• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
  • FAUTo the central FAU website
  • RRZE
  • NHR-Geschäftsstelle
  • Gauß-Allianz

Navigation Navigation close
  • News
  • People
  • Research
    • Research Focus
    • Publications, Posters and Talks
    • Software & Tools
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • NHR PerfLab Seminar
    • Projects
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures and Seminars
    • Tutorials and Courses
    • Theses
    • HPC Cafe
    • Student Cluster Competition
    Portal Teaching
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • Success Stories from the Support
    • Training Resources
    • Summary of System Utilization
    • Reports from User Projects
    Portal Systems & Services

  1. Home
  2. Systems & Services
  3. User projects
  4. Chemical & mechanical engineering
  5. HPC User Report from M. Klement (Institute for Multiscale Simulation)

HPC User Report from M. Klement (Institute for Multiscale Simulation)

In page navigation: Systems & Services
  • Systems, Documentation & Instructions
    • Getting started with HPC
    • NHR application rules – NHR@FAU
    • HPC clusters & systems
      • Dialog server
      • Alex GPGPU cluster (NHR+Tier3)
      • Fritz parallel cluster (NHR+Tier3)
      • Meggie parallel cluster (Tier3)
      • Emmy parallel cluster (Tier3)
      • Woody throughput cluster (Tier3)
      • TinyFat cluster (Tier3)
      • TinyGPU cluster (Tier3)
      • Test cluster
      • Jupyterhub
    • SSH – Secure Shell access to HPC systems
    • File systems
    • Batch Processing
      • Job script examples – Slurm
      • Advanced topics Slurm
      • Torque batch system
    • Software environment
    • Special applications, and tips & tricks
      • Amber/AmberTools
      • ANSYS CFX
      • ANSYS Fluent
      • ANSYS Mechanical
      • Continuous Integration / Gitlab Cx
      • CP2K
      • CPMD
      • GROMACS
      • IMD
      • Intel MKL
      • LAMMPS
      • Matlab
      • NAMD
      • OpenFOAM
      • ORCA
      • Python and Jupyter
      • Quantum Espresso
      • R and R Studio
      • STAR-CCM+
      • Tensorflow and PyTorch
      • TURBOMOLE
      • VASP
        • Request access to central VASP installation
      • Working with NVIDIA GPUs
      • WRF
  • Support & Contact
    • Monthly HPC Cafe
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • Support Success Stories
      • Success story: Elmer/Ice
  • HPC User Training
  • HPC System Utilization
  • User projects
    • Biology, life sciences & pharmaceutics
      • HPC User Report from A. Bochicchio (Professorship of Computational Biology)
      • HPC User Report from A. Horn (Bioinformatics)
      • HPC User Report from C. Söldner (Professorship for Bioinformatics)
      • HPC User Report from J. Calderón (Computer Chemistry Center)
      • HPC User Report from J. Kaindl (Chair of Medicinal Chemistry)
      • HPC User Report from K. Pluhackova (Computational Biology Group)
    • Chemical & mechanical engineering
      • HPC User Report from A. Leonardi (Institute for Multiscale Simulation)
      • HPC User Report from F. Lenahan (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from F. Weber (Chair of Applied Mechanics)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from L. Eckendörfer (Catalytic Reactors and Process Technology)
      • HPC User Report from M. Klement (Institute for Multiscale Simulation)
      • HPC User Report from M. Münsch (Chair of Fluid Mechanics)
      • HPC User Report from T. Klein (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)
      • HPC User Report from U. Higgoda (Institute of Advanced Optical Technologies – Thermophysical Properties)
    • Chemistry
      • HPC User Report from B. Becit (Professorship of Theoretical Chemistry)
      • HPC User Report from B. Meyer (Computational Chemistry – ICMM)
      • HPC User Report from D. Munz (Chair of Inorganic and General Chemistry)
      • HPC User Report from J. Konrad (Professorship of Theoretical Chemistry)
      • HPC User Report from P. Schwarz (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Frühwald (Chair of Theoretical Chemistry)
      • HPC User Report from S. Maisel (Chair of Theoretical Chemistry)
      • HPC User Report from S. Sansotta (Professorship of Theoretical Chemistry)
      • HPC User Report from S. Seiler (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Trzeciak (Professorship of Theoretical Chemistry)
      • HPC User Report from T. Klöffel (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)
    • Computer science & Mathematics
      • HPC User Report from B. Jakubaß & S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from D. Schuster (Chair for System Simulation)
      • HPC User Report from F. Wein (Professorship for Mathematical Optimization)
      • HPC User Report from J. Hornich (Professur für Höchstleistungsrechnen)
      • HPC User Report from L. Folle and K. Tkotz (Chair of Computer Science 5, Pattern Recognition)
      • HPC User Report from R. Burlacu (Economics, Discrete Optimization, and Mathematics)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Falk (Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Jacob (Chair of System Simulation)
    • Electrical engineering & Audio processing
      • HPC User Report from N. Pia (AudioLabs)
      • HPC User Report from S. Balke (Audiolabs)
    • Geography & Climatology
      • HPC usage report from F. Temme, J. V. Turton, T. Mölg and T. Sauter
      • HPC usage report from J. Turton, T. Mölg and E. Collier
      • HPC usage report from N. Landshuter, T. Mölg, J. Grießinger, A. Bräuning and T. Peters
      • HPC User Report from C. Pickler and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier (Climate System Research Group)
      • HPC User Report from E. Collier and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier, T. Sauter, T. Mölg & D. Hardy (Climate System Research Group, Institute of Geography)
      • HPC User Report from E. Kropač, T. Mölg, N. J. Cullen, E. Collier, C. Pickler, and J. V. Turton (Climate System Research Group)
      • HPC User Report from J. Fürst (Department of Geography)
      • HPC User Report from P. Friedl (Department of Geography)
      • HPC User Report from T. Mölg (Climate System Research Group)
    • Linguistics
      • HPC User Report from P. Uhrig (Chair of English Linguistics)
    • Material sciences
      • HPC User Report from A. Rausch (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from D. Wei (Chair of Materials Simulation)
      • HPC User Report from J. Köpf (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from P. Baranova (Chair of General Materials Properties)
      • HPC User Report from S. Nasiri (Chair for Materials Simulation)
      • HPC User Report from S.A. Hosseini (Chair for Materials Simulation)
    • Medical research
      • HPC User Report from H. Sadeghi (Phoniatrics and Pediatric Audiology)
      • HPC User Report from P. Ritt (Imaging and Physics Group, Clinic of Nuclear Medicine)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
    • Physics
      • HPC User Report from D. Jankowsky (High-Energy Astrophysics)
      • HPC User Report from M. Maiti (Inst. Theoretische Physik 1)
      • HPC User Report from N. Vučemilović-Alagić (PULS group of the Physics Department)
      • HPC User Report from O. Malcioglu (Theoretische Festkörperphysik)
      • HPC User Report from S. Fey (Chair of Theoretical Physics I)
      • HPC User Report from S. Ninova (Theoretical Solid-State Physics)
      • HPC User Report from S. Schmidt (Erlangen Centre for Astroparticle Physics)
    • Regional users and student projects
      • HPC User Report from Dr. N. Ferruz (University of Bayreuth)
      • HPC User Report from J. Martens (Comprehensive Heart Failure Center / Universitätsklinikum Würzburg)
      • HPC User Report from M. Fritsche (HS-Coburg)
      • HPC User Report from M. Heß (TH-Nürnberg)
      • HPC User Report from M. Kögel (TH-Nürnberg)
  • NHR compute time projects

HPC User Report from M. Klement (Institute for Multiscale Simulation)

Crystallization Processes of Colloidal Particles

Contact:

Prof. Michael Engel
Institute for Multiscale Simulation
Friedrich-Alexander-Universität Erlangen-Nürnberg

Mainly used HPC resources at RRZE

Woody cluster

Crystallization processes are ubiquitous in nature. They also occur in colloidal suspensions during solvent drying. Our advanced particle simulations predict crystal structures and assist in understanding driving mechanisms of experiments in simple and complex systems of colloids.

Motivation and problem definition

We come across a variety of colloids in our daily lives, for example milk, blood, and paints. These materials are colloidal suspensions, which means they are made up of colloidal particles with diameter 10nm to 10μm that are freely movable in water. Besides their practical occurrence, colloids are complex materials with emergent properties (e.g. optimized porosity or structural color) and can serve as model systems to understand phase behavior. Despite a long history, simulations of colloids are typically limited to bulk systems or to monodisperse systems where all particles are of identical size. This project improves algorithms to simulate colloids and advances these simulations towards more complex systems. To be specific, we study multi-component mixtures and investigate the effect of confinement that occurs when colloidal particles are dried in emulsion droplets. Our simulations are performed in close collaboration with experimentalists at FAU that guide our work and reproduce our predictions.

Methods and codes

Our colloidal particles interact via short-range, mostly repulsive interactions. This means we can model them to good accuracy as hard spheres. Event-driven molecular dynamic simulations, Monte Carlo, and hybrid (Newtonian) event-chain simulations are used to simulate particles accurately and efficiently. For this purpose, we reimplemented existing algorithms and developed new algorithms. We also used particle swaps and advanced sampling methods for acceleration.

Results

Fig. 1. Mixture of hard-sphere colloids form multi-component crystal structures in simulation. The figure shows a system with continuous (Gaussian) size-dispersity that spontaneously orders into the AB13 structure. Periodicity in the large particles (orange color) and interjacent small particles (green) is visible. Left-over particles are not yet ordered (light blue). The crystal was cleaved at a [100] lattice plane.

We developed Newtonian event-chains, a simulation technique that achieves up to ten times the speed of local-update Monte Carlo simulations and currently holds the world record for fastest hard particle equilibration algorithm [1]. In collaboration with the Vogel group at FAU, which performed microfluidic experiments on colloidal clusters, we demonstrated a magic number effect of monodisperse colloidal particles in spherical confinement [2,3]. Finally, we reported the self-assembly of both size-disperse [4] (Fig. 1) and binary [5] hard sphere systems into Frank-Kasper phases, Laves phases, and AB13 for the first time. For this purpose, we identified the packing fraction-composition stability range for each crystal structures.

Outreach

  1. M. Klement, M. Engel, Efficient equilibration of hard spheres with Newtonian event chains, J. Chem. Phys. 150, 174108 (2019)
  2. J. Wang, C.F. Mbah, T. Przybilla, B.A. Zubiri, E. Spiecker, M. Engel, N. Vogel: Magic number colloidal clusters as minimum free energy structures, Nature Comm. 9, 5259 (2018)
  3. J. Wang, C.F. Mbah, T. Przybilla, S. Englisch, E. Spiecker, M. Engel, N. Vogel: Free energy landscape of colloidal clusters in spherical confinement, ACS Nano 13, 9005 (2019)
  4. P.K. Bommineni, N.R. Varela-Rosales, M. Klement, M. Engel: Complex Crystals from Size-Disperse Spheres, Phys. Rev. Lett. 122, 128005 (2019)
  5. 5. P. K. Bommineni, M. Klement, M. Engel: Growing binary hard sphere crystals, arXiv:1912.06251 (2019)

Researcher’s Bio and Affiliation

Marco Klement studied Physics in Bayreuth. He is a PhD student at FAU since May 2017 working with polyhedral particles, in particular improving the way they are simulated. Dr. Praveen Bommineni received his PhD in Chemical Engineering from the Indian Institute of Science Bangalore, India in 2018 before joining FAU to work on structure formation in colloidal systems. In 2020 he joined the Department of Chemical Engineering at the National Institute of Technology Warangal, India as Assistant Professor. Chrameh Fru Mbah studied Applied Mathematics at KTH Royal Institute of Technology, Sweden. He joined FAU as a PhD student in February 2017 and works on colloidal crystallization in spherical confinement. This work was performed in the group of Prof. Michael Engel at the Institute for Multiscale Simulation in the Department of Chemical and Biological Engineering.

Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
Up