• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
  • FAUTo the central FAU website
  • RRZE
  • NHR-Verein e.V.
  • Gauß-Allianz

Navigation Navigation close
  • News
  • About us
    • People
    • Funding
    • NHR Compute Time Projects
    • Tier3 User Project Reports
    • Success Stories from the Support
    • Annual Report
    • NHR@FAU Newsletters
    • Previous Events
    • Jobs
    Portal About us
  • Research
    • Research Focus
    • Publications, Posters & Talks
    • Software & Tools
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • NHR PerfLab Seminar
    • Projects
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures & Seminars
    • Tutorials & Courses
    • HPC Café
    • Theses
    • Student Cluster Competition
    Portal Teaching & Training
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • Training Resources
    • Summary of System Utilization
    Portal Systems & Services
  • FAQ

  1. Home
  2. Systems & Services
  3. Systems, Documentation & Instructions
  4. Special applications, and tips & tricks
  5. Intel MKL

Intel MKL

In page navigation: Systems & Services
  • Systems, Documentation & Instructions
    • Getting started with HPC
      • NHR@FAU HPC-Portal Usage
    • Job monitoring with ClusterCockpit
    • NHR application rules – NHR@FAU
    • HPC clusters & systems
      • Dialog server
      • Alex GPGPU cluster (NHR+Tier3)
      • Fritz parallel cluster (NHR+Tier3)
      • Meggie parallel cluster (Tier3)
      • Emmy parallel cluster (Tier3)
      • Woody(-old) throughput cluster (Tier3)
      • Woody throughput cluster (Tier3)
      • TinyFat cluster (Tier3)
      • TinyGPU cluster (Tier3)
      • Test cluster
      • Jupyterhub
    • SSH – Secure Shell access to HPC systems
    • File systems
    • Batch Processing
      • Job script examples – Slurm
      • Advanced topics Slurm
    • Software environment
    • Special applications, and tips & tricks
      • Amber/AmberTools
      • ANSYS CFX
      • ANSYS Fluent
      • ANSYS Mechanical
      • Continuous Integration / Gitlab Cx
        • Continuous Integration / One-way syncing of GitHub to Gitlab repositories
      • CP2K
      • CPMD
      • GROMACS
      • IMD
      • Intel MKL
      • LAMMPS
      • Matlab
      • NAMD
      • OpenFOAM
      • ORCA
      • Python and Jupyter
      • Quantum Espresso
      • R and R Studio
      • Singularity/Apptainer
      • Spack package manager
      • STAR-CCM+
      • Tensorflow and PyTorch
      • TURBOMOLE
      • VASP
        • Request access to central VASP installation
      • Working with NVIDIA GPUs
      • WRF
  • Support & Contact
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
  • HPC User Training
  • HPC System Utilization

Intel MKL

The Intel MKL (Math Kernel Library) can be tricky to link. See Intel’s MKL Link Line Advisor to get the appropriate command line.

The Intel MKL includes drop-in wrappers for FFTW3.

On AMD EPIC processors, especially Intel MKL versions before release 202.1 did not deliver best performance by default. Performance may significantly increase if both environment variables, MKL_DEBUG_CPU_TYPE=5 and MKL_CBWR=AUTO, are set at execution time. But be careful to check your results for correctness.

Further information

  • https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
  • https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top.html
  • https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top.html
  • https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top.html
  • https://www.intel.com/content/www/us/en/develop/documentation/oneapi-mkl-dpcpp-developer-reference/top.html
Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
  • RSS Feed
Up