• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
  • FAUTo the central FAU website
  • RRZE
  • NHR-Geschäftsstelle
  • Gauß-Allianz

Navigation Navigation close
  • News
  • People
  • Research
    • Research Focus
    • Publications, Posters and Talks
    • Software & Tools
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • NHR PerfLab Seminar
    • Projects
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures and Seminars
    • Tutorials and Courses
    • Theses
    • HPC Cafe
    • Student Cluster Competition
    Portal Teaching
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • Success Stories from the Support
    • Training Resources
    • Summary of System Utilization
    • Reports from User Projects
    Portal Systems & Services

  1. Home
  2. Systems & Services
  3. Systems, Documentation & Instructions
  4. Special applications, and tips & tricks
  5. Amber/AmberTools

Amber/AmberTools

In page navigation: Systems & Services
  • Systems, Documentation & Instructions
    • Getting started with HPC
      • NHR@FAU HPC-Portal Usage
    • NHR application rules – NHR@FAU
    • HPC clusters & systems
      • Dialog server
      • Alex GPGPU cluster (NHR+Tier3)
      • Fritz parallel cluster (NHR+Tier3)
      • Meggie parallel cluster (Tier3)
      • Emmy parallel cluster (Tier3)
      • Woody throughput cluster (Tier3)
      • TinyFat cluster (Tier3)
      • TinyGPU cluster (Tier3)
      • Test cluster
      • Jupyterhub
    • SSH – Secure Shell access to HPC systems
    • File systems
    • Batch Processing
      • Job script examples – Slurm
      • Advanced topics Slurm
      • Torque batch system
    • Software environment
    • Special applications, and tips & tricks
      • Amber/AmberTools
      • ANSYS CFX
      • ANSYS Fluent
      • ANSYS Mechanical
      • Continuous Integration / Gitlab Cx
      • CP2K
      • CPMD
      • GROMACS
      • IMD
      • Intel MKL
      • LAMMPS
      • Matlab
      • NAMD
      • OpenFOAM
      • ORCA
      • Python and Jupyter
      • Quantum Espresso
      • R and R Studio
      • STAR-CCM+
      • Tensorflow and PyTorch
      • TURBOMOLE
      • VASP
        • Request access to central VASP installation
      • Working with NVIDIA GPUs
      • WRF
  • Support & Contact
    • Monthly HPC Cafe
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • Support Success Stories
      • Success story: Elmer/Ice
  • HPC User Training
  • HPC System Utilization
  • User projects
    • Biology, life sciences & pharmaceutics
      • HPC User Report from A. Bochicchio (Professorship of Computational Biology)
      • HPC User Report from A. Horn (Bioinformatics)
      • HPC User Report from C. Söldner (Professorship for Bioinformatics)
      • HPC User Report from J. Calderón (Computer Chemistry Center)
      • HPC User Report from J. Kaindl (Chair of Medicinal Chemistry)
      • HPC User Report from K. Pluhackova (Computational Biology Group)
    • Chemical & mechanical engineering
      • HPC User Report from A. Leonardi (Institute for Multiscale Simulation)
      • HPC User Report from F. Lenahan (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from F. Weber (Chair of Applied Mechanics)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from L. Eckendörfer (Catalytic Reactors and Process Technology)
      • HPC User Report from M. Klement (Institute for Multiscale Simulation)
      • HPC User Report from M. Münsch (Chair of Fluid Mechanics)
      • HPC User Report from T. Klein (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)
      • HPC User Report from U. Higgoda (Institute of Advanced Optical Technologies – Thermophysical Properties)
    • Chemistry
      • HPC User Report from B. Becit (Professorship of Theoretical Chemistry)
      • HPC User Report from B. Meyer (Computational Chemistry – ICMM)
      • HPC User Report from D. Munz (Chair of Inorganic and General Chemistry)
      • HPC User Report from J. Konrad (Professorship of Theoretical Chemistry)
      • HPC User Report from P. Schwarz (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Frühwald (Chair of Theoretical Chemistry)
      • HPC User Report from S. Maisel (Chair of Theoretical Chemistry)
      • HPC User Report from S. Sansotta (Professorship of Theoretical Chemistry)
      • HPC User Report from S. Seiler (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Trzeciak (Professorship of Theoretical Chemistry)
      • HPC User Report from T. Klöffel (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)
    • Computer science & Mathematics
      • HPC User Report from B. Jakubaß & S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from D. Schuster (Chair for System Simulation)
      • HPC User Report from F. Wein (Professorship for Mathematical Optimization)
      • HPC User Report from J. Hornich (Professur für Höchstleistungsrechnen)
      • HPC User Report from L. Folle and K. Tkotz (Chair of Computer Science 5, Pattern Recognition)
      • HPC User Report from R. Burlacu (Economics, Discrete Optimization, and Mathematics)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Falk (Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Jacob (Chair of System Simulation)
    • Electrical engineering & Audio processing
      • HPC User Report from N. Pia (AudioLabs)
      • HPC User Report from S. Balke (Audiolabs)
    • Geography & Climatology
      • HPC usage report from F. Temme, J. V. Turton, T. Mölg and T. Sauter
      • HPC usage report from J. Turton, T. Mölg and E. Collier
      • HPC usage report from N. Landshuter, T. Mölg, J. Grießinger, A. Bräuning and T. Peters
      • HPC User Report from C. Pickler and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier (Climate System Research Group)
      • HPC User Report from E. Collier and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier, T. Sauter, T. Mölg & D. Hardy (Climate System Research Group, Institute of Geography)
      • HPC User Report from E. Kropač, T. Mölg, N. J. Cullen, E. Collier, C. Pickler, and J. V. Turton (Climate System Research Group)
      • HPC User Report from J. Fürst (Department of Geography)
      • HPC User Report from P. Friedl (Department of Geography)
      • HPC User Report from T. Mölg (Climate System Research Group)
    • Linguistics
      • HPC User Report from P. Uhrig (Chair of English Linguistics)
    • Material sciences
      • HPC User Report from A. Rausch (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from D. Wei (Chair of Materials Simulation)
      • HPC User Report from J. Köpf (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from P. Baranova (Chair of General Materials Properties)
      • HPC User Report from S. Nasiri (Chair for Materials Simulation)
      • HPC User Report from S.A. Hosseini (Chair for Materials Simulation)
    • Medical research
      • HPC User Report from H. Sadeghi (Phoniatrics and Pediatric Audiology)
      • HPC User Report from P. Ritt (Imaging and Physics Group, Clinic of Nuclear Medicine)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
    • Physics
      • HPC User Report from D. Jankowsky (High-Energy Astrophysics)
      • HPC User Report from M. Maiti (Inst. Theoretische Physik 1)
      • HPC User Report from N. Vučemilović-Alagić (PULS group of the Physics Department)
      • HPC User Report from O. Malcioglu (Theoretische Festkörperphysik)
      • HPC User Report from S. Fey (Chair of Theoretical Physics I)
      • HPC User Report from S. Ninova (Theoretical Solid-State Physics)
      • HPC User Report from S. Schmidt (Erlangen Centre for Astroparticle Physics)
    • Regional users and student projects
      • HPC User Report from Dr. N. Ferruz (University of Bayreuth)
      • HPC User Report from J. Martens (Comprehensive Heart Failure Center / Universitätsklinikum Würzburg)
      • HPC User Report from M. Fritsche (HS-Coburg)
      • HPC User Report from M. Heß (TH-Nürnberg)
      • HPC User Report from M. Kögel (TH-Nürnberg)
  • NHR compute time projects

Amber/AmberTools

Amber and AmberTools are suite of biomolecular simulation programs. Here, the term “Amber” does not refer to the set of molecular mechanical force fields for the simulation of biomolecules but to the package of molecular simulation programs consisting of the AmberTools (sander and many more) and Amber (pmemd).

AmberTools are open-source while Amber (pmemd) requires a license. NHR@FAU holds a “compute center license” of Amber, thus, Amber is generally available to everyone for non-profit use, i.e. for academic research.

Availability / Target HPC systems

  • TinyGPU and Alex: typically use pmemd.cuda  which uses a single GPU.
    Thermodynamic integration (TI) may require special tuning; contact us!
  • throughput cluster Woody and parallel computers: only use sander.MPI if the input is not supported by pmemd.MPI.
    cpptraj is also available in parallel versions (cpptraj.OMP and cpptraj.MPI).

New versions of Amber/AmberTools are installed by RRZE upon request.

Notes

The CPU-only module is called amber while the GPU version (which only contains pmemd.cuda) is called amber-gpu. The numbers in the module name specify the Amber version, Amber patch level, the AmberTools version, and the AmberTools patch level. The number are complemented by the used compilers/tools, e.g. amber/18p14-at19p03-intel17.0-intelmpi2017 or amber-gpu/18p14-at19p03-gnu-cuda10.0.

pmemd and sander do not have internal measures to limit the run time. Thus, you have to estimate the number of time steps which can finish within the requested wall time before hand and use that in your mdin file.

Recent versions of AmberTools install their only version  of Python which is independent of the Python of the Linux distribution or the usual Python modules of RRZE.

Sample job scripts

pmemd on TinyGPU

#!/bin/bash -l
#PBS -lnodes=1:ppn=4,walltime=10:00:00
#PBS -N my-pmemd
#PBS -j eo

cd $PBS_O_WORKDIR

module add amber-gpu/18p14-at19p03-gnu-cuda10.0

### there is no need to fiddle around with CUDA_VISIBLE_DEVICES!

pmemd.cuda -O -i mdin ...

pmemd on Alex

#!/bin/bash -l
#
#SBATCH --job-name=my-pmemd
#SBATCH --ntasks=16
#SBATCH --time=06:00:00
# use gpu:a100:1 and partition=a100 for A100
#SBATCH --gres=gpu:a40:1
#SBATCH --partition=a40
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

module load amber/22rc2-at22rc2-gnu-cuda11.5

srun pmemd.cuda -O -i mdin -c inpcrd -p prmtop -o output

parallel pmemd on Emmy

#!/bin/bash -l
#PBS -lnodes=4:ppn=40,walltime=10:00:00
#PBS -N my-pmemd
#PBS -j eo

cd $PBS_O_WORKDIR

module add amber/18p14-at19p03-intel17.0-intelmpi2017

mpirun -n 40 pmemd.MPI -O -i mdin ...

parallel pmemd on Meggie

#!/bin/bash -l
#
# allocate 4 nodes with 20 cores per node = 4*20 = 80 MPI tasks
#SBATCH --nodes=4
#SBATCH --tasks-per-node=20
#
# allocate nodes for 6 hours
#SBATCH --time=06:00:00
# job name 
#SBATCH --job-name=my-pmemd
# do not export environment variables
#SBATCH --export=NONE
#
# first non-empty non-comment line ends SBATCH options

# do not export environment variables
unset SLURM_EXPORT_ENV
# jobs always start in submit directory

module load amber/20p03-at20p07-intel17.0-intelmpi2017

# run 
srun pmemd.MPI -O -i mdin ...

Further information

  • http://ambermd.org
  • http://ambermd.org/GPULogistics.php
  • https://www.exxactcorp.com/blog/Molecular-Dynamics/rtx3090-benchmarks-for-hpc-amber-a100-vs-rtx3080-vs-2080ti-vs-rtx6000

Mentors

  • Dr. A. Kahler, RRZE, hpc-support@fau.de
  • AG Sticht (Professur für Bioinformatik, MedFak)

 

Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
Up