• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
  • FAUTo the central FAU website
  • RRZE
  • NHR-Geschäftsstelle
  • Gauß-Allianz

Navigation Navigation close
  • News
  • People
  • Research
    • Research Focus
    • Publications, Posters and Talks
    • Software & Tools
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • NHR PerfLab Seminar
    • Projects
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures and Seminars
    • Tutorials and Courses
    • Theses
    • HPC Cafe
    • Student Cluster Competition
    Portal Teaching
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • Success Stories from the Support
    • Training Resources
    • Summary of System Utilization
    • Reports from User Projects
    Portal Systems & Services

  1. Home
  2. Systems & Services
  3. User projects
  4. Physics
  5. HPC User Report from M. Maiti (Inst. Theoretische Physik 1)

HPC User Report from M. Maiti (Inst. Theoretische Physik 1)

In page navigation: Systems & Services
  • Systems, Documentation & Instructions
    • Getting started with HPC
      • NHR@FAU HPC-Portal Usage
    • NHR application rules – NHR@FAU
    • HPC clusters & systems
      • Dialog server
      • Alex GPGPU cluster (NHR+Tier3)
      • Fritz parallel cluster (NHR+Tier3)
      • Meggie parallel cluster (Tier3)
      • Emmy parallel cluster (Tier3)
      • Woody throughput cluster (Tier3)
      • TinyFat cluster (Tier3)
      • TinyGPU cluster (Tier3)
      • Test cluster
      • Jupyterhub
    • SSH – Secure Shell access to HPC systems
    • File systems
    • Batch Processing
      • Job script examples – Slurm
      • Advanced topics Slurm
      • Torque batch system
    • Software environment
    • Special applications, and tips & tricks
      • Amber/AmberTools
      • ANSYS CFX
      • ANSYS Fluent
      • ANSYS Mechanical
      • Continuous Integration / Gitlab Cx
      • CP2K
      • CPMD
      • GROMACS
      • IMD
      • Intel MKL
      • LAMMPS
      • Matlab
      • NAMD
      • OpenFOAM
      • ORCA
      • Python and Jupyter
      • Quantum Espresso
      • R and R Studio
      • STAR-CCM+
      • Tensorflow and PyTorch
      • TURBOMOLE
      • VASP
        • Request access to central VASP installation
      • Working with NVIDIA GPUs
      • WRF
  • Support & Contact
    • Monthly HPC Cafe
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • Support Success Stories
      • Success story: Elmer/Ice
  • HPC User Training
  • HPC System Utilization
  • User projects
    • Biology, life sciences & pharmaceutics
      • HPC User Report from A. Bochicchio (Professorship of Computational Biology)
      • HPC User Report from A. Horn (Bioinformatics)
      • HPC User Report from C. Söldner (Professorship for Bioinformatics)
      • HPC User Report from J. Calderón (Computer Chemistry Center)
      • HPC User Report from J. Kaindl (Chair of Medicinal Chemistry)
      • HPC User Report from K. Pluhackova (Computational Biology Group)
    • Chemical & mechanical engineering
      • HPC User Report from A. Leonardi (Institute for Multiscale Simulation)
      • HPC User Report from F. Lenahan (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from F. Weber (Chair of Applied Mechanics)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from L. Eckendörfer (Catalytic Reactors and Process Technology)
      • HPC User Report from M. Klement (Institute for Multiscale Simulation)
      • HPC User Report from M. Münsch (Chair of Fluid Mechanics)
      • HPC User Report from T. Klein (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)
      • HPC User Report from U. Higgoda (Institute of Advanced Optical Technologies – Thermophysical Properties)
    • Chemistry
      • HPC User Report from B. Becit (Professorship of Theoretical Chemistry)
      • HPC User Report from B. Meyer (Computational Chemistry – ICMM)
      • HPC User Report from D. Munz (Chair of Inorganic and General Chemistry)
      • HPC User Report from J. Konrad (Professorship of Theoretical Chemistry)
      • HPC User Report from P. Schwarz (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Frühwald (Chair of Theoretical Chemistry)
      • HPC User Report from S. Maisel (Chair of Theoretical Chemistry)
      • HPC User Report from S. Sansotta (Professorship of Theoretical Chemistry)
      • HPC User Report from S. Seiler (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Trzeciak (Professorship of Theoretical Chemistry)
      • HPC User Report from T. Klöffel (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)
    • Computer science & Mathematics
      • HPC User Report from B. Jakubaß & S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from D. Schuster (Chair for System Simulation)
      • HPC User Report from F. Wein (Professorship for Mathematical Optimization)
      • HPC User Report from J. Hornich (Professur für Höchstleistungsrechnen)
      • HPC User Report from L. Folle and K. Tkotz (Chair of Computer Science 5, Pattern Recognition)
      • HPC User Report from R. Burlacu (Economics, Discrete Optimization, and Mathematics)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Falk (Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Jacob (Chair of System Simulation)
    • Electrical engineering & Audio processing
      • HPC User Report from N. Pia (AudioLabs)
      • HPC User Report from S. Balke (Audiolabs)
    • Geography & Climatology
      • HPC usage report from F. Temme, J. V. Turton, T. Mölg and T. Sauter
      • HPC usage report from J. Turton, T. Mölg and E. Collier
      • HPC usage report from N. Landshuter, T. Mölg, J. Grießinger, A. Bräuning and T. Peters
      • HPC User Report from C. Pickler and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier (Climate System Research Group)
      • HPC User Report from E. Collier and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier, T. Sauter, T. Mölg & D. Hardy (Climate System Research Group, Institute of Geography)
      • HPC User Report from E. Kropač, T. Mölg, N. J. Cullen, E. Collier, C. Pickler, and J. V. Turton (Climate System Research Group)
      • HPC User Report from J. Fürst (Department of Geography)
      • HPC User Report from P. Friedl (Department of Geography)
      • HPC User Report from T. Mölg (Climate System Research Group)
    • Linguistics
      • HPC User Report from P. Uhrig (Chair of English Linguistics)
    • Material sciences
      • HPC User Report from A. Rausch (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from D. Wei (Chair of Materials Simulation)
      • HPC User Report from J. Köpf (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from P. Baranova (Chair of General Materials Properties)
      • HPC User Report from S. Nasiri (Chair for Materials Simulation)
      • HPC User Report from S.A. Hosseini (Chair for Materials Simulation)
    • Medical research
      • HPC User Report from H. Sadeghi (Phoniatrics and Pediatric Audiology)
      • HPC User Report from P. Ritt (Imaging and Physics Group, Clinic of Nuclear Medicine)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
    • Physics
      • HPC User Report from D. Jankowsky (High-Energy Astrophysics)
      • HPC User Report from M. Maiti (Inst. Theoretische Physik 1)
      • HPC User Report from N. Vučemilović-Alagić (PULS group of the Physics Department)
      • HPC User Report from O. Malcioglu (Theoretische Festkörperphysik)
      • HPC User Report from S. Fey (Chair of Theoretical Physics I)
      • HPC User Report from S. Ninova (Theoretical Solid-State Physics)
      • HPC User Report from S. Schmidt (Erlangen Centre for Astroparticle Physics)
    • Regional users and student projects
      • HPC User Report from Dr. N. Ferruz (University of Bayreuth)
      • HPC User Report from J. Martens (Comprehensive Heart Failure Center / Universitätsklinikum Würzburg)
      • HPC User Report from M. Fritsche (HS-Coburg)
      • HPC User Report from M. Heß (TH-Nürnberg)
      • HPC User Report from M. Kögel (TH-Nürnberg)
  • NHR compute time projects

HPC User Report from M. Maiti (Inst. Theoretische Physik 1)

Simulation of the glassy dynamics of soft spheres and colloidal gels

Contact:

Prof. Dr. Michael Schmiedeberg
Institut für Theoretische Physik 1
Friedrich-Alexander-Universität Erlangen-Nürnberg

Mainly used HPC resources at RRZE

LiMa cluster

In many particulate systems a dramatic slowdown of the dynamics can be observed upon an increase of the packing fraction or a decrease of the temperature. The systems where such a slowdown of dynamics can be observed are manifold and usually the subject of very different research fields. For example, molecular liquids, colloidal suspensions, or emulsions might form glasses or gels at large densities, polymers during the folding process can end up in frustrated states, electrons in a metal might be almost localized, too many pedestrians can lead to dangerous congestions, and too many cars on a street cause a traffic jam. Though many of these phenomena are already known for a long time, the mechanism leading to the breakdown of dynamics still is the subject of ongoing research.

Motivation and problem definition

In our research project we consider a simple model system system of soft spheres that repel each other if they overlap but otherwise do not interact at all. Our goal is to reveal the mechanisms that are associated with the slowdown of dynamics at high densities and low temperatures.

Methods and codes

State diagram of soft spheres as a function of the probability p of steps where energy barriers can be crossed and the packing fraction f. It is shown whether a ground state can be reached (blue) or not (red) or whether a jammed state occurs even at zero temperature (yellow). (Image: Moumita Maiti/Michael Schmiedeberg, published in [1])

We modify the protocol that is widely used to study jamming at zero temperature. In that approach the particles initially are placed at random positions. Then the potential energy is minimized by searching a local minimum without crossing any energy barriers. In case there are overlaps in the final configuration of this protocol, one calls the system to be jammed while is all overlaps have been removed, the system is termed unjammed.

In order to study glassy dynamics at non-zero temperature, we introduce some random steps in order to resemble the effects of random thermal motion. Therefore, in our approach we employ a protocol that is composed of minimization towards a local minimum as known from studies on athermal jamming and steps where energy barriers can be crossed.

Results

We find a transition packing fraction above which the system can no longer reach the ground states and therefore is effectively non-ergodic. Interestingly, for small but non-zero probabilities to cross energy barriers (corresponding to small but non-zero temperatures) this transition packing fraction does not depend on the probability and is much smaller than the transition density of athermal jamming. The state diagram of thermally jammed and unjammed states as a function of the packing fraction and the probability to cross energy barriers is shown in the figure.

Furthermore, we can analyze the critical behavior of the glass transition, which has turned out to be the same as for a random organization or a directed percolation transition. Note that this critical behavior of a system at small but non-zero temperature therefore is fundamentally different from a system at zero temperature.

Our interpretation of the glass transition as a function of density and at small temperatures is as follows: While at small densities rearrangements can occur locally and the subsequent relaxation usually is fast, above the glass transition density rearrangements might affect the whole system and might occur on a timescale that is (directed) percolated in time. To strengthen our interpretation, we also study the percolation in space as well as the relaxation of a system after an enforced rearrangement event.

Our main results are published in [1] and our protocol is based on the ideas stated in [2].

Related systems

While so far, we have mainly studied monodisperse spheres in 3D, we now also explore the glass transition of a bidisperse system in 2D, of ellipsoidal particles in 3D, as well as of active particles.

Image of a colloidal gel taken by confocal microscopy. Chains of the gel network are marked in red. (Image: Ronja Capellmann/Michael Schmiedeberg, cf. results published in [3])

We are also interested in colloidal gels, where in an additional short-ranged attraction between the particles leads to the formation of network-like structures. By using Brownian dynamics simulations, we have discovered, that the solid properties of a gel are related to a directed percolated structure of the gel network [3,4] (cf. press release by the FAU: https://www.fau.eu/2016/06/23/news/research/fau-researchers-show-how-gels-develop-their-solid-properties/).

Conclusions

In our project we employ a new approach to study the glass transition as a function of density. We can analyze the critical behavior and can make predictions on how the glass transition density depends on temperature. While many other approaches try to study glassy systems in quasi-equilibrium, it is possible with our approach to directly explore the glass transition in full non-equilibrium, i.e., in the way how it usually occurs in nature.

Outreach

We received financial support by the DFG (Grants SCHM 2657/2-1 and SCHM 2657/3-1).

  • M Maiti, M. Schmiedeberg: The thermal jamming transition of soft harmonic disks in two dimensions, Eur. Phys. J. E (2019) 42: 38, DOI:10.1140/epje/i2019-11802-3
  • M Maiti, M. Schmiedeberg: Temperature dependence of the transition packing fraction of thermal jamming in a harmonic soft sphere system, J. Phys.: Condens. Matter 31 (2019) 165101, DOI:10.1088/1361-648X/ab01e9

References

[1] M. Maiti and M. Schmiedeberg, Ergodicity breaking transition in a glassy soft sphere system at small but non-zero temperatures, Scientific Reports 8, 1837 (2018).
[2] L. Milz and M. Schmiedeberg, Connecting the Random Organization Transition and Jamming within a unifying model system, Phys. Rev. E 88, 062133 (2013).
[3] M. Kohl, R.F. Capellmann, M. Laurati, S.U. Egelhaaf, and M. Schmiedeberg, Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states, Nature Communications 7, 11817 (2016).
[4] M. Kohl and M. Schmiedeberg, Shear-induced slab-like domains in a directed percolated colloidal gel, Eur. Phys. J. E 40, 71 (2017).

Researcher’s Bio and Affiliation

Michael Schmiedeberg studied physics in Konstanz, Kaiserslautern, and at the Yale University in New Haven (USA). For his PhD on the theory of soft colloidal quasicrystals he was in Konstanz, at the Max-Planck-Institute for Dynamics and Self-Organization in Göttingen, and at the TU Berlin where he finished his PhD in 2008. As a postdoc, he worked at the TU Berlin, the University of Pennsylvania in Philadelphia (USA), and at the Heinrich-Heine-Universität Düsseldorf where he was the principal investigator of an Emmy-Noether Junior Research Group. Besides soft colloidal quasicrystals, he is interested in colloidal structures on substrates, glassy dynamics, jamming, anomalous diffusion, and the motility of bacteria. Since fall 2015 Michael Schmiedeberg is professor of theoretical physics at the Friedrich Alexander University in Erlangen.

Moumita Maiti was a Postdoc in the group of Prof. Michael Schmiedeberg from 2015 to 2017. She completed her PhD in 2012 in India and has worked as a postdoc in Germany since 2013. At the moment she is a postdoc at the University of Münster.

Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
Up