M.Sc.
Professorship of Theoretical Chemistry
Friedrich-Alexander-Universität Erlangen-Nürnberg

Mainly used HPC resources at RRZE

Emmy cluster

Biominerals are organic-inorganic hybrid materials abundant in Nature, formed under highly controlled conditions, show complex morphologies and are very often hierarchically structured. An amazing biomineral is the chiton tooth: Magnetite coated
teeth which are very hard, resistant and magnetic. To understand the mechanisms of intergrowing of magnetite with the elastic protein collagen MD simulations are performed.

Motivation and problem definition

Modelling biomimetic materials, such as composites of collagen and magnetite, hint at the suitability of the protein to bind iron and hydroxide ions, suggesting that collagen acts as a nucleation seed to magnetite nanoparticle formation, and enables the intergrowth of protein and nanoparticles already at the precursor stage of composite formation.

Methods and codes

Parallel molecular dynamics (MD) simulation software DL Poly is used. Ion Docking to collagen was modeled in aqueous solution using empirical force fields [1,2,3,4,5] and the Kawska-Zahn docking procedure [6].
Association complexes are then immersed in aqueous solution (periodic simulation cell comprising more than 15000 water molecules) and subjected to relaxation from 400 ps molecular dynamics runs at room temperature and ambient pressure. Proton transfer reactions are calculated by QM/MM approaches relaxation of the system for another 400 ps at room temperature and ambient pressure in aqueaos solution to allow reorganization after switching potentials.
These simulations can be parallelized over several nodes for each trajectory. This makes the project well-suited for the “Emmy” cluster.

Results

We observed the iron clusters binding over salt bridges to the collagen‘s surface without destroying the triple helical structure of the protein, iron hydroxides themselves reorganize on the surface tetrahedral and octahedral motifs trying to form the pursued magnetite crystal structure.

Outreach

This work is published in Adv. Funct. Mater. 2014, 24, 3187–3196 with two more papers being planned.

Literature

  1. Frank H. Allen, Olga Kennard and David G. Watson, J. Chem. Soc. Perkin Trans. II, 1987, S1-S19
  2. Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G. J., Phys. Chem. Ref. Data, 1979, 8, 619
  3. Li, Song, Merz, J. Phys. Chem B, 2015, 119, 883-895
  4. G. V. Lewis and C. R. A. Catlow, J. Phys. C: Solid State Phys. 1985 , 18, 1149
  5. C. R. A. Catlow, Proc. RSoc. Lond. A, 1977, 353, 533-561
  6. H. Tlatlik, P. Simon, A. Kawska, D. Zahn, R. Kniep, Angew. Chem. Int. Ed. 2006, 45, 1905

Researcher’s Bio and Affiliation

Tina Kollmann obtained her master‘s degree in Molecular Nano Science at the Friedrich-Alexander-University Erlangen in 2011 and is currently a Ph.D. candidate in the group of Prof. Dr. Dirk Zahn at the Computer Chemistry Centre.

Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
  • RSS Feed
Up