• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
  • FAUTo the central FAU website
  • RRZE
  • NHR-Geschäftsstelle
  • Gauß-Allianz

Navigation Navigation close
  • News
  • People
  • Research
    • Research Focus
    • Publications, Posters and Talks
    • Software & Tools
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • NHR PerfLab Seminar
    • Projects
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures and Seminars
    • Tutorials and Courses
    • Theses
    • HPC Cafe
    • Student Cluster Competition
    Portal Teaching
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • Success Stories from the Support
    • Training Resources
    • Summary of System Utilization
    • Reports from User Projects
    Portal Systems & Services

  1. Home
  2. Systems & Services
  3. User projects
  4. Chemical & mechanical engineering
  5. HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)

HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)

In page navigation: Systems & Services
  • Systems, Documentation & Instructions
    • Getting started with HPC
    • NHR application rules – NHR@FAU
    • HPC clusters & systems
      • Dialog server
      • Alex GPGPU cluster (NHR+Tier3)
      • Fritz parallel cluster (NHR+Tier3)
      • Meggie parallel cluster (Tier3)
      • Emmy parallel cluster (Tier3)
      • Woody throughput cluster (Tier3)
      • TinyFat cluster (Tier3)
      • TinyGPU cluster (Tier3)
      • Test cluster
      • Jupyterhub
    • SSH – Secure Shell access to HPC systems
    • File systems
    • Batch Processing
      • Job script examples – Slurm
      • Advanced topics Slurm
      • Torque batch system
    • Software environment
    • Special applications, and tips & tricks
      • Amber/AmberTools
      • ANSYS CFX
      • ANSYS Fluent
      • ANSYS Mechanical
      • Continuous Integration / Gitlab Cx
      • CP2K
      • CPMD
      • GROMACS
      • IMD
      • Intel MKL
      • LAMMPS
      • Matlab
      • NAMD
      • OpenFOAM
      • ORCA
      • Python and Jupyter
      • Quantum Espresso
      • R and R Studio
      • STAR-CCM+
      • Tensorflow and PyTorch
      • TURBOMOLE
      • VASP
        • Request access to central VASP installation
      • Working with NVIDIA GPUs
      • WRF
  • Support & Contact
    • Monthly HPC Cafe
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • Support Success Stories
      • Success story: Elmer/Ice
  • HPC User Training
  • HPC System Utilization
  • User projects
    • Biology, life sciences & pharmaceutics
      • HPC User Report from A. Bochicchio (Professorship of Computational Biology)
      • HPC User Report from A. Horn (Bioinformatics)
      • HPC User Report from C. Söldner (Professorship for Bioinformatics)
      • HPC User Report from J. Calderón (Computer Chemistry Center)
      • HPC User Report from J. Kaindl (Chair of Medicinal Chemistry)
      • HPC User Report from K. Pluhackova (Computational Biology Group)
    • Chemical & mechanical engineering
      • HPC User Report from A. Leonardi (Institute for Multiscale Simulation)
      • HPC User Report from F. Lenahan (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from F. Weber (Chair of Applied Mechanics)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from L. Eckendörfer (Catalytic Reactors and Process Technology)
      • HPC User Report from M. Klement (Institute for Multiscale Simulation)
      • HPC User Report from M. Münsch (Chair of Fluid Mechanics)
      • HPC User Report from T. Klein (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)
      • HPC User Report from U. Higgoda (Institute of Advanced Optical Technologies – Thermophysical Properties)
    • Chemistry
      • HPC User Report from B. Becit (Professorship of Theoretical Chemistry)
      • HPC User Report from B. Meyer (Computational Chemistry – ICMM)
      • HPC User Report from D. Munz (Chair of Inorganic and General Chemistry)
      • HPC User Report from J. Konrad (Professorship of Theoretical Chemistry)
      • HPC User Report from P. Schwarz (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Frühwald (Chair of Theoretical Chemistry)
      • HPC User Report from S. Maisel (Chair of Theoretical Chemistry)
      • HPC User Report from S. Sansotta (Professorship of Theoretical Chemistry)
      • HPC User Report from S. Seiler (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Trzeciak (Professorship of Theoretical Chemistry)
      • HPC User Report from T. Klöffel (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)
    • Computer science & Mathematics
      • HPC User Report from B. Jakubaß & S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from D. Schuster (Chair for System Simulation)
      • HPC User Report from F. Wein (Professorship for Mathematical Optimization)
      • HPC User Report from J. Hornich (Professur für Höchstleistungsrechnen)
      • HPC User Report from L. Folle and K. Tkotz (Chair of Computer Science 5, Pattern Recognition)
      • HPC User Report from R. Burlacu (Economics, Discrete Optimization, and Mathematics)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Falk (Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Jacob (Chair of System Simulation)
    • Electrical engineering & Audio processing
      • HPC User Report from N. Pia (AudioLabs)
      • HPC User Report from S. Balke (Audiolabs)
    • Geography & Climatology
      • HPC usage report from F. Temme, J. V. Turton, T. Mölg and T. Sauter
      • HPC usage report from J. Turton, T. Mölg and E. Collier
      • HPC usage report from N. Landshuter, T. Mölg, J. Grießinger, A. Bräuning and T. Peters
      • HPC User Report from C. Pickler and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier (Climate System Research Group)
      • HPC User Report from E. Collier and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier, T. Sauter, T. Mölg & D. Hardy (Climate System Research Group, Institute of Geography)
      • HPC User Report from E. Kropač, T. Mölg, N. J. Cullen, E. Collier, C. Pickler, and J. V. Turton (Climate System Research Group)
      • HPC User Report from J. Fürst (Department of Geography)
      • HPC User Report from P. Friedl (Department of Geography)
      • HPC User Report from T. Mölg (Climate System Research Group)
    • Linguistics
      • HPC User Report from P. Uhrig (Chair of English Linguistics)
    • Material sciences
      • HPC User Report from A. Rausch (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from D. Wei (Chair of Materials Simulation)
      • HPC User Report from J. Köpf (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from P. Baranova (Chair of General Materials Properties)
      • HPC User Report from S. Nasiri (Chair for Materials Simulation)
      • HPC User Report from S.A. Hosseini (Chair for Materials Simulation)
    • Medical research
      • HPC User Report from H. Sadeghi (Phoniatrics and Pediatric Audiology)
      • HPC User Report from P. Ritt (Imaging and Physics Group, Clinic of Nuclear Medicine)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
    • Physics
      • HPC User Report from D. Jankowsky (High-Energy Astrophysics)
      • HPC User Report from M. Maiti (Inst. Theoretische Physik 1)
      • HPC User Report from N. Vučemilović-Alagić (PULS group of the Physics Department)
      • HPC User Report from O. Malcioglu (Theoretische Festkörperphysik)
      • HPC User Report from S. Fey (Chair of Theoretical Physics I)
      • HPC User Report from S. Ninova (Theoretical Solid-State Physics)
      • HPC User Report from S. Schmidt (Erlangen Centre for Astroparticle Physics)
    • Regional users and student projects
      • HPC User Report from Dr. N. Ferruz (University of Bayreuth)
      • HPC User Report from J. Martens (Comprehensive Heart Failure Center / Universitätsklinikum Würzburg)
      • HPC User Report from M. Fritsche (HS-Coburg)
      • HPC User Report from M. Heß (TH-Nürnberg)
      • HPC User Report from M. Kögel (TH-Nürnberg)
  • NHR compute time projects

HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)

Axisymmetric Turbulent Boundary Layers

Contact:

Katrin Nusser, M.Sc.
Institute of Process Machinery and Systems Engineering
Friedrich-Alexander-Universität Erlangen-Nürnberg

Mainly used HPC resources at RRZE

Emmy & Meggie cluster

The convex transverse curvature effects in wall-bounded turbulent flows were analyzed along a streamwise orientated circular cylinder with a large length to diameter ratio. In such flows an axisymmetric turbulent boundary layer (TBL) develops that can deviate from the planar TBL.

Motivation and problem definition

Turbulent flows that evolve over surfaces with a strong curvature normal to the mean flow exhibit TBL that show different behavior than their well-known planar counterparts, like flat plate or channel flow. A classical research case with a strong transverse curvature is the flow along a streamwise orientated circular cylinder with a large length to diameter ratio. In flows
along such geometries an axisymmetric TBL develops that has a thickness much larger than the cylinder radius. In this kind of flow curvature effects become important, yielding to changes in TBL properties, especially on mean velocity profiles and turbulent fluctuations, causing higher skin friction coefficients, different characteristics of wall pressure fluctuations and
higher anisotropy in the near-wall flow.

Methods and codes

The open-source code OpenFoam (5.0) was selected as simulation platform. Several LES models were utilized to compare differences in the outcome. Among them are the Smagorinsky and One-Equation model with Van-Driest wall damping and the Wall-Adapting Local Eddy-Viscosity (WALE) model. A finite volume formulation was used with fully orthogonal O-type grid with up to 15 · 106 control volumes.

Results

Resulting mean velocity profiles, turbulent fluctuations, skin friction coefficient and TBL thickness are in good agreement with limited literature data. LES models show different results but none deviates significant from validation data. Gathered data can now be used as groundwork for further detailed investigations and the clarification of open research questions in connection with convex transverse curvature effects in wall-bounded turbulent flows.

Researcher’s Bio and Affiliation

Katrin Nusser studied Computational Engineering and is now a Ph.D. student in the group of Prof. Dr. Stefan Becker at the Institute of Process Machinery and Systems Engineering.

Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
Up