• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
NHR@FAU
  • FAUTo the central FAU website
Suche öffnen
  • RRZE
  • NHR-Verein e.V.
  • Gauß-Allianz

NHR@FAU

Navigation Navigation close
  • News
  • About us
    • People
    • Funding
    • BayernKI
    • NHR Compute Time Projects
    • Tier3 User Project Reports
    • Support Success Stories
    • Annual Reports
    • NHR@FAU Newsletters
    • Previous Events
    • Jobs
    Portal About us
  • Research
    • Research Focus
    • Publications, Posters & Talks
    • Performance Tools and Libraries
    • NHR PerfLab Seminar
    • Projects
    • Workshops
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures & Seminars
    • Tutorials & Courses
    • Monthly HPC Café and Beginner’s Introduction
    • Theses
    • Student Cluster Competition
    Portal Teaching & Training
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • HPC User Training
    • HPC System Utilization
    Portal Systems & Services
  • FAQ

NHR@FAU

  1. Home
  2. Teaching & Training
  3. Tutorials & Courses
  4. Hybrid Programming in HPC – MPI+X

Hybrid Programming in HPC – MPI+X

In page navigation: Teaching & Training
  • Lectures & Seminars
  • Tutorials & Courses
    • Accelerating CUDA C++ Applications with Multiple GPUs
    • C++ for Beginners
    • Core-Level Performance Engineering
    • Fundamentals of Accelerated Computing with CUDA C/C++
    • Fundamentals of Accelerated Computing with CUDA Python
    • Fundamentals of Accelerated Computing with Modern CUDA C++
    • Fundamentals of Accelerated Computing with OpenACC
    • GPU Performance Engineering
    • Hybrid Programming in HPC - MPI+X
    • Introduction to OpenMP
    • Introduction to the LIKWID Tool Suite
    • Modern C++ Software Design
    • Node-Level Performance Engineering
    • Parallel Programming of High-Performance Systems (PPHPS)
    • Performance Engineering for Linear Solvers
    • Scaling CUDA C++ Applications to Multiple Nodes
  • Monthly HPC Café and Beginner's Introduction
  • Theses
  • Student Cluster Competition

Hybrid Programming in HPC – MPI+X

Course Description

Most HPC systems consist of clusters of shared-memory nodes. Efficient use of such systems requires optimizing both memory consumption and communication time. Hybrid programming combines distributed-memory parallelization across nodes (e.g., using MPI) with shared-memory parallelization within each node (e.g., using OpenMP or MPI-3.0 shared memory).

This course examines the strengths and weaknesses of various parallel programming models on clusters of shared-memory nodes, with special focus on multi-socket, multi-core systems in highly parallel environments. MPI-3.0 introduces a shared memory programming interface that complements inter-node MPI communication. This interface supports direct neighbor accesses, similar to OpenMP, and enables direct halo copies, paving the way for innovative hybrid programming models. These models are compared against hybrid MPI+OpenMP approaches and pure MPI implementations. Additionally, the course covers MPI+OpenMP offloading with GPUs.

Through numerous case studies and micro-benchmarks, the course highlights performance aspects of hybrid programming. Hands-on sessions are included daily. Tools for hybrid programming – such as thread and process placement support and performance analysis – are demonstrated in practical “how-to” sections.

This course is a joint training event of EuroCC@GCS and EuroCC-Austria, the German and Austrian National Competence Centres for High-Performance Computing. It is organized by the HLRS in cooperation with the VSC Research Center at TU Wien and NHR@FAU.

Upcoming Iterations and Additional Courses

You can find dates and registration links for this and other upcoming NHR@FAU courses at https://hpc.fau.de/teaching/tutorials-and-courses/.

Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
  • RSS Feed
Up