• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
  • FAUTo the central FAU website
  • RRZE
  • NHR-Geschäftsstelle
  • Gauß-Allianz

Navigation Navigation close
  • News
  • People
  • Research
    • Research Focus
    • Publications, Posters and Talks
    • Software & Tools
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • NHR PerfLab Seminar
    • Projects
    • Awards
    Portal Research
  • Teaching & Training
    • Lectures and Seminars
    • Tutorials and Courses
    • Theses
    • HPC Cafe
    • Student Cluster Competition
    Portal Teaching
  • Systems & Services
    • Systems, Documentation & Instructions
    • Support & Contact
    • Success Stories from the Support
    • Training Resources
    • Summary of System Utilization
    • Reports from User Projects
    Portal Systems & Services

  1. Home
  2. Systems & Services
  3. Systems, Documentation & Instructions
  4. Special applications, and tips & tricks
  5. Matlab

Matlab

In page navigation: Systems & Services
  • Systems, Documentation & Instructions
    • Getting started with HPC
      • NHR@FAU HPC-Portal Usage
    • NHR application rules – NHR@FAU
    • HPC clusters & systems
      • Dialog server
      • Alex GPGPU cluster (NHR+Tier3)
      • Fritz parallel cluster (NHR+Tier3)
      • Meggie parallel cluster (Tier3)
      • Emmy parallel cluster (Tier3)
      • Woody throughput cluster (Tier3)
      • TinyFat cluster (Tier3)
      • TinyGPU cluster (Tier3)
      • Test cluster
      • Jupyterhub
    • SSH – Secure Shell access to HPC systems
    • File systems
    • Batch Processing
      • Job script examples – Slurm
      • Advanced topics Slurm
      • Torque batch system
    • Software environment
    • Special applications, and tips & tricks
      • Amber/AmberTools
      • ANSYS CFX
      • ANSYS Fluent
      • ANSYS Mechanical
      • Continuous Integration / Gitlab Cx
      • CP2K
      • CPMD
      • GROMACS
      • IMD
      • Intel MKL
      • LAMMPS
      • Matlab
      • NAMD
      • OpenFOAM
      • ORCA
      • Python and Jupyter
      • Quantum Espresso
      • R and R Studio
      • STAR-CCM+
      • Tensorflow and PyTorch
      • TURBOMOLE
      • VASP
        • Request access to central VASP installation
      • Working with NVIDIA GPUs
      • WRF
  • Support & Contact
    • Monthly HPC Cafe
    • HPC Performance Lab
    • Atomic Structure Simulation Lab
    • Support Success Stories
      • Success story: Elmer/Ice
  • HPC User Training
  • HPC System Utilization
  • User projects
    • Biology, life sciences & pharmaceutics
      • HPC User Report from A. Bochicchio (Professorship of Computational Biology)
      • HPC User Report from A. Horn (Bioinformatics)
      • HPC User Report from C. Söldner (Professorship for Bioinformatics)
      • HPC User Report from J. Calderón (Computer Chemistry Center)
      • HPC User Report from J. Kaindl (Chair of Medicinal Chemistry)
      • HPC User Report from K. Pluhackova (Computational Biology Group)
    • Chemical & mechanical engineering
      • HPC User Report from A. Leonardi (Institute for Multiscale Simulation)
      • HPC User Report from F. Lenahan (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from F. Weber (Chair of Applied Mechanics)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from K. Nusser (Institute of Process Machinery and Systems Engineering)
      • HPC User Report from L. Eckendörfer (Catalytic Reactors and Process Technology)
      • HPC User Report from M. Klement (Institute for Multiscale Simulation)
      • HPC User Report from M. Münsch (Chair of Fluid Mechanics)
      • HPC User Report from T. Klein (Institute of Advanced Optical Technologies – Thermophysical Properties)
      • HPC User Report from T. Schikarski (Chair of Fluid Mechanics / Chair of Particle Technology)
      • HPC User Report from U. Higgoda (Institute of Advanced Optical Technologies – Thermophysical Properties)
    • Chemistry
      • HPC User Report from B. Becit (Professorship of Theoretical Chemistry)
      • HPC User Report from B. Meyer (Computational Chemistry – ICMM)
      • HPC User Report from D. Munz (Chair of Inorganic and General Chemistry)
      • HPC User Report from J. Konrad (Professorship of Theoretical Chemistry)
      • HPC User Report from P. Schwarz (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Frühwald (Chair of Theoretical Chemistry)
      • HPC User Report from S. Maisel (Chair of Theoretical Chemistry)
      • HPC User Report from S. Sansotta (Professorship of Theoretical Chemistry)
      • HPC User Report from S. Seiler (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from S. Trzeciak (Professorship of Theoretical Chemistry)
      • HPC User Report from T. Klöffel (Interdisciplinary Center for Molecular Materials)
      • HPC User Report from T. Kollmann (Professorship of Theoretical Chemistry)
    • Computer science & Mathematics
      • HPC User Report from B. Jakubaß & S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from D. Schuster (Chair for System Simulation)
      • HPC User Report from F. Wein (Professorship for Mathematical Optimization)
      • HPC User Report from J. Hornich (Professur für Höchstleistungsrechnen)
      • HPC User Report from L. Folle and K. Tkotz (Chair of Computer Science 5, Pattern Recognition)
      • HPC User Report from R. Burlacu (Economics, Discrete Optimization, and Mathematics)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Falk (Phoniatrics and Pediatric Audiology)
      • HPC User Report from S. Jacob (Chair of System Simulation)
    • Electrical engineering & Audio processing
      • HPC User Report from N. Pia (AudioLabs)
      • HPC User Report from S. Balke (Audiolabs)
    • Geography & Climatology
      • HPC usage report from F. Temme, J. V. Turton, T. Mölg and T. Sauter
      • HPC usage report from J. Turton, T. Mölg and E. Collier
      • HPC usage report from N. Landshuter, T. Mölg, J. Grießinger, A. Bräuning and T. Peters
      • HPC User Report from C. Pickler and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier (Climate System Research Group)
      • HPC User Report from E. Collier and T. Mölg (Climate System Research Group)
      • HPC User Report from E. Collier, T. Sauter, T. Mölg & D. Hardy (Climate System Research Group, Institute of Geography)
      • HPC User Report from E. Kropač, T. Mölg, N. J. Cullen, E. Collier, C. Pickler, and J. V. Turton (Climate System Research Group)
      • HPC User Report from J. Fürst (Department of Geography)
      • HPC User Report from P. Friedl (Department of Geography)
      • HPC User Report from T. Mölg (Climate System Research Group)
    • Linguistics
      • HPC User Report from P. Uhrig (Chair of English Linguistics)
    • Material sciences
      • HPC User Report from A. Rausch (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from D. Wei (Chair of Materials Simulation)
      • HPC User Report from J. Köpf (Chair of Materials Science and Engineering for Metals)
      • HPC User Report from P. Baranova (Chair of General Materials Properties)
      • HPC User Report from S. Nasiri (Chair for Materials Simulation)
      • HPC User Report from S.A. Hosseini (Chair for Materials Simulation)
    • Medical research
      • HPC User Report from H. Sadeghi (Phoniatrics and Pediatric Audiology)
      • HPC User Report from P. Ritt (Imaging and Physics Group, Clinic of Nuclear Medicine)
      • HPC User Report from S. Falk (Division of Phoniatrics and Pediatric Audiology)
    • Physics
      • HPC User Report from D. Jankowsky (High-Energy Astrophysics)
      • HPC User Report from M. Maiti (Inst. Theoretische Physik 1)
      • HPC User Report from N. Vučemilović-Alagić (PULS group of the Physics Department)
      • HPC User Report from O. Malcioglu (Theoretische Festkörperphysik)
      • HPC User Report from S. Fey (Chair of Theoretical Physics I)
      • HPC User Report from S. Ninova (Theoretical Solid-State Physics)
      • HPC User Report from S. Schmidt (Erlangen Centre for Astroparticle Physics)
    • Regional users and student projects
      • HPC User Report from Dr. N. Ferruz (University of Bayreuth)
      • HPC User Report from J. Martens (Comprehensive Heart Failure Center / Universitätsklinikum Würzburg)
      • HPC User Report from M. Fritsche (HS-Coburg)
      • HPC User Report from M. Heß (TH-Nürnberg)
      • HPC User Report from M. Kögel (TH-Nürnberg)
  • NHR compute time projects

Matlab

MATLAB is a commercial software developed by MathWorks. It is used to solve mathematical problems and to visualize the results. It is mainly used for numerical calculations based on matrices.

Please note that the clusters do not come with any license. If you want to use Matlab, your chair has to provide suitable licenses. Your use on the HPC systems competes with the usage at the chair.

Availability / Target HPC systems

Matlab can run either on a single CPU or on a single node by using multi-threading. Runs with more than one node are currently not supported.

For standalone-simulations, the following HPC systems are best suited:

  • throughput cluster Woody: best suited for smaller calculations
  • TinyFat: for calculations with large memory requirements

However, the best choice for a target HPC systems depends also on the location of your input data. For example, if you want to analyze large datasets which were generated by another simulation on Emmy and are stored on its parallel file system, you should also use Emmy for your Matlab simulations to avoid copying data.

Different versions of Matlab are available via the modules system. They may also vary between the clusters.

If you can’t see  the modules but want to use them, please contact hpc-support@fau.de for activation.

Notes

  • If possible, run your calculation as a batch job (see example script below).
  • MATLAB can also be run interactively via GUI or command line. You can use an interactive job on the compute nodes for this.
  • Please do not use login nodes for production jobs!

Sample job scripts

serial job on Woody

#!/bin/bash -l
#PBS -lnodes=1:ppn=4,walltime=10:00:00
#PBS -N matlab
#PBS -j eo

module load matlab/R201xx
matlab -nojvm -nodisplay -nosplash < my_matlab_script.m

Further information

https://www.mathworks.com/help/matlab/

https://de.mathworks.com/matlabcentral/

Mentors

  • please volunteer!

 

Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1
91058 Erlangen
Germany
  • Imprint
  • Privacy
  • Accessibility
  • How to find us
Up