• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
  • FAUTo the central FAU website
  • RRZE
  • NHR-Geschäftsstelle
  • Gauß-Allianz

Navigation Navigation close
  • News
  • People
  • Research
    • Research Focus
    • Publications, Posters and Talks
    • Software & Tools
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • NHR PerfLab Seminar
    • Projects
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures and Seminars
    • Tutorials and Courses
    • Theses
    • HPC Cafe
    • Student Cluster Competition
    Portal Teaching
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • Success Stories from the Support
    • Training Resources
    • Summary of System Utilization
    • Reports from User Projects
    Portal Systems & Services

  1. Home
  2. Systems & Services
  3. User projects
  4. Chemical & mechanical engineering
  5. HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)

HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)

In page navigation: Systems & Services
  • Systems, Documentation & Instructions
    • Getting started with HPC
      • NHR@FAU HPC-Portal Usage
    • NHR application rules – NHR@FAU
    • HPC clusters & systems
      • Dialog server
      • Alex GPGPU cluster (NHR+Tier3)
      • Fritz parallel cluster (NHR+Tier3)
      • Meggie parallel cluster (Tier3)
      • Emmy parallel cluster (Tier3)
      • Woody throughput cluster (Tier3)
      • TinyFat cluster (Tier3)
      • TinyGPU cluster (Tier3)
      • Test cluster
      • Jupyterhub
    • SSH – Secure Shell access to HPC systems
    • File systems
    • Batch Processing
      • Job script examples – Slurm
      • Advanced topics Slurm
      • Torque batch system
    • Software environment
    • Special applications, and tips & tricks
      • Amber/AmberTools
      • ANSYS CFX
      • ANSYS Fluent
      • ANSYS Mechanical
      • Continuous Integration / Gitlab Cx
      • CP2K
      • CPMD
      • GROMACS
      • IMD
      • Intel MKL
      • LAMMPS
      • Matlab
      • NAMD
      • OpenFOAM
      • ORCA
      • Python and Jupyter
      • Quantum Espresso
      • R and R Studio
      • STAR-CCM+
      • Tensorflow and PyTorch
      • TURBOMOLE
      • VASP
        • Request access to central VASP installation
      • Working with NVIDIA GPUs
      • WRF
  • Support & Contact
    • Monthly HPC Cafe
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • Support Success Stories
      • Success story: Elmer/Ice
  • HPC User Training
  • HPC System Utilization
  • User projects
    • Biology, life sciences & pharmaceutics
      • HPC User Report from A. Bochicchio (Professorship of Computational Biology)
      • HPC User Report from A. Horn (Bioinformatics)
      • HPC User Report from C. Söldner (Professorship for Bioinformatics)
      • HPC User Report from J. Calderón (Computer Chemistry Center)
      • HPC User Report from J. Kaindl (Chair of Medicinal Chemistry)
      • HPC User Report from K. Pluhackova (Computational Biology Group)
    • Chemical & mechanical engineering
      • HPC User Report from A. Leonardi (Institute for Multiscale Simulation)
      • HPC User Report from F. Lenahan (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from F. Weber (Chair of Applied Mechanics)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from L. Eckendörfer (Catalytic Reactors and Process Technology)
      • HPC User Report from M. Klement (Institute for Multiscale Simulation)
      • HPC User Report from M. Münsch (Chair of Fluid Mechanics)
      • HPC User Report from T. Klein (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)
      • HPC User Report from U. Higgoda (Institute of Advanced Optical Technologies – Thermophysical Properties)
    • Chemistry
      • HPC User Report from B. Becit (Professorship of Theoretical Chemistry)
      • HPC User Report from B. Meyer (Computational Chemistry – ICMM)
      • HPC User Report from D. Munz (Chair of Inorganic and General Chemistry)
      • HPC User Report from J. Konrad (Professorship of Theoretical Chemistry)
      • HPC User Report from P. Schwarz (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Frühwald (Chair of Theoretical Chemistry)
      • HPC User Report from S. Maisel (Chair of Theoretical Chemistry)
      • HPC User Report from S. Sansotta (Professorship of Theoretical Chemistry)
      • HPC User Report from S. Seiler (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Trzeciak (Professorship of Theoretical Chemistry)
      • HPC User Report from T. Klöffel (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)
    • Computer science & Mathematics
      • HPC User Report from B. Jakubaß & S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from D. Schuster (Chair for System Simulation)
      • HPC User Report from F. Wein (Professorship for Mathematical Optimization)
      • HPC User Report from J. Hornich (Professur für Höchstleistungsrechnen)
      • HPC User Report from L. Folle and K. Tkotz (Chair of Computer Science 5, Pattern Recognition)
      • HPC User Report from R. Burlacu (Economics, Discrete Optimization, and Mathematics)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Falk (Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Jacob (Chair of System Simulation)
    • Electrical engineering & Audio processing
      • HPC User Report from N. Pia (AudioLabs)
      • HPC User Report from S. Balke (Audiolabs)
    • Geography & Climatology
      • HPC usage report from F. Temme, J. V. Turton, T. Mölg and T. Sauter
      • HPC usage report from J. Turton, T. Mölg and E. Collier
      • HPC usage report from N. Landshuter, T. Mölg, J. Grießinger, A. Bräuning and T. Peters
      • HPC User Report from C. Pickler and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier (Climate System Research Group)
      • HPC User Report from E. Collier and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier, T. Sauter, T. Mölg & D. Hardy (Climate System Research Group, Institute of Geography)
      • HPC User Report from E. Kropač, T. Mölg, N. J. Cullen, E. Collier, C. Pickler, and J. V. Turton (Climate System Research Group)
      • HPC User Report from J. Fürst (Department of Geography)
      • HPC User Report from P. Friedl (Department of Geography)
      • HPC User Report from T. Mölg (Climate System Research Group)
    • Linguistics
      • HPC User Report from P. Uhrig (Chair of English Linguistics)
    • Material sciences
      • HPC User Report from A. Rausch (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from D. Wei (Chair of Materials Simulation)
      • HPC User Report from J. Köpf (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from P. Baranova (Chair of General Materials Properties)
      • HPC User Report from S. Nasiri (Chair for Materials Simulation)
      • HPC User Report from S.A. Hosseini (Chair for Materials Simulation)
    • Medical research
      • HPC User Report from H. Sadeghi (Phoniatrics and Pediatric Audiology)
      • HPC User Report from P. Ritt (Imaging and Physics Group, Clinic of Nuclear Medicine)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
    • Physics
      • HPC User Report from D. Jankowsky (High-Energy Astrophysics)
      • HPC User Report from M. Maiti (Inst. Theoretische Physik 1)
      • HPC User Report from N. Vučemilović-Alagić (PULS group of the Physics Department)
      • HPC User Report from O. Malcioglu (Theoretische Festkörperphysik)
      • HPC User Report from S. Fey (Chair of Theoretical Physics I)
      • HPC User Report from S. Ninova (Theoretical Solid-State Physics)
      • HPC User Report from S. Schmidt (Erlangen Centre for Astroparticle Physics)
    • Regional users and student projects
      • HPC User Report from Dr. N. Ferruz (University of Bayreuth)
      • HPC User Report from J. Martens (Comprehensive Heart Failure Center / Universitätsklinikum Würzburg)
      • HPC User Report from M. Fritsche (HS-Coburg)
      • HPC User Report from M. Heß (TH-Nürnberg)
      • HPC User Report from M. Kögel (TH-Nürnberg)
  • NHR compute time projects

HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)

Direct numerical simulation of miscible flows

Contact:

Tobias Schikarski, M.Sc.
Chair of Particle Technology
Friedrich-Alexander-Universität Erlangen-Nürnberg

Mainly used HPC resources at RRZE

large-scale project on Meggie

For the first time, direct numerical simulation of the mixing process underlying liquid anti-solvent precipitation in a T-mixer at operating condition is performed which involves non-constant density and viscosity mixtures.

Motivation and problem definition

Liquid anti-solvent precipitation (LAP) is a basic and promising, but not well understood, pharmaceutical manufacturing process of drugs. The outcome in the form of drug nanoparticles is primarily controlled by mixing of solvent (e.g., ethanol) and anti-solvent (water). The industrial need for computational tools predicting in advance the yield dramatically increased in recent years. The first essential step to fulfill this demand includes the understanding of the mixing process in micromixer at operating condition. We do so by applying the most precise tool to prescribe turbulent flows, direct numerical simulation. We consider water-ethanol as one anti-solvent/solvent couple and study the mixing process in a T-mixer from Stokes flow up to operating condition at which strong spatiotemporal turbulent motion is present.

Methods and codes

We employ a second order finite volume scheme in space (collocated arrangement) and an explicit low-storage Runge-Kutta scheme in time. The convective term in the convection-diffusion equation is discretized with a TVD scheme and flux limiter to preserve almost second order and a bounded solution for very high Peclet numbers.
We use the code FASTEST(a block-structured finite volume code) developed at the LSTM. All missing routines to address this task have been implemented.
Spanning a Reynolds number range from 1 to 5000 in a T-mixer which demands between several thousand up to 250 Mio control volumes, highly parallel computing, in particular at high Reynolds numbers, is necessary to obtain statistics at an appropriate time.

Results

We identified and understood the appearance of several new mixing regimes (hysteresis, the transitional regime, and asymptotic state) in a T-mixer for a water-water and water-ethanol mixture.
We highlighted the similarities and differences between mixtures having constant or concentration-dependent physical properties.
In a comparative study between experiments and simulation, we could give new insights into the experimental mixing characteristic using simulations giving rise to very well agreement.
The T-mixer appears to be a novel system to study decaying turbulence from a fundamental point of view as the turbulence decay obeys power laws similar to other fundamental systems just as grid-generated turbulence.

Outreach

This project is a subproject of the EAM-BTS project “Bioavailability optimization for poorly soluble active pharmaceutical ingredients” funded by DFG and Bayer Technology Services.

Conference Poster:

  • Schikarski, Peukert, Avila: Hydrodynamic mixing of miscible flows in a T-micromixer, Particle Simulations, Erlangen 2015.

Conference Talk:

  • Schikarski, Peukert, Avila: Hydrodynamic mixing of turbulent miscible flows in a T-micromixer under real operating conditions, European Fluid Mechanics Conference, Sevilla 2016.
  • Schikarski, Peukert, Avila: T-mixer a novel system to investigate decaying turbulence in a wall bounded environment, GAMM, Weimar 2017.
  • Schikarski, Peukert, Avila: T-mixer a novel system to investigate decaying turbulence in a wall bounded environment, European Turbulence Conference, Stockholm 2017.
  • Schikarski, Trzenschiok, Peukert, Avila: Mixing characterization of a T-mixer: a full picture, International Congress EAM, Erlangen 2017.

Paper:

  • Schikarski, Peukert, Avila: Direct numerical simulation of water-ethanol flows in a T-mixer, Chemical Engineering Journal 2017.
  • Schikarski, Peukert, Avila: T-mixer a novel system to investigate decaying turbulence in a wall bounded environment, to be submitted soon to Physical Review Fluids.
  • Schikarski, Trzenschiok, Peukert, Avila: Mixing characterization of a T-mixer: a full picture, to be submitted soon to Chemical Engineering Journal.

Researcher’s Bio and Affiliation

Tobias Schikarski is a Ph.D. student. From 01.12.2014 to 31.12.2017 he worked at the Chair of Fluid Mechanics (LSTM) under the supervision of Prof. Marc Avila. Since beginning of 2018 he is now at the Institute of Particle Technology (LFG) under the supervision of Prof. Wolfgang Peukert and cosupervisor Prof. Marc Avila.

Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
Up