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Zusammenfassung

Bei der Optimierung wissenschaftlicher Software stellt Leistungsmodellierung einen essenziellen Teil dar.
Um statisch Leistungsanalysen von Programmcode zu erstellen, ist es wichtig, über eine präzise Vorhersage
der in-core Laufzeit zu verfügen. Diese ist jedoch stark von der jeweiligen Prozessorarchitekture abhängig.
Die in früheren Arbeiten entwickelte Software Open Source Architecture Code Analyzer (OSACA) ist ein
statisches Leistungsanalysetool zur Vorhersage von Laufzeiten einer sequentiellen Programmschleife. Es
unterstützte bereits die einfache Durchsatzanalyse bei x86 (Intel und AMD) Mikroarchitekturen. Wir haben
den Funktionsumfang von OSACA erheblich erweitert, sodass nun Abhängigkeitsketten innerhalb und
über Schleifen hinweg identifiziert werden können und so ein kritischer Pfad und schleifenübergreifende
Abhängigkeiten erkannt werden. Dies führt einer deutlichen Verbesserung der Laufzeitvorhersage. Des
Weiteren wurde die Durchsatzvorhersage optimiert und die Unterstützung von ARM-basierten Mikroar-
chitekturen hinzugefügt, was OSACA zu einem vielseitig einsetzbaren architekturübergreifenden Model-
lierungswerkzeug werden lässt. Während die Durchsatzvorhersage und schleifenübergreifende Abhängigkeit-
sanalyse eine untere Grenze der Laufzeit bilden, kann die Latenz des kritischen Pfads als obere Grenze der
Ausführungsdauer angesehen werden. Wir evaluieren die Qualität unserer Analyse für Programmcode auf
Intel Cascade Lake, AMD Zen und Marvell ThunderX2 Mikroarchitekturen. Die Modellparameter basieren
auf Herstellerdokumentationen und kleinteiligen Messungen. Die Vorhersagen werden sowohl den tatsäch-
lichen Messungen der Laufzeit als auch den Analyseresultaten der vergleichbaren Tools Intel Architecture
Code Analyzer (IACA) und LLVM Machine Code Analyzer (LLVM-MCA) gegenübergestellt. Dies zeigt,
dass OSACA das aktuell leistungsfähigste und vielseitigste Vorhersagewerkzeug für in-core Laufzeiten
darstellt.

Abstract

The creation of performance models is an essential part of optimizing scientific software. To run static
performance analyses on code snippets, it is crucial to obtain an accurate in-core execution time predic-
tion, which is highly dependent on the micro-architecture of the chip. Our previously developed Open
Source Architecture Code Analyzer (OSACA) tool is a static performance analyzer for predicting the exe-
cution time of sequential loops. It previously supported only x86 (Intel and AMD) micro-architectures and
simple, full-throughput prediction. We heavily extended its functionality by the detection of dependencies
within and across assembly loops to identify the critical path and loop-carried dependencies. This enables
a much improved runtime prediction in steady state execution. Furthermore, we enhanced the through-
put prediction and added support for ARM-based micro-architectures, which turns OSACA into a versatile
cross-architecture modeling tool. While its throughput and loop-carried dependency analysis give a lower
bound runtime prediction, its critical path analysis can function as an upper bound for the execution time.
We evaluate the quality of the analysis for code on Intel Cascade Lake, AMD Zen, and Marvell ThunderX2
micro-architectures based on machine models from available documentation and semi-automatic bench-
marking. The predictions are compared with measurements and the analysis results from the related tools
Intel Architecture Code Analyzer (IACA) and LLVM Machine Code Analyzer (LLVM-MCA). The compari-
son shows that OSACA is to date the most capable and versatile in-core runtime prediction tool available.
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1
INTRODUCTION

This work intends to enhance the previously developed performance analysis tool OSACA [2] in the func-
tion of supporting ARM-based, i.e., non-x86, micro-architectures and of applying a critical path and loop-
carried dependency detection on assembly code snippets. OSACA focuses on loop-based, scientific codes
in steady-state execution.

1.1. Motivation

In areas of computer science and computational applications in general, one of the most important metrics
for efficient software is performance. Optimization of modern programs can be extremely difficult in a
world of different and more and more heterogeneous systems which got not only more powerful, but also
more complex from generation to generation. Indeed, in order to gain good performance, i.e., work done
in a specific amount of time, it is crucial to obtain insight knowledge of the executing systems. One way of
predicting the behavior of a CPU is to apply a performance model. Performance models not only provide
users with information about memory traffic, execution time and software-hardware interaction, but help
to identify bottlenecks in the design or to improve power and energy models and therefore to determine
trade-offs between performance and energy consumption. Thus, they are powerful tools for all kind of
developers, processor designers and researchers.

In general, performance models can be divided into two main groups [3]: White-box or first principles mod-
els, i.e., constructed from specifications and information visible for third-parties and black-box or statistical
models, which are based on empirical data and therefore neither need nor additionally give insight into an
investigated hardware. Furthermore, within those two domains, given a code snippet to investigate (which
will be called kernel in this work), one can differentiate between a static analysis or a simulation of the
given kernel. While for the latter one a more precise model and prediction of the system’s behavior is
possible, it may also lead to a overly complex and time consuming approach and sometimes cannot be de-
veloped due to insufficient information. With a static analysis applying a model of an underlying hardware
is mostly much easier and requires less detailed a priori knowledge and therefore in many cases is more

1



CHAPTER 1. INTRODUCTION

Easy Complex

Black-box

White-box

Roofline ECM

Simulators

Neural Networks

Curve Fitting

Figure 1.1.: Possible domains of performance models including some sample performance evaluation methods in an
approximate order.

light-weight and faster than simulators. An overview of general metrics for performance models including
example evaluation methods can be found in Figure 1.1.

The most famous, yet, simplest model mentioned here and part of the static analyses is the Roofline [4]
model. It puts in-core floating-point performance and off-chip memory traffic as part of a machine model
and operational intensity from a code model in a relation. The peak processor performance can be deter-
mined by the hardware specifications or through micro-benchmarks and the memory traffic traditionally —
despite of the fact nowadays other cache-aware models exist [5] — refers to the main memory bandwidth,
assuming normal workloads do not fit fully in a cache size. Therefore, the peak memory bandwidth can be
either determined by using the hardware specifications or by running benchmarks like STREAM [6]. The
operational intensity is the number of operations per byte of main memory traffic, i.e., the ratio of executed
floating-point operations F and the total traffic of bytes B for a certain kernel [7]:

I =
F
B

Therefore, the investigated loop body can be summed up to one metric I. With that, the Roofline model
gives an upper bound for the attainable performance P (in general in Flop/sec). It assumes the peak floating-
point performance Ppeak as single in-core bottleneck and the peak memory bandwidth Bpeak to be the single
data traffic bottleneck for streaming kernels in steady-state execution. It can be written as the minimum of
Ppeak and the product of Bpeak and the operational intensity:

P = min
(
Ppeak,Bpeak× I

)
Both Ppeak and Bpeak therefore determine an upper bound of the Roofline model. By looking at the inten-
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(b) Exemplary optimization process of a kernel by reaching the
memory limit, increasing the operational intensity of the code
and finally doing core-based optimizations.

Figure 1.2.: Example Roofline models based on [8].

sity I, a user can separate their code into one of the domains and, therefore, determine being a memory-
bound (below the inclined ceiling) or compute-bound (below the flat ceiling). Unoptimized kernels often
fall short of the expectation given by the Roofline model because the code is limited by in-core effects (that
can be visualized as a lower flat ceiling). A graphical representation of such general ceilings in the Roofline
model is shown in Figure 1.2a. While different Ppeak can higher or lower the flat ceiling, e.g., by using
SIMD or FMA instructions, different Bpeak, like taking cache levels into account or using prefetching, af-
fect the inclined ceiling. Consequently, the optimization goals consists of (i) reaching the Roofline limit of
the inclined ceiling, (ii) increasing the intensity until the code is not memory bound anymore and finally
(iv) reaching the flat ceiling Roofline limit again by doing core-level optimizations. Thus, the overall goal
is to achieve thorough understanding of performance bottlenecks. This process is shown in Figure 1.2b as
an example of applying a Roofline model to a specific architecture and kernel.

For a better understanding of how to apply the Roofline model, we will look at an exemplary code snippet.
Here we want to execute a large (i.e., too big to fit into any cache) single precision vector reduction on an
8-core 2.2 GHz Intel Sandy Bridge (SNB) socket with the following kernel:

float a[N];
float s;

for(i=0; i<N; ++i) {
s = s + a[i];

}

Using the hardware specifications we can determine a maximum memory bandwidth of Bpeak = 40GB/s
and a peak performance of Ppeak = 2.2GHz× 16× 8 = 281.6GFlop/s. For the latter we multiplied the
CPU clock frequency (2.2 GHz), the number of floating-point operations (MUL/ADD) per one cycle per
core (16) and the number of cores per socket (8). These two numbers define the rooflines for our model.
Additionally, we know the operational intensity I = 1Flop/4Byte = ¼Flop/Byte resulting from one ADD
and one four-byte LOAD per iteration of our most naive implementation. Thus, we can assume the kernel
takes 3 cycles per iteration (cy/it) due to an ADD-pipeline depth of 3 cy combined with the loop-carried
dependency on the target variable s and therefore has a performance of 8× 2.2GHz/3 cy

it × 1Flop/it =
5.9GFlop/s. By optimizing the code, e.g., by using unrolling with modulo variable expansion, we can shift
the bottleneck from the compute part to the memory, which allows us to get to the inclined ceiling roofline
at Bpeak× I = 40GB/s×¼Flop/Byte = 10GFlop/s. After this, we cannot do any further optimization since

3
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there is no option to increase the operational intensity of the code without having any further use of the
variables.

Another, more complex approach for static, first-principles-based performance modeling is the Execution-
Cache-Memory (ECM) model [9]. Similar to the Roofline model, it consists of an in-core execution and
a data transfer part, taking into account not only several cache levels, but also victim, write-through, and
multi-ported caches [10]. The in-core execution Tcore assumes that all data is available in the innermost
cache and ignores all possible bottlenecks defined by inter-cache transfers and main memory. It is the
maximum of overlapping and non-overlapping execution time

Tcore = max
(
Tcomp,TRegL1

)
and in this case refers to a work load of 16 iterations. This is due to the fact assume one cache line (CL) of
64 B as smallest unit of data loaded from the caches and using single-precision floating-points, i.e., 4-byte-
elements, we need 16 iterations to fill one CL. Non-overlapping execution time TRegL1 refers to the cycles
in which LOAD instructions are retired and data is loaded from L1 cache to the registers, while overlapping
execution time Tcomp refers to in-core computation without LOAD.

The data transfer time Tdata describes the bandwidth (in cycles) of transferring data between L1 and L2
caches, L2 and L3 caches, and L3 cache and main memory, respectively, for an architecture with three
inclusive cache levels. It depends on the micro-architecture if the single data transfer times overlap, partly
overlap or can be seen as completely separated transfer times. For example, for Intel x86 micro-architectures
up to Broadwell, Tdata can be written as the sum of the data transfer times:

Tdata = TL1L2 +TL2L3 +TL3Mem

Including this equation, an overall ECM performance model estimating an execution time can be given as
the maximum of the in-core computation time and the overall data transfer time, i.e., the sum of the in-core
data transfer TRegL1 and the bandwidth Tdata:

TECM = max
(
Tcomp,TRegL1 +Tdata

)
A shorthand notation for the execution and data transfer time—shown in [11]—can be written as{

Tcomp||TRegL1|TL1L2|TL2L3|TL3Mem
}
.

Furthermore, an ECM model prediction for various levels of cache and memory hierarchy, which is calcu-
lated out of the formula above using different levels of cache, can be summarized in a similar way as{

T ECM
core eT ECM

L2 eT ECM
L3 eT ECM

Mem
}
.

The subscript indicates the memory level taken into account for calculating Tdata. We therefore differentiate
above between the in-core execution using only the L1 cache (T ECM

core ), using L1 and L2 cache (T ECM
L2 ), all

caches up to L3 (T ECM
L3 ) or the main memory (T ECM

Mem ).

Applying the ECM model on the same hardware system (SNB) to the same kernel shown earlier in its
optimized version, i.e., including modulo variable expanded unrolling and SIMD instructions and with suf-
ficient unrolling to achieve full throughput for these instructions, results in an overlap in-core computation
time of Tcomp = 2cy/16it. Due to fact of a workload of 16 it, i.e., 64 B, we have two vector ADDs including
eight single-precision floating-points running in parallel, each with a latency of 3 cy. The non-overlapping
time TRegL1 equals 2cy/16it for two AVX LOAD instruction done in parallel. From the hardware specifi-
cation we can see the possible L1-L2 transfer time as well as the L2-L3 transfer time is 32 B/cy [12]. But
since for our SNB system the smallest unit of loads from the cache is one CL, i.e., 64 B, we need to take
the time for loading one CL into account, therefore, we define TL1L2 = 2cy/16it and TL2L3 = 2cy/16it.
Using the peak memory bandwidth of Bpeak = 40GB/s with the clock speed of 2.2 GHz, we can convert
it to TL3Mem = 3.5cy/16it. Thus, for this kernel an ECM model of {2.0||2.0|2.0|2.0|3.5} cy/16it can be
determined. The overall in-core execution time emerges to Tcore = max(2.0,2.0)cy/16it = 2cy/16it. Sum-
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marizing the levels of memory hierarchy, we can finally state the model as {2.0e4.0e6.0e9.5} cy/16it for
single-core, which subsequently leads in the case of 16Flop/16it to a prediction of

1Flop/it
{2.0e4.0e6.0e9.5} cy/16it

×2.2GHz = {17.6e8.8e5.9e3.7} GFlop/s

one core. Finally, an (optimistic) saturation assumption can be calculated out of the number of cores needed
until a shared main memory bandwidth bottleneck is hit [13]:

TECM(n) = max
(

T ECM
Mem
n

,TL3Mem

)
⇒ ns =

⌈
T ECM

Mem
TL3Mem

⌉
=

⌈
9.5
3.5

⌉
= 3

For further understanding, a visualization of the separation of the individual in-core and data transfer parts
for a eight times unrolled vector reduction kernel is shown in Figure 1.3.

While the parameters for the machine model can be found in hardware specifications, the quantification
of the code parameters often requires manual analysis, which may become unsolvable by hand quickly as
soon as the kernel complexity grows. Hammer et al. [14] provides the Kerncraft tool1, which is capable of
calculating static performance analyses like the Roofline model or the ECM model. Within Kerncraft, the
in-core execution part can be predicted by different tools: The Intel Architecture Code Analyzer (IACA) [15],
an Intel proprietary, but free tool for their own architectures, the Open Source Architecture Code Analyzer
(OSACA) [2], and LLVM Machine Code Analyzer (LLVM-MCA). OSACA is an open source tool inspired
by IACA with the motivation to overcome its limitations and nontransparent performance analysis. Before
this work, both tools provided for a given, marked innermost loop body an analysis of the block throughput
and the instruction binding to the CPU ports. In IACA version 2.2 (Dec 2016), Intel dropped the support for
latency analysis, which limited the in-core runtime prediction to a lower-bound estimation. Furthermore,
in April 2019, Intel announced the end-of-life of their tool2, resulting inevitably in no further support for
any micro-architecture. OSACA, on the other hand, supported various x86 architectures in a transparent
and generic way based on micro-benchmarking, but was also not able to provide a more detailed latency
analysis for more complex kernels.

To overcome all these limitations, we enhanced OSACA tremendously. The goal of this thesis is to extend
the functionality of OSACA by supporting critical path (CP) analysis and detecting loop-carried dependen-
cies (LCDs). Furthermore, OSACA should be able to perform analysis on ARM-based platforms and be
made more generic and flexible to enable further enhancements.

1The current version of Kerncraft is available at https://github.com/RRZE-HPC/kerncraft/
2See https://software.intel.com/en-us/articles/intel-architecture-code-analyzer (accessed January 29, 2020)
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1.2. Scope of Work

This thesis covers two main tasks:

(i) After OSACA was already enhanced to support non-Intel micro-architectures in form of AMD Zen
in [16], we proceeded to provide support for ARM architectures, which included to extend the OSACA
internal assembly parser to understand AArch64 syntax, the 64-bit execution state of the ARMv8 in-
struction set architecture (ISA) as well as the formulation of a port model for the ARM-based Marvell
ThunderX2 (TX2) system. Because of the lack of a testbed for ARM’s new scalable vector exten-
sion (SVE) instruction set3, we could not ensure a support of any of these instruction forms. An
instruction form, as introduced in [2], is a unique expression of an assembly instruction mnemonic
and its operand types in a specific order.

(ii) To refine the in-core runtime prediction of a kernel, OSACA supports the automatic detection of
the critical path, i.e., the longest dependency chain of instruction forms within one loop kernel, and
(simple) loop-carried dependencies. This can improve the overall prediction tremendously in case of
kernels which are not throughput bound and provides the user with an upper-bound prediction of their
code.

Furthermore, we wanted to alter the database structure to store more hardware-specific information and
develop it into a machine model, being able to store more details about instruction form data and distinguish
between ISA-specific and micro-architecture-specific peculiarities. Instruction forms containing memory
addressing in their operands should be uncoupled to model overlapping and non-overlapping of LOAD
instructions. For micro-benchmarking, the ability of generating benchmark files and importing results to
and from ibench [17], a tool for micro-benchmarking assembly instruction forms in x86, ARM and Power
syntax, should be extended to also support the instrumentation of the asmbench framework [18].

In general, all changes should be made keeping in mind the generic approach of OSACA and the possibility
of extend it for other micro-architectures and ISAs in the future. To fulfil this, we refrained from the
approach of analysing ELF files as in previous versions and focused solely on the analysis of marked
assembly files. This allows as additionally to use comment line markers for the convenience of the user.
Nevertheless, to stay consistent with the widely used IACA tool, we further want to support byte markers
in the assembly for identifying the kernel, since IACA works on compiled object files.

All code of this project continues to be available and freely accessible for further collaboration as an open
source project at GitHub4.

1.3. Related Work

As mentioned in Section 1.1, OSACA was inspired by IACA, the Intel Architecture Code Analyzer. De-
veloped by Israel Hirsh and and Gideon S. [sic], Intel released IACA in 2012. At that time it included
both throughput and critical path analysis. In 2017, Intel dropped the latency analysis support for unknown
reasons. Finally, in April 2019, the developers announced the end-of-life of their tool, therefore no future
enhancements or new micro-architecture support can be expected. At the time of writing, IACA supports
in its current version 3.0 Intel micro-architectures from Haswell (HSW) to Skylake-X (SKX). One of the
biggest limitations of IACA is the entirely closed-source development, so no insight or validation of single
performance values is possible.

LLVM-MCA [19] is a powerful performance analysis tool based on LLVM’s existing scheduling models. It
can output various information about the kernel on a specific architecture like latency information, the block
throughput, and a timeline view. The timeline view emulates the kernel execution and can be used to man-
ually identify critical paths based on instruction dependencies, but is bound to some pen-and-paper effort.
Unfortunately, results are not always accurate or need refinement and in its current release of version 9.0.0,

3For more information see the ARM SVE manual, available at: https://developer.arm.com/docs/ddi0584/latest/arm-architecture-
reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a (accessed January 29, 2020)

4https://github.com/RRZE-HPC/OSACA/
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some HPC-relevant ARM architectures such as the TX2 are lacking. Nevertheless, in ARM’s LLVM HPC
version 19.2.0, LLVM-MCA is capable of analysing some of its own compiled kernels, but does not work
reliably.

With its EXEgesis project [20], Google created an open source project to improve code generation by
parsing ISA information out of vendor or unofficial manuals of the hardware. This information could be
used to build similar models as Intel IACA or OSACA. On their website, the developers state the support of
Intel x86-64 and ARM A64 micro-architectures and the current development of IBM Power. Nonetheless,
already six months passed since the last commit, so the future and continuity of the project is unsure.

With Ithemal, Mendis et al. [21] provided a hierarchical LSTM-based machine learning approach to predict
the block throughput of x86-64 loop kernels and show a higher accuracy than LLVM-MCA and IACA [22].
They support Intel HSW to Skylake (SKL) (without AVX-512) and are able to use IACA byte markers
for indicating the code block, but are not capable of detecting a critical path or loop-carried dependencies.
Furthermore, as a black-box model, it only returns a number of cycles as runtime prediction and does not
provide any insight on the investigated kernel or hardware.

Charif-Rubial et al. [23] introduced the Code Quality Analyzer (CQA), a static performance analysis tool to
give the developer a quality estimation of the code based on static binary analysis and out-of-order execution
simulation done by Uop Flow Simulation (UFS) [24], therefore, it is not focused on predicting an actual
runtime like OSACA and only supports x86 micro-architectures.

There exist various simulators like gem5 [25], ZSim [26], and MARSSx86 [27], which can be all considered
as full system simulators. They go beyond the scope of this work and provide more a coarse overview on
complete (multi- or many-core) systems, rather than detailed insights pinpointing a bottleneck.

For obtaining instruction form performance data as needed by OSACA, there a several options: Ibench by
Johannes Hofmann [17] is a micro-benchmark tool for measuring latency and throughput for single assem-
bly instructions for x86, A64 and IBM Power syntax and already used by OSACA. The asmbench frame-
work by Julian Hammer [18] uses the LLVM just-in-time and cross-platform compilation capabilities to
abstract instructions and operands and provides throughput and latency information for specific instruction
forms. Furthermore, databases like Intel’s Software Optimization Reference Manual [12], uops.info [28]
and Agner Fog’s “Instruction Tables” [29] give helpful insight about throughput and latency of instruction
forms, but need to be treated carefully, since they are know to be not fully correct and therefore should be
used only as additional validation to micro-benchmarks.

After the in-core analysis done by OSACA, the Kerncraft tool suite by Julian Hammer [14] is capable of
applying further knowledge about the hardware on the analyzed loop kernel to provide a complete ECM
prediction for performance analysis.

1.4. Results

A structural overview of OSACA in its current version can be found in Figure 1.4 with the example analysis
of a STREAM triad on an Intel Cascade Lake X (CSX) micro-architecture:

double a[N], b[N], c[N];
double s;

for(i=0; i<N; ++i) {
a[i] = b[i] + s * c[i];

}

For starting the analysis, OSACA needs a marked assembly loop kernel. In contrast to IACA, the file
does not need to be compiled and can therefore consist only of the marked kernel code, as shown in the
top left part of Figure 1.4. By running the command osaca --arch CSX triad.s OSACA parses
the assembly file and extracts and analyzes the marked kernel. OSACA applies each single assembly in-
struction form to its hardware model, which consists of two main parts: On the one hand it checks the
micro-architecture-specific machine file containing the generic L1 load and store costs for instruction form
specific performance data, i.e., the latency and port pressure based on the determined port model. On the

7



CHAPTER 1. INTRODUCTION

4.0

4.0

4.0

1.0

1.0

181: LOAD179: label185: jne 180: vmovapd

181: vfmadd213pd

182: vmovapd

184: cmpq

183: addq

 * - Instruction micro-ops not bound to a port

Combined Analysis Report
------------------------
                                     Port pressure in cycles                                     
     |  0  - 0DV |  1   |  2 - 2D  |  3  - 3D |  4  |  5   |  6   | 7 || CP  | LCD |
------------------------------------------------------------------------------------
 179 |           |      |          |         |     |      |      |   ||     |     |   .L22:
 180 |           |      | 0.5  0.5 | 0.5  0.5 |     |      |      |   || 4.0 |     |   vmovapd 0(%r13,%rax),%ymm0
 181 | 0.50      | 0.5  | 0.5  0.5 | 0.5  0.5 |     |      |      |   || 4.0 |     |   vfmadd213pd (%r14,%rax),%ymm1,%ymm0
 182 |           |      | 0.5      | 0.5     | 1.0 |      |      |   || 5.0 |     |   vmovapd %ymm0,(%r12,%rax)
 183 | 0.25      | 0.25 |          |         |     | 0.25 | 0.25 |   ||     | 1.0 |   addq $32,%rax
 184 | 0.0       | 0.0  |          |         |     | 0.5  | 0.5  |   ||     |     |   cmpq %rax,%r15
 185 |           |      |          |         |     |      |      |   ||     |     | * jne .L22

       0.75        0.75   1.5  1.0   1.5  1.0   1.0   0.75   0.75       13.0   1.0  

Loop-Carried Dependencies Analysis Report
-----------------------------------------
 183 |  1.0 | addq $32, %rax                     | [183]

Throughput & Critical Path Analysis

Machine Files / Databases

load_latency: {gpr: 4, xmm: 4, ymm: 4, zmm: 4}
load_throughput: {port_pressure: [0,0,0,0.5, ...,0]}
...
- name: vfmadd213pd
  operands:
    - class: "register"
      name: "ymm"
      source: true
      destination: false
    - class: "register"
      name: "ymm"
      source: true
      destination: false
    - class: "register"
      name: "ymm"
      source: true
      destination: true
  throughput: 0.5
  latency: 4    # 0  DV 1  2 D 3 D 4 5 6 7
  port_pressure:[0.5,0,0.5,0,0,0,0,0,0,0,0]

specific operand
description

mnemonic

performance
information

generic load
information

AVX ADDAVX ADD

Out-of-Order

In-Order

Out-of-Order Scheduler

Port 0

ALU

Port 1 Port 2 Port 7Port 3 Port 4 Port 5 Port 6

Memory Control

2nd Branch

AVX DIV

AVX FMA

AVX MUL

AVX ALU

AVX Shift

VNNI

LOAD

AGU

STORE ALU

Fast LEA

AVX SHUF

AVX-512
FMA

ALU

Branch

AGUALU

Fast LEA

AVX FMA

AVX MUL

AVX ALU

AVX Shift

VNNI

Slow LEA

LOAD

AGU

AVX-512
ADD

AVX-512
MUL

AVX-512
ALU

movl   $111,%ebx     #START MARKER
.byte  100,103,144   #START MARKER
.L22:
  vmovapd     0(%r13,%rax),%ymm0
 vfmadd213pd (%r14,%rax),%ymm1,%ymm0
 vmovapd     %ymm0,(%r12,%rax)
 addq        $32,%rax
 cmpq        %rax,%r15
 jne         .L22
movl   $222,%ebx     #END MARKER
.byte  100,103,144   #END MARKER

mov    x1, #111     //START MARKER
.byte  213,3,32,31  //START MARKER
.L18:
  ldr  q2, [x20, x0]
  ldr  q1, [x21, x0]
  fmla v1.2d, v2.2d, v0.2d
  str  q1, [x19, x0]
  add  x0, x0, #16
  cmp  x22, x0
  bne  .L18
mov    x1, #222     //END MARKER
.byte  213,3,32,31  //END MARKER

x86/ARM 
marked assembly

Figure 1.4.: Structural design of OSACA based on an exemplary analysis of the STEAM triad for Intel CSX with the
port model based on [12].
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Open Source Architecture Code Analyzer (OSACA) - v0.3
Analyzed file: triad.s.csx.O3.s
Architecture: csx
Timestamp: 2019-12-16 14:21:44

P - Throughput of LOAD operation can be hidden behind a past or future STORE instruction

* - Instruction micro-ops not bound to a port
X - No throughput/latency information for this instruction in data file

Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV| 1 | 2 - 2D | 3 - 3D| 4 | 5 | 6 | 7 || CP | LCD |

---------------------------------------------------------------------
179 | | | | | | | | || | | .L22:
180 | | |0.5 0.5|0.5 0.5| | | | || 4.0 | | vmovapd 0(%r13,%rax),%ymm0
181 |0.50 |0.5 |0.5 0.5|0.5 0.5| | | | || 4.0 | | vfmadd213pd (%r14,%rax), \

%ymm1,%ymm0
182 | | |0.5 |0.5 |1.0| | | || 0.0 | | vmovapd %ymm0,(%r12,%rax)
183 |0.25 |0.25| | | |0.25|0.25| || | 1.0 | addq $32,%rax
184 |0.0 |0.0 | | | |0.5 |0.5 | || | | cmpq %rax,%r15
185 | | | | | | | | || | |* jne .L22

0.75 0.75 1.5 1.0 1.5 1.0 1.0 0.75 0.75 8.0 1.0

Loop-Carried Dependencies Analysis Report
-----------------------------------------
183 | 1.0 | addq $32, %rax | [183]

Listing 1.1: OSACA output for analysis of the STREAM triad kernel on an Intel CSX micro-architecture.

other hand it looks up the instruction form in the ISA-specific database to assign a source/destination distri-
butions for each operand. If an instruction form can not be found in a machine file, the user can benchmark
the instruction using either ibench or asmbench with automatically created benchmark files by OSACA.
The workflow for creating a port model will be explained in detail in Section 2.2.

The resulting analysis of OSACA is shown in detail in Listing 1.1 and is made up of three different sub-
parts:

(i) A block throughput analysis as a lower bound of the kernel runtime from the port distribution during
the execution of the kernel for each port 0–7 and includes a separation of the divider pipeline and
the data ports. Note that all values are given as reciprocal throughput, i.e., “cycles per instruction” or
“cycles per iteration”. While in earlier versions of OSACA an equal distribution of all possible ports
per functional unit execution was assumed, the tool now tries to make more realistic estimations by
explicitly scheduling instruction forms on lower-pressure ports if possible to reduce the overall block
reciprocal throughput for these ports. This can be observed for instruction form 184 in Listing 1.1.
The cmp instruction could be executed on all for ALU ports 0, 1, 5 and 6, but due to the higher
pressure on ports 0 and 1 because of the vfmadd instruction in line 181, it is only scheduled to ports
5 and 6. The possible execution on the now unused ports is indicated through the 0.0 cy instead of a
blank field. The maximum reciprocal throughput of all ports results in the overall block throughput of
1.5 cy in the STREAM triad example.

(ii) In column “CP” all instructions on the critical path are shown with their corresponding latencies. The
sum can be taken as an upper bound of the execution time5 and represents the longest dependency
chain within one kernel iteration, i.e., instruction forms which must be executed serially. In Listing 1.1
OSACA predicts a CP of 8 cy.

(iii) In the far right column named “LCD” the longest loop-carried dependency with its corresponding
latency values is shown. This describes the longest cyclic dependency chain within the loop. It might
be part of or equal to the CP, but not necessarily. If there exist multiple LCDs, all of them can be found
as a list in the “Loop-Carried Dependencies Analysis Report” below the main report. In the STREAM
triad example we can see there is only one LCD, which is caused by the loop counter increment and

5This assumption applies only if no other by the hardware model unconsidered factors inside of the architecture affect the kernel in
a way that any penalty is added to the code.
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conditional branch with a latency of 1 cy, so it does not influence the overall throughput. Nevertheless,
in cases of kernels with a longer LCD than the block throughput, this number serves as a lower runtime
limit.

Out of this information we can define TTP, TCP, and TLCD as the predicted runtime for the block throughput,
the critical path and the longest loop-carried dependency, respectively. Subsequently, a simple equation for
the in-core runtime Tcore can be formulated:

Tcore = max(TTP,TLCD) with Tcore ≤ TCP

Furthermore, the CP and LCD can be visualized in a dependency graph using the .dot-file OSACA creates.
As in the graph in the bottom left of Figure 1.4, LCDs are marked with colors and the CP is indicated
through bold frames. Furthermore, the latencies of the instruction forms label the vertices between the
nodes.

1.5. Outline

This thesis is organized as follows: Chapter 2 describes the background of modern micro-architectures and
their functionalities. Furthermore, it explains in Section 2.2 the organization of a simplified port model
and in Section 2.3 how the throughput, the critical path and loop-carried dependencies are related for a
kernel in detail. Chapter 3 covers the technical implementation of OSACA. This includes all prerequisites
for creating a new port model for a micro-architecture in Section 3.1, i.e., the benchmarking of instruction
forms in Sections 3.1.1–3.1.2, and the structure of the data file for dynamic combination of instruction
forms and LOAD instructions in Section 3.1.3, as well as the enhanced throughput analysis, the CP and
the LCD analysis in Section 3.2. In Chapter 4 the introduced analysis methodologies will be validated by
comparing OSACA’s predictions both the actual measurements and results from related tools, in specific
IACA and LLVM-MCA. Finally, a summary and an outlook for future work is presented in Chapter 5.
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2
BACKGROUND

This chapter documents the structure and functionalities of modern micro-architectures, gives an overview
over simplified port models we assume for the analyzed micro-architectures and clarifies the definition of
“throughput”, “critical path” and “loop-carried dependency”.

2.1. Modern Micro-Architectures

Modern micro-architectures as used in the common desktop machines and servers are still exclusively based
on the von Neumann architechture [30]. Naturally, many additions have been made since then, so nowadays
we can divide a CPU into three main parts: An in-order front end, an out-of-order execution back end and a
memory subsystem. While the front end concentrates on (macro-)instruction fetching, decoding and branch
prediction, the back end is responsible for renaming and allocating of registers, reordering of instructions,
the actual scheduling of micro-ops1 and finally their execution. The in-core memory subsystem normally
includes the core-exclusive caches and the load and store buffer. OSACA currently focuses on modeling the
back end up to and including the first core-exclusive cache of processors, therefore we assume a simplified
processor model for this work. Hereinafter, some of the most important functionalities of modern micro-
architectures will be described.

2.1.1. Branch Prediction and Speculative Execution

An important function for executing looped kernels in an efficient way is branch prediction. The processing
of instructions is done in pipelined steps. This increases the overall throughput due to a in general higher
parallelism of distributed execution parts. In case of conditional jumps, however, this can lead to a decrease
in performance due to pipeline stalls caused by instructions, which were not considered during speculative
execution and need to be dispatched. In some parts of the code, conditional branches can be avoided, but

1Also known as “µ-ops.”
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Instructions ADD / SUB / CMP INC / DEC TEST / AND
JO / JNO / JS / JNS / JP/JPE / JNP/JPO 7 7 3
JC/JB / JAE/JNB / JNA/JBE / JA/JNBE 3 7 3
JE/JZ / JNE/JNZ / JL/JNGE 3 3 3
JGE/JNL / JLE/JNG / JG/JNLE 3 3 3

Table 2.1.: Macro-Fusible instructions in Intel HSW micro-architecture [12].

at least in loops an end-condition is indispensable. Modern branch predictors can consist of multi-level
predictors and take both local and global states into account to reduce the frequency of mispredictions [31].
For loops, which usually tend to be iterated a large number of times, the prediction is relatively easy.
Therefore, for loop kernel performance analysis, end-of-loop conditions can be ignored [2].

2.1.2. Out-of-order Execution

Out-of-order execution describes the ability of the processor to execute instructions in a modified order
compared to their appearance in the machine code. Nonetheless, data dependencies or control structures
must not be violated. This results in two benefits: On the one hand, in case of pipeline stalls, e.g., because of
high memory latencies or non-predictable branches, non-related instructions can be scheduled and executed
to avoid idle time. On the other hand, the reorder buffer (ROB), scheduler and renaming units try to
achieve optimal performance by identifying independence of instruction streams and assigning them to
different execution ports to be run in parallel. However, this also complicates static predictions due to
unforeseeable stalls or conditional instructions which might even differ in the use of functional units based
on the condition. Instructions being able to execute part of their computation, i.e., single µ-ops, before
fulfilling all needed preconditions for the whole macro-op or instructions altering hidden registers such as
predefined general-purpose or flag registers are just two examples of difficulties in detecting dependency
chains within a kernel on an out-of-order system.

2.1.3. Macro-Op Fusion

For faster computation, modern processors can combine two adjacent instructions before decoding to com-
pute them within the execution time of one, which is called macro-op fusion2. Macro-op fusion is limited to
a small set of instruction combinations and needs to consist out of a flag-modifying instruction, e.g., CMP
or ADD, and a conditional jump instruction. Furthermore, if two instruction pairs reach the decoder units
in the same clock cycle, only one pair is macro-fused [32]. An overview of macro-fusible instructions for
Intel’s Haswell (HSW) micro-architecture can be found in Table 2.1

2.1.4. Vectorization

One of the most powerful functions of a modern CPU is what is called vectorization or — as introduced
by Flynn [33] — single instruction, multiple data (SIMD). It means “basically simultaneous parallel data
operations” [31], i.e., one instruction is applied to multiple operands within one register. Based on the width
of the register, modern processors operate on up to eight double-precision operands of in total 512 bit. In
the x86 ISA, several versions of SIMD extensions were released, e.g., streaming SIMD extension (SSE) for
128-bit instructions, advanced vector extensions (AVX) for 256-bit instructions and AVX-512 for 512-bit
instructions. In AArch64, ARM introduced NEON instructions for 128-bit instructions and recently added
up to 2048-bit instructions with its new scalable vector extension (SVE) instructions. Figure 2.1 shows a
simple vectorized ADD instruction in Figure 2.1a and visualizes the amount of operands within one vector
register for x86 and AArch64 in Figure 2.1b.

2Sometimes also called macrofusion.
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C1 C2 C3 C4 C5 C6 C7C0

B1 B2 B3 B4 B5 B6 B7B0

A1 A2 A3 A4 A5 A6 A7A0

=

+

(a) Example of a SIMD execution of a vector ADD:
A[i] = B[i] + C[i].

1 operand

2 operands (SSE / NEON)

4 operands (AVX / SVE)

8 operands (AVX-512 / SVE)

(b) Number of possible double-precision operands starting from
scalar (1 operand) up to eight operands using AVX-512 (x86) or
SVE (ARM) instruction sets. In theory, SVE is capable of up to
32-operand-instructions of 2048 bit.

Figure 2.1.: Example SIMD execution and different possible register widths for vector instructions.

2.2. Simplified Port Model

For performance analysis, OSACA applies a simplified model of the micro-architecture and makes several
assumptions:

(i) All data accesses hit the first-level (L1) cache
The L1 cache represents the boundary between in-core and data traffic analysis, therefore, for our
in-core prediction we assume all data comes from the first-level cache. Properties like replacement
strategies, prefetching and line buffering can be therefore ignored. Behavior beyond the L1 cache can
be modeled using Kerncraft [14].

(ii) Steady-state execution
While the actual execution normally consists of a warm-up and wind-down phase taking care of prepa-
rations or the computation of the serial, not SIMD executable rest of the loop, OSACA only predicts
the steady-state execution. Since we assume a large number of iterations, all startup and wind-down
effects can be neglected.

(iii) Perfect out-of-order execution and branch prediction
We assume no misprediction of conditional jumps and perfect out-of-order execution across multiple
iterations to let the throughput prediction result in a lower-bound value for the overall in-core runtime.
As a consequence, by default every branch instruction is assigned with 0 cy of reciprocal throughput
and latency.

In the following, we will outline three of the port models embedded in OSACA and their differences. They
are used as a testbed for this work.

2.2.1. Intel Cascade Lake micro-architecture

The Intel Cascade Lake (CSX) micro-architecture is an Intel server micro-architecture and was released in
2019. It is mainly based on the Skylake architecture and, therefore, is considered as an optimization of it
in terms of a “Tick” in Intel’s Tick-Tock model rather than a huge architectural change. Intel introduced
new Vector Neural Network Instructions (VNNI) execution units, mainly for convolutional neural network
applications. An overview is shown in Figure 2.2. We can see there are two LOAD units (port 2 and 3), one
STORE unit (port 4), three advanced arithmetic units (port 0, 1, and 5) and one simple arithmetic unit (port
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Figure 2.2.: Overview of the out-of-order execution back end components of an Intel Cascade Lake X (CSX)-based
core based on [12].

6) to relieve the pressure on the other three. Additionally, there is a third Address Generation Unit (AGU)
on port 7 for simple addressing, i.e., “base plus offset” [10].

2.2.2. AMD Zen micro-architecture

The Zen micro-architecture by AMD was released 2017 and is based on a 14 nm manufacturing process. It
is a complete redesign of the Excavator architecture. The back end, as shown in Figure 2.3, is separated in a
floating-point/vector execution and an integer execution part, i.e., there is a different out-of-order scheduler
for each part. One vector execution unit by itself is only capable of executing SSE instructions; nevertheless,
for running 256-bit AVX instruction, two SSE units can work — and, therefore, are occupied — together.
Further differences are the combined LOAD and STORE units for each of the two AGUs on port 8 and 9,
which result in a maximum throughput of either two LOADS or one LOAD and one STORE per cycle.

2.2.3. Marvell ThunderX2 micro-architecture

The ThunderX2 (TX2) micro-architecture, originally developed as “Vulcan” architecture by Cavium, which
was acquired by Marvell, was launched in 2018 and can be seen as the first serious ARM-based server
technology on the HPC market. Different to the previously mentioned, x86-based CSX and Zen micro-
architectures, it inherits an ARMv8.1 ISA and is therefore capable of executing NEON instructions on
128-bit vector registers, comparable to the x86 SSE instructions. As seen in Figure 2.4, those instructions
as well as regular floating-point instructions can be scheduled on two ports in parallel (0 and 1), while port
2 is used only for integer arithmetic and branch execution and — similar to Intel’s CSX architecture — it is
capable of two LOADS and one STORE per cycle, done on ports 3/4 and 5, respectively.
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Figure 2.3.: Overview of the out-of-order execution back end components of an AMD Zen-based core [10].
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Figure 2.4.: Overview of the out-of-order execution back end components of a core in Marvell’s ThunderX2 system
(previously known as Vulcan micro-architecture).

2.3. Throughput, Critical Path and Loop-Carried
Dependencies

OSACA gives predictions for the throughput, the critical path and all loop-carried dependency chains in a
given kernel. To clarify the meaning of each term in the given context a short explanation will be provided
in the following.

2.3.1. Throughput

Even though there might exist dependencies between single instructions of a kernel, it is unlikely to find in a
loop body not at least two instruction streams or single instructions independent of each other. Furthermore,
one loop iteration can be independent of the previous and the following iteration. These instructions can be
run in parallel and — looking at a steady-state execution — scheduled one per cycle for each port.

This behavior is exemplary shown in Figure 2.5a. In the top there is a dependency graph representing a loop
kernel, each colored dot stands for one instruction and consists of four differently colored dots, therefore, it
has a throughput of one cycle. The CPU can schedule a new iteration every cycle, i.e., after the functional
unit executing the red dot is available again. The vertical dotted lines show that in a steady-state execution,
we are able to finish one iteration per cycle, which is the throughput of the kernel. Depending on this
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2.3. THROUGHPUT, CRITICAL PATH AND LOOP-CARRIED DEPENDENCIES

t

(a) Kernel with a TP of 1 cy, a critical path
(CP) of 3 cy, and no loop-carried dependency
(LCD). The runtime is 1 cy per iteration.

t

(b) Kernel with a TP of 1 cy, a CP of 5 cy, and a LCD of 3 cy. The overall runtime
is 3 cy per iteration.

Figure 2.5.: Example kernels for visualizing throughput, the critical path and loop-carried dependencies of a loop. Each
colored dot represents an instruction, e.g., ADD or MUL. Each subfigure consist of a dependency graph of
one iteration of the kernel in the top and an execution diagram in the bottom. The steady-state runtime of
each kernel is marked by dotted vertical lines. The CP is represented by all dots with a gray background,
while the longest LCD is indicated by a purple striped background.

instruction level parallelism (ILP) a port can have up to the full pressure, i.e., it is occupied each cycle of
the runtime, or can be unused for the whole time of the kernel execution. Furthermore, if multiple ports
have similar functional units, e.g., two LOAD units or multiple integer ALUs, the pressure gets distributed
onto all available ports to minimize the overall execution time. We can see in real measurements this does
not only mean a separation with fixed probabilities, i.e., 50 % of the time on one port and 50 % of the time
on the other in case of two available ports, but the scheduler is able to achieve close to optimal port pressure
distribution. The throughput analysis of a kernel therefore describes the lowest intensity of iterations per
cycle on one out of all ports of the micro-architecture and is usually given in reciprocal format, i.e., as
cycles per iteration.

2.3.2. Critical Path

Each kernel has a critical path, which describes the latency of the longest chain of instruction dependencies
within one loop iteration. Therefore, it represents the longest serial sequence of instructions and can be
seen as upper bound of a kernel execution as long as there is a sufficient amount of available functional
units. Since in most cases the critical paths of different loop iterations can overlap partly or even fully,
the resulting runtime may differ from the time needed for the critical path. This can be seen in Figure 2.5,
in which the two CPs are represented by a gray background. While the CP for the kernel in Figure 2.5a
goes from the red dot via the yellow dot to the blue dot, the CP for the kernel in Figure 2.5b is additionally
extended via the bright green dot to the orange dot. In both cases we can see the CP can overlap to reduce
the overall runtime in steady state.

OSACA prints the CP as latency of the execution of one path iteration in processor cycles, which is not
necessarily the sum of the latencies of all single instruction forms within this path, since inherit LOADs
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in arithmetic instruction forms, i.e., addressing memory as an operand and, therefore, loading data before
executing the arithmetic instruction, can overlap.

2.3.3. Loop-Carried Dependencies

While there is always a value for the block throughput and the critical path, the existence of loop-carried
dependencies, i.e., dependencies in between iterations, is not guaranteed. Given a loop body with an arbi-
trary number of instructions I0 to IN , LCDs are created when one instruction Ix inside of the loop kernel is
dependent on an instruction I′x+y executed in one of the previous iterations and additionally continues a de-
pendency chain within its own iteration up to the current instance of the instruction Ix+y. It therefore creates
a cyclic dependency. This prevents the full overlap of different iterations of the LCD instruction chain and
leads to a forced serial execution of it. While there is no cyclic dependency in Figure 2.5a, the longest LCD
in Figure 2.5b is represented with a purple striped background. When looking at the dependency graph of
the kernel in the top of the figure, we can even identify two LCDs: While the longest LCD is formed by
the red, the yellow and the blue dot and is built through the dependency of the red dot on the blue dot of
the previous iteration, the orange instruction of each iteration is dependant on the orange instruction of the
previous iteration, e.g., a pointer increment while looping through an array. This way, no dependency chain
can be executed before the end of the previous one and the kernel is not throughput bound anymore. Since
the execution time of the LCD including the orange dot is only one cycle, it can be completely covered by
the runtime of the longest purple LCD and does not need to be taken into account. We therefore can observe
a runtime of the kernel of three cycles which is the duration of the longest LCD.

OSACA shows the LCD as latency of the execution of one cyclic path within a kernel in the unit of processor
cycles. Similar to the prediction of the CP, combined LOAD/arithmetic instructions of CISC architectures
may overlap, thus, it is not inevitably the sum of latencies of all instructions included.
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3
IMPLEMENTATION

This chapter gives details about the technical implementation of the Open Source Architecture Code An-
alyzer (OSACA) tool. The source code, example code kernels and the databases can be found in the
OSACA GitHub repository1. The project itself is licensed under the GNU Affero General Public License
version 3 (AGPL-3.0).

The specific usage including different command line parameters will not be part of this chapter since they
were already covered in [2] and can be found in Appendix A.

3.1. Prerequisites

In many cases, a micro-architecture is not completely unknown and there exist official or unofficial docu-
mentation on existence, amount and distribution of functional units or even already a full port model. This
tremendously simplifies work for integrating it into OSACA, but does not relieve from validating the model
and identifying the port usage of single instruction forms.

The way of constructing a model for a specific micro-architecture and individual instruction forms was first
introduced in [16] and can be separated in the benchmarking of throughput and latency and the bench-
marking for the port utilization. This information gets gathered in the databases of OSACA, divided into
architecture specific data files containing the performance data for a specific model, and ISA specific data
files containing information about the source and destination operands of an instruction form.

3.1.1. Benchmarking Throughput and Latency

While in theory throughput and latency values can be obtained in many different ways, OSACA supports
the automatic import of benchmark results by the two micro-benchmarking tools ibench and asmbench and

1https://github.com/RRZE-HPC/OSACA
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Number of parallel instructions Reciprocal throughput
per iteration [cy/it]

1 4.01
2 2.01
3 1.34
4 1.00
5 0.82
6 0.67
7 0.57
8 0.50
9 0.50
10 0.50

Table 3.1.: Benchmark results of the vaddpd xmm, xmm, xmm instruction form with increasing number of parallel
instructions per iteration done by asmbench.

can automatically create the assembly files used as import for ibench. Asmbench, on the other hand, by
default is able to generate assembly code for its benchmarking in every necessary way.

For throughput benchmarking of an instruction form, a kernel including multiple instances of this instruction
form with independent source and destination operands is created. This can be done by not using any
destination register twice, but that would quickly exhaust all available registers. Since we do not want to
rely on the register renaming capabilities of the core, multiple dependency chains with the instruction form
are created. For this it is important to have a sufficient amount of dependency chains which need to be
of adequate length to ensure enough independent instructions are available to utilize all functional units
and overheads created by the benchmarking loop will be compensated. By doing this, we can assume one
port will reach a throughput of one instruction per cycle in a steady state. An extract of an inner loop of
such a benchmark file for x86 assembly of the instruction form vaddpd xmm, xmm, xmm is shown in
Listing 3.1.

loop:
inc %eax
vaddpd %xmm5, %xmm0, %xmm0
vaddpd %xmm6, %xmm1, %xmm1
vaddpd %xmm7, %xmm2, %xmm2
vaddpd %xmm8, %xmm3, %xmm3
vaddpd %xmm9, %xmm4, %xmm4
vaddpd %xmm5, %xmm0, %xmm0
vaddpd %xmm6, %xmm1, %xmm1
vaddpd %xmm7, %xmm2, %xmm2
vaddpd %xmm8, %xmm3, %xmm3
...
cmp %eax, %edx # loop count
jl loop

Listing 3.1: Inner loop of x86 micro-benchmark file to evaluate the throughput of the vaddpd instruction.

With asmbench we can increase the number of parallel instructions inside of the loop body to observe
the convergence of the throughput. This is done exemplarily for the instruction form stated above on an
Intel Cascade Lake X (CSX) system and shown in Table 3.1.

Here the benchmark converges to a reciprocal throughput of 0.5 cy. Hence, we can infer that there exist two
independent ports, and thus pipelines, for executing the instruction form on that micro-architecture.

For obtaining the latency, we need to create a dependency chain of instructions in such a way that only
a serial execution is possible. This can be achieved by alternating the operands so that the destination
register of one instruction is used as source register of the subsequent instruction in the inner loop of the
benchmark. Therefore, we create a read-after-write hazard between those two register operands. The code
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Interleaved instruction form µ-ops per port Number of vaddpd Measured TP [cy/it]
(resulting single TP) instructions

vtestpd xmm, xmm 1*p0 (1 cy) 1 1.00
bsr r64, r64 1*p1 (1 cy) 1 1.00
vpermilps i8, xmm, xmm 1*p5 (1 cy) 1 1.00
vtestpd xmm, xmm 1*p0 (1 cy) 2 1.51
bsr r64, r64 1*p1 (1 cy) 2 1.50
vpermilps i8, xmm, xmm 1*p5 (1 cy) 2 1.02

Table 3.2.: Benchmark results on a Intel CSX system of different instruction forms interleaved with
vaddpd xmm, xmm, xmm, which has a single throughput of 0.5 cy. Note that all instruction forms
are written in AT&T syntax.

for measuring the latency of vaddpd xmm, xmm, xmm may look as in Listing 3.2. This way the latency
of register-only instruction forms is achievable easily by dividing the benchmark duration by the length of
the dependency chain in instructions.

loop:
inc %eax
vaddpd %xmm0, %xmm1, %xmm0
vaddpd %xmm1, %xmm0, %xmm1
vaddpd %xmm0, %xmm1, %xmm0
vaddpd %xmm1, %xmm0, %xmm1
vaddpd %xmm0, %xmm1, %xmm0
vaddpd %xmm1, %xmm0, %xmm1
cmp %eax, %edx # loop count
jl loop

Listing 3.2: Inner loop of x86 micro-benchmark file to evaluate the latency of the vaddpd instruction.

3.1.2. Benchmarking Port Utilization

To identify not only the number of ports used but also the specific ports, we can systematically interleave the
instruction form to analyze with other instructions. Thereby, the change of throughput indicates the ports
used. This requires some previous knowledge of the architecture since we need to know the port utilization
of the other instruction form, which allocates preferably a minimum amount of functional units and has a
low latency. If the combination of two instruction forms does not surpass the overall throughput, we can
infer that the investigated instruction form does not make use of the same ports as the known one. If the
overall throughput of the interleaved benchmark is higher than the standard one, at least one port utilized
by the known instruction form is also used by the investigated instruction form. This way, by combining
multiple known instruction forms for interleaving, we can identify the ports and, therefore, validate the
hardware model and performance data of the instruction form to investigate.

Continuing the example with vaddpd xmm, xmm, xmm from above on Intel CSX, useful instruction
forms for interleaving would be, e.g.:

• vtestpd xmm, xmm with a known reciprocal throughput of 1 cy, 1 µ-op and only executable on
port 0 (written as 1*p0).

• bsr r64, r64, with a known reciprocal throughput of 1 cy, utilizing port 1 (1*p1).

• vpermilps i8, xmm, xmm, using 1*p5, thus, with a reciprocal throughput of 1 cy.

The result of the benchmarking is shown in Table 3.2.

As we can see, all benchmarks result in a different overall throughput compared to a single vaddpd,
since the vtestpd, bsr and vpermilps instructions have a reciprocal throughput of 1 cy. The fact
that all benchmarks with one instance of the investigated instruction form have a reciprocal throughput of
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1 cy means we can infer that vaddpd is neither solely bound on a execution on port 0 or 1 nor port 5.
When we run the the three instruction forms with two instances of vaddpd, the overall throughput changes
compared to the previous measurements only in one case, namely, for the instruction running on port 0 and
1. The test with another instruction running on port 5 keeps the reciprocal throughput of 1 cy. This is due to
the reciprocal throughput of 0.5 cy of the investigated instruction form. While vaddpd does not interfere
with port 5, another instruction can be scheduled on any other port without affecting the execution of the
vpermilps. For vtestpd and bsr, the second vaddpd can only be executed after the other instruction
is done and, therefore, its reciprocal throughput must be added to the overall reciprocal throughput. This is
the case for both port 0 and 1, thus, we validated vaddpd xmm, xmm, xmm needs at least ports 0 and 1
for execution and we can write its port utilization as 1*p01.

Unfortunately, there does not exist an automatic generation of a port utilization model for instruction forms
yet, i.e., it requires a comparably high manual effort.

3.1.3. Instruction Form Data

Having the performance data collected as stated in Sections 3.1.1 and 3.1.2, everything gets collected in
the local data files. OSACA differentiates between architecture specific machine files and ISA specific data
files. While the ISA specific data file only contains the operand access of extraordinary instruction forms,
i.e., the source and destination operands in case they differ from the assumed standard of one destination
as last operand (according to the assembly syntax) and otherwise only source operands, most of the infor-
mation is gathered in the architecture specific machine file. In here, the port model and the system-wide
load throughput and latency is written down. Furthermore, besides some meta data, each known instruction
form is stored as one entry of a list, containing a unique identifier, i.e., mnemonic and operands of an in-
struction form, the port utilization, the throughput, and the latency. If an instruction form includes memory
addressing in its source or destination operand but is not simply a LOAD or STORE instruction, OSACA
can calculate the throughput and latency dynamically out of the register-only variant and the architecture
specific performance data for LOAD and STORE. This way, not only a higher variation and, therefore,
number of instruction forms can be covered, but it is also necessary for a valid latency prediction to sepa-
rate the LOAD and the arithmetic part of an instruction form, since the LOAD can be done in parallel with
previous instructions, even though the instruction form is part of the critical path.

Furthermore, OSACA does not rely anymore on including all versions of an instruction form with suffixes
for determining the operand size, as used in GNU assembler. Instead, it checks the data base for a given
mnemonic without suffix and applies its performance data on the investigated instruction form.

3.2. Analysis

With the prerequisites from Section 3.1 fulfilled, OSACA can analyze any given x86 or AArch64 kernel.
As a result, it produces a throughput, critical path and loop-carried dependency analysis, which will be
described in the following.

3.2.1. Throughput Analysis

The overall block throughput of an analyzed loop body is the maximum of all sums of the reciprocal
throughput of the executed instructions per pipeline. Therefore, looking at the analysis report, it is indicated
by the largest column sum for the whole block. With version 0.3 of our tool, we introduced an optimal port
scheduling as default and provide the scheduling with fixed probabilities if requested by a command line
argument. For minimizing the overall reciprocal throughput, we apply a linear step-wise method to decrease
and increase the execution of an instruction on suited ports with maximum and minimal port pressure,
respectively, to converge to a local minimum. This algorithm is shown and explained by comments in
Listing 3.3. For an easier understanding, it iterates the µ-ops of a kernel instead of its instruction forms.
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1 STEPSIZE = 0.01
2 kernel = extract_kernel() # List of muops, which is a tuple of total cy and ports

TP_table = [] # List of muop contributions to overall port throughputs
4 TP_sums = {p: 0.0 for p in all_ports}

for muop_cy, muop_ports in kernel:
6 muop_contributions = {}

# Assuming fixed port utilization
8 avg_utilization = muop_cy/len(muop_ports)

for port in muop_ports:
10 muop_contributions[port] = avg_utilization

TP_sums[port] += avg_utilization
12 TP_table.append(muop_contributions)

14 for muop_contributions in TP_table:
# Unbalance muop’s contribution to balance overall throughput

16
# Continue balancing until overall throughput on ports used by muop are equal

18 # or whole muop was shifted to one port
while not all_equal(

20 [TP_sums[p] for p in muop_contributions if muop_contributions[p] > 0.00]
):

22 # Find port (i.e., the second element of the tuple) with maximum overall
# throughput, which has a contribution from current muop:

24 p_max = max(
[(TP, p) for p, TP in TP_sums.items() if p in muop_contributions]

26 )[1]
# Find port (i.e., the second element of the tuple) with minimum overall

28 # throughput, which has a contribution from current muop:
p_min = min(

30 [(TP, p) for p, TP in TP_sums.items() if p in muop_contributions]
)[1]

32
# Reduce contribution of p_max by STEPSIZE:

34 muop_contributions[p_max] -= STEPSIZE # Also updates TP_table
TP_sums[p_max] -= STEPSIZE # Update overall TP_sum

36 # Increase contribution of p_min by STEPSIZE:
muop_contributions[p_min] += STEPSIZE # Also updates TP_table

38 TP_sums[p_min] += STEPSIZE # Update overall TP_sum

Listing 3.3: OSACA’s algorithm for reaching a local minimum of the overall throughput. It is written in valid Python
code. For a better understanding, the algorithm iterates the µ-ops of an analyzed kernel.

In the for-loop from line 5 to 12, a fixed port utilization is assigned to the kernel and stored in TP_table.
This can be compared with one instruction form line in the throughput analysis report of OSACA. The
overall throughput sum, which represents the last line of the throughput analysis in OSACA’s output, is
stored in TP_sums. In line 14 to 38, OSACA iterates the kernel and shifts cycles of the previously fixed port
utilization with a step size of 0.01 cy to achieve a balanced overall throughput. This way we can simulate the
non-fixed issue of instructions during steady-state execution and reach precise predictions for throughput
bound kernels with a non-balanced port utilization.

3.2.2. Critical Path Analysis

The basis of the critical path (CP) analysis is represented by a directed acyclic graph (DAG) constructed
from inter-instruction register dependencies. The creation follows simple rules:

(i) For each instruction form within the marked kernel, create a vertex containing the gathered informa-
tion of it.

(ii) For each instruction form, identify all subsequent instruction forms depending on it, i.e., having a
source operand reading from a destination operand of the first mentioned instruction. Currently, this
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is only done for register operands due to the high complexity of tracking store-to-load dependencies,
e.g., due to relative addressing. A dependency chain of a specific register is broken when it is rewritten
and now might be dependent of another previous instruction. For all identified dependencies, draw
directed edges between the pair of affected vertices representing instruction forms and assign the
latency of the start vertex instruction form as weight to the edge.

(iii) If an arithmetic instruction form includes a memory reference as source operand, separate it into the
LOAD and the arithmetic part by adding another vertex containing a LOAD instruction with an edge
to the original instruction. This edge gets weighted with the pure LOAD latency, while we reassign
all outgoing edges from the original instruction form with the latency of the arithmetic part only as
weight.

Subsequently, this DAG functions as enhanced representation of the kernel and the CP within it can be
determined using a weighted topological sort based on the approach of Manber [34], already implemented
in the graph framework NetworkX2 used by OSACA. It is defined as longest consequent subgraph, i.e.,
path, of the DAG based on the weight of the edges.

3.2.3. Loop-Carried Dependency Analysis

For identifying loop-carried dependencies (LCDs), OSACA creates a DAG based on the rules stated in
Section 3.2.2, but uses a code kernel comprising two back-to-back copies of the initial loop body. This way
it can analyze dependency paths from vertices of the first kernel section to the second one and identify cyclic
dependencies by checking on corresponding instruction forms within one dependency chain. Equally to the
CP analysis, OSACA currently only supports the detection of register dependencies, including standard
register operands, base and index registers in memory addressing and flag registers. It is not able to identify
load-after-store dependencies, like:

loop:
mov %r9, (%rax)
mov (%rax), %r9

cmp %r9, %r15
jne .loop

In this example, a value from register r9 is written to the memory position stored in rax just to get
moved back to register r9 and stored back at the exact same position. So even if one would expect a LCD
detected by OSACA, this is currently not supported because of the complexity modeling not only this sim-
ple example, but indexing of addresses in memory and sometimes is simply not possible due to the fact we
cannot know the content of registers in all cases.

Another weakness of the current LCD analysis can be pinpointed by the next example:

.loop:
add $1, %rax
# swap rax, rbx
mov %rax, %rcx
mov %rbx, %rax
mov %rcx, %rbx

cmp %rax, %r15
jne .loop

Besides incrementing rax, in each iteration the content of register rax gets swapped with the content
of register rbx. This means, after two iterations, the values in rax and rbx, respectively, match again
and there exists a dependency chain throughout two iterations. This example can be scaled up a arbitrary
number of iterations needed for one cyclic LCD. OSACA would not detect any of these currently, but could
be extended easily to do so up to a defined number of loop repetitions. For defining a reasonable number of
repetitions to find a trade-off between performance and LCD coverage this topic needs more investigation
and is part of future work.

2The current version of NetworkX is available at https://networkx.github.io/.
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4
EVALUATION

This chapter will evaluate the quality of the analysis created by OSACA. For this, OSACA is validated
by comparing its prediction with actual measurements of the investigated kernels and the runtime analy-
ses by related work, i.e., the performance analyzing tools Intel Architecture Code Analyzer (IACA) and
LLVM Machine Code Analyzer (LLVM-MCA). First we will explain how to interpret the results of the
related tools and subsequently put these in a context with OSACA’s analysis and the measured performance
data for various scientific kernels on an Intel Cascade Lake X (CSX), an AMD Zen and an ARM-based
Marvell ThunderX2 (TX2) system.

4.1. Data acquisition for IACA and LLVM-MCA

To understand the quality of the prediction of OSACA, it is necessary to compare its results to related
work. For this we chose two static analysing tools with similar purpose, Intel’s proprietary code analyzer
IACA and LLVM’s Machine Code Analyzer LLVM-MCA. While not all tools were capable of analyzing
all platforms in full scope, e.g., IACA only supports Intel micro-architectures and LLVM-MCA does not
identify a critical path (CP) without further investigation, we will show how to retrieve the important data
for validation for both tools. None of the two provide a dedicated CSX support but since we do not use any
Vector Neural Network Instructions (VNNI) instructions specific to the CSX micro-architecture, we can
analyze the code using the Skylake-X (SKX) support of the tools.

For this purpose we will analyse a simple vector update, which adds a scalar double-precision value to each
element of a vector. The update is done in-place, i.e., the sum is written back to the same memory address
from which the vector element was loaded originally. The high-level C code can be written as follows:

double * restrict a;

for(long i=0; i < size; ++i){
a[i] = a[i] + scalar;

}
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Throughput Analysis Report
--------------------------
Block Throughput: 2.48 Cycles Throughput Bottleneck: FrontEnd
Loop Count: 30
Port Binding In Cycles Per Iteration:
--------------------------------------------------------------------------------------------------
| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |
--------------------------------------------------------------------------------------------------
| Cycles | 1.0 0.0 | 0.5 | 2.0 1.0 | 2.0 1.0 | 2.0 | 1.0 | 0.5 | 0.0 |
--------------------------------------------------------------------------------------------------

DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3)
F - Macro Fusion with the previous instruction occurred

* - instruction micro-ops not bound to a port

| Num Of | Ports pressure in cycles
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |
----------------------------------------------------------------------
| 2 | 1.0 | | 1.0 1.0 | | | | | | vaddpd (%r13,%rcx,8), \

%zmm3, %zmm1
| 2 | | | | 1.0 1.0 | | 1.0 | | | vaddpd 64(%r13,%rcx,8), \

%zmm3, %zmm2
| 2 | | | 1.0 | | 1.0 | | | | vmovupd %zmm1, (%r13,%rcx,8)
| 2 | | | | 1.0 | 1.0 | | | | vmovupd %zmm2, 64(%r13,%rcx,8)
| 1 | | 0.5 | | | | | 0.5 | | add $16, %rcx
| 1* | | | | | | | | | cmp %r15, %rcx
| 0*F | | | | | | | | | jb 0xffffffffffffffd9
Total Num Of Uops: 10

Listing 4.1: IACA analysis for a vector update kernel for an Intel SKX micro-architecture. For the reader’s conve-
nience, the assembly syntax was converted to AT&T, the output shortened and important information for
comparison with OSACA is marked in bold red.

We compile the kernel on an Intel CSX system with ICC and the flags “-xCORE-AVX512 -Ofast
-qopenmp-simd -fno-alias -unroll -qopt-zmm-usage=high,” which results in this assem-
bly kernel:

..B1.38:
vaddpd (%r13,%rcx,8), %zmm3, %zmm1
vaddpd 64(%r13,%rcx,8), %zmm3, %zmm2
vmovupd %zmm1, (%r13,%rcx,8)
vmovupd %zmm2, 64(%r13,%rcx,8)
addq $16, %rcx
cmpq %r15, %rcx
jb ..B1.38

4.1.1. IACA

For starting an analysis with IACA, one first needs to mark the assembly code. This is done by adding two
different byte markers:

movl $111,%ebx #IACA START MARKER
.byte 100,103,144 #IACA START MARKER
Loop:

# ...
jb .Loop

movl $222,%ebx #IACA END MARKER
.byte 100,103,144 #IACA END MARKER

Since IACA bases its analysis on the binary opcode, the marked file must be assembled. Thus, it requires
the code to be valid. IACA’s output for the vector reduction kernel is shown in Listing 4.1.

Similar to OSACA, it differentiates between the ports and pipelines within ports. It recognizes macro fusion
(e.g., ‘0*F‘ in the last line of the report) and is based on proprietary knowledge we are not capable to repro-
duce without further insight. This becomes evident when comparing the maximum number of cycles per
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port in the upper table with the “Block Throughput” value in the first line of the analysis report. While the
tables let us infer that the reciprocal throughput should be 2.0 cy, IACA predicts an overall block throughput
of 2.48 cy. When comparing IACA to actual measurements and OSACA, we take both of these numbers
into account since we assume IACA—even though the developers dropped CP support in version 2.3—uses
more information, e.g., dependency detection, to achieve the “Block Throughput” number. Furthermore,
IACA provides the user with information about the number of µ-ops and the estimated bottleneck. For all
further tests we used IACA v3.0.

4.1.2. LLVM-MCA

Different to IACA, for an analysis with LLVM-MCA it is not necessary to compile the assembly code. The
tool runs its analysis on the whole assembly file if not given any markers. Nevertheless, it is useful to limit
the prediction to a specific kernel for the sake of clarity and the readability for the user. Since LLVM-MCA
inspects the assembly, the markers can be simple comments:

# LLVM-MCA-BEGIN
Loop:

# ...
jb .Loop

# LLVM-MCA-END

The output is shown in Listing 4.2. In different views LLVM-MCA prints the number of µ-ops, the through-
put and latency of each instruction as well as the overall resource pressure separated by ports. With the
“--timeline” command line flag, we can enable the “Timeline view” to emulate several iterations of the
kernel. It visualizes the expected cycle of dispatching (“D”), execution (“e”/“E”) and retirement (“R”) for
each instruction form and models dependencies by doing so. This way, we can use the timeline view as CP
analysis and expect the time from the beginning of the first iteration, i.e., the cycle of the dispatching of the
first instruction form, to the end, i.e., the retirement of the last instruction form of the loop, as the CP of the
kernel and the duration of all further iterations, i.e., from retirement of the first to the retirement of the last
instruction form, as the length of the longest loop-carried dependency (LCD). However, this value seems
to be inaccurate especially for throughput-bound kernels and should be considered with care or only when
the throughput prediction appears to be off the expected runtime by far and long dependency chains can be
detected. In case of a non-consistent LCD value, i.e., if multiple further iterations show different durations,
we assume the smallest one to be the LCD since other effects could slow the execution.

In our example we can extract the block throughput of 2 cy/it on port “SKXPort4”, as marked in red, and a
duration of 16 cy from cycle 0 as the time of detaching instruction form [0,0] to cycle 15 as the time of
retirement of instruction form [0,6] as CP for this kernel. Any further iteration, e.g., the second iteration
from instruction form [1,0] to [1,6], consistently needs 2 cy. Thus, we assume a LCD of 2 cy per
assembly iteration and infer that the kernel is throughput bound due to the fact that the length of the LCDs
equals the throughput.

LLVM-MCA allows the user to specify many further options for analysis, however, we confine ourselves
to the basic “Resource pressure by instruction” view and additionally the “Timeline view” for comparing it
with OSACA. Unfortunately, LLVM-MCA turns out to be sometimes unstable in terms of parsing unknown
instruction forms, therefore, we sometimes need to extract the kernel from the overall assembly file to only
analyse this part. For all further testing we used LLVM-MCA based on llvm 9.0.11.

4.2. Analysis and Comparison of OSACA Results

In the following we analyse the accuracy of OSACA in its current version 0.3.2.dev52 for various scientific
kernels of different complexity. We gathered results on three different systems:

1https://github.com/llvm/llvm-project/releases/tag/llvmorg-9.0.1
2https://github.com/RRZE-HPC/OSACA/releases/tag/v0.3.2.dev5
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[0] Code Region

Iterations: 100 Dispatch Width: 6
Instructions: 700 uOps Per Cycle: 5.12
Total Cycles: 215 IPC: 3.26
Total uOps: 1100 Block RThroughput: 2.0

Instruction Info:
[1]: #uOps [4]: MayLoad
[2]: Latency [5]: MayStore
[3]: RThroughput [6]: HasSideEffects (U)

[1] [2] [3] [4] [5] [6] Instructions:
2 11 0.50 * vaddpd (%r13,%rcx,8), %zmm3, %zmm1
2 11 0.50 * vaddpd 64(%r13,%rcx,8), %zmm3, %zmm2
2 1 1.00 * vmovupd %zmm1, (%r13,%rcx,8)
2 1 1.00 * vmovupd %zmm2, 64(%r13,%rcx,8)
1 1 0.25 addq $16, %rcx
1 1 0.25 cmpq %r15, %rcx
1 1 0.50 jb ..B1.38

Resources:
[0] - SKXDivider [5] - SKXPort3
[1] - SKXFPDivider [6] - SKXPort4
[2] - SKXPort0 [7] - SKXPort5
[3] - SKXPort1 [8] - SKXPort6
[4] - SKXPort2 [9] - SKXPort7

Resource pressure per iteration:
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
- - 1.25 1.25 1.34 1.35 2.00 1.25 1.25 1.31

Resource pressure by instruction:
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] Instructions:
- - 0.49 - 0.85 0.15 - 0.51 - - vaddpd (%r13,%rcx,8), \

%zmm3, %zmm1
- - 0.43 - 0.45 0.55 - 0.57 - - vaddpd 64(%r13,%rcx,8), \

%zmm3, %zmm2
- - - - 0.02 0.54 1.00 - - 0.44 vmovupd %zmm1, (%r13,%rcx,8)
- - - - 0.02 0.11 1.00 - - 0.87 vmovupd %zmm2, 64(%r13,%rcx,8)
- - - 0.99 - - - - 0.01 - addq $16, %rcx
- - 0.24 0.26 - - - 0.17 0.33 - cmpq %r15, %rcx
- - 0.09 - - - - - 0.91 - jb ..B1.38

Timeline view:
0123456789

Index 0123456789 012345

[0,0] DeeeeeeeeeeeER . . . vaddpd (%r13,%rcx,8), %zmm3, %zmm1
[0,1] DeeeeeeeeeeeER . . . vaddpd 64(%r13,%rcx,8), %zmm3, %zmm2
[0,2] D===========eER. . . vmovupd %zmm1, (%r13,%rcx,8)
[0,3] .D===========eER . . vmovupd %zmm2, 64(%r13,%rcx,8)
[0,4] .DeE-----------R . . addq $16, %rcx
[0,5] .D=eE----------R . . cmpq %r15, %rcx
[0,6] .D==eE---------R . . jb ..B1.38
[1,0] . DeeeeeeeeeeeER . . vaddpd (%r13,%rcx,8), %zmm3, %zmm1
[1,1] . DeeeeeeeeeeeER . . vaddpd 64(%r13,%rcx,8), %zmm3, %zmm2
[1,2] . D===========eER . . vmovupd %zmm1, (%r13,%rcx,8)
[1,3] . D===========eER . . vmovupd %zmm2, 64(%r13,%rcx,8)
[1,4] . DeE-----------R . . addq $16, %rcx
[1,5] . D=eE----------R . . cmpq %r15, %rcx
[1,6] . D==eE---------R . . jb ..B1.38
[2,0] . DeeeeeeeeeeeER . . vaddpd (%r13,%rcx,8), %zmm3, %zmm1
[2,1] . DeeeeeeeeeeeER . . vaddpd 64(%r13,%rcx,8), %zmm3, %zmm2
[2,2] . D===========eER . . vmovupd %zmm1, (%r13,%rcx,8)
[2,3] . D===========eER. . vmovupd %zmm2, 64(%r13,%rcx,8)
[2,4] . DeE-----------R. . addq $16, %rcx
[2,5] . D=eE----------R. . cmpq %r15, %rcx
[2,6] . D==eE---------R. . jb ..B1.38
[3,0] . .DeeeeeeeeeeeER. . vaddpd (%r13,%rcx,8), %zmm3, %zmm1
...

Listing 4.2: LLVM-MCA analysis for the vector reduction kernel including the --timeline command line option.
For the reader’s convenience, the output was shortened and important information for comparison with
OSACA is marked in bold red.
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• ThunderX2 (TX2)
ARM-based Marvell ThunderX2 9980 with ThunderX2 micro-architecture (formerly known as “Vul-
can” by Cavium). Even though one cannot acquire or fix the frequency as easily as on x86 machines,
we can observe a constant frequency of 2.2 GHz during program execution. Therefore, we assume
it to behave like a fixed frequency at 2.2 GHz. While comparing the measurements with enabled
simultaneous multithreading (SMT) to the measurements with SMT OFF, we could observe an in-
crease of performance of in average more than 10 % for disabled SMT. Therefore, we run all kernels
with SMT OFF. To cover multiple compiler vendors, all code examples were compiled with both
the Arm C/C++/Fortran Compiler version 19.23 and the GNU C/Fortran Compiler version 8.2.04.
For all runs we used the compiler flags -mcpu=thunderx2t99+simd+fp -fopenmp-simd
-funroll-loops -Ofast.

• Cascade Lake (CSX)
Intel Xeon Gold 6248 with Cascade Lake X micro-architecture running at a fixed frequency of
2.5 GHz. The code was compiled using the Intel C/Fortran Compiler of Intel Parallel Studio ver-
sion 19.0up055 with the optimizing flags -xCORE-AVX512 -qopenmp-simd -fno-alias
-unroll -Ofast -qopt-zmm-usage=high and the GNU C/Fortran Compiler version 9.1.06

using the flags -march=skylake-avx512 -fopenmp-simd -funroll-loops -Ofast
-fargument-noalias.

• Zen
AMD EPYC 7451 with Zen micro-architecture with a fixed frequency at 2.3 GHz. For compiling we
used the GNU C/Fortran Compiler version 9.1.0 with the flags -march=znver1 -mavx2 -mfma
-fopenmp-simd -fargument-noalias -funroll-loops -Ofast.

All builds were done with -fno-builtin flag to disable inline expansion of intrinsic functions. Each
result table in the following sections shows the micro-architecture, the used compiler, and an unroll factor
as describing elements next to the measured and predicted data for one benchmark kernel. The unroll factor
is represented as the product of the actual unrolling of the assembly kernel and the SIMD width used, e.g.,
“2× 8” for the kernel in the previous section. The performance data consists of the throughput, longest
LCD and the critical path extracted from OSACA and LLVM-MCA and two different TP values for IACA.
Besides the “normal” TP as sum of the highest port pressure, IACA returns a block throughput that is
sometimes significantly higher. We show this value as BlockTP in our result tables. All predictions are
written as cycles per assembly block iteration, therefore, to calculate the runtime of one high-level iteration,
one must divide the result by the unroll and SIMD factor. Additionally, we print an accuracy value as the
quotient of the predicted and the measured performance. The TP predictions represent a lower bound of the
runtime, thus, we aim to achieve an accuracy slightly below 100 % and consider a prediction with accuracy
above 100 % failed. We consider a kernel TP-bound if the TP prediction is equal or greater than the LCD
prediction of OSACA and LCD-bound otherwise. Note that we can apply this rule only for OSACA. Based
on this result we consequently adapt the decision to take the TP or LCD value as prediction due to the fact
LLVM-MCA does not provide a reliable LCD prediction. For IACA we always take the BlockTP value for
comparison with measurements and the other tools.

A summary table of all results can be found in Appendix B. All analysis outputs and instructions for repro-
ducing the results can be found in the artifact description [35].

4.2.1. Copy

The copy kernel represents a classic memory copy of the content of one array into another:

3https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux (accessed January 29, 2020)
4https://gcc.gnu.org/gcc-8/ (accessed January 29, 2020)
5https://software.intel.com/en-us/compilers (accessed January 29, 2020)
6https://gcc.gnu.org/gcc-9/ (accessed January 29, 2020)
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double * restrict a, * restrict b;

for(long i=0; i < size; ++i){
a[i] = b[i];

}

The resulting assembly kernel contains only MOV or LOAD/STORE instructions, respectively, without
any inter-iteration dependencies and we expect the kernel to be throughput-bound.

The measurements with the corresponding prediction results for OSACA, LLVM-MCA and IACA can be
found in Table 4.1. For each tool, the column taken for the overall prediction is highlighted in gray.

Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP CP LCD TP CP LCD TP BlockTP

TX2 armclang 32×2 37.29 32.00 4 1 16.00 42 39 — — 86 % 43 % —
gcc 8×2 11.07 8.00 5 1 11.35 28 20 — — 72 % 103 % —

CSX icc 1×8 1.17 1.00 4 1 1.01 12 1 1.00 1.23 86 % 86 % 105 %
gcc 8×4 8.11 8.00 4 1 8.00 21 8 8.00 8.00 99 % 99 % 99 %

Zen gcc 8×2 8.09 8.00 4 1 8.00 22 8 — — 99 % 99 % —

Table 4.1.: Prediction results of the COPY benchmark in Section 4.2.1.

Since the runtime prediction for OSACA is defined as the maximum of TP and LCD, for throughput-bound
kernels we expect the TP value to be always greater than the LCD prediction. Here we can see excellent
predictions by OSACA for the gcc-compiled x86-versions of the code and a still accurate prediction for the
AVX-512 code on CSX. We can observe a consistent loss of accuracy throughout all AVX-512 code kernels.
This is due to little to none unrolling on top of SIMD. We can force icc with #pragma unroll(N)
to achieve the same factor of total unrolling as in the the gcc-compiled code and observe an increase of
accuracy to 98 %. It seems IACA is taking some penalty into consideration, but, therefore, overestimates
the kernel and predicts a slower execution than the measured runtime. Otherwise, the related tools predict
the gcc-compiled kernels as precisely as OSACA.

For the predictions on ARM we can see a bigger discrepancy in the measurements. While LLVM-MCA
slightly overpredicts the gcc-compiled kernel, OSACA predicts only 72 % of the actual measurement. To
gain more insight into the execution process, the analyzed kernel is shown in Listing 4.3. We can see the
code is clearly bound by port 3, 4 and 5 which contain the LOAD units including the Address Generation
Units (AGUs) (port 3, 4) and the STORE unit (port 5). Therefore, we assume there must be a penalty not
considered by our hardware model at the time of writing. The LLVM-MCA output, which has a much more
accurate prediction is shown in Listing 4.4. Note that the distribution of the functional units across the ports
as well as the port model itself is different to OSACA, e.g., no dedicated STORE port, and the reasoning
behind LLVM’s port model is not publicly documented. One can only guess LLVM-MCA assumes three
AGUs to be on port 0, 1 and 2. Furthermore, it shows 3 µ-ops per LOAD and 4 µ-ops per STORE instruction
but schedules only one cycle on the data ports and one and two, respectively, across the arithmetic ports.
Thus, according to LLVM-MCA the code is bound by the arithmetic ports instead of the data ports. We
can see that a different model which is —based on our knowledge about the system and Marvell customer
information— not necessarily correct, can achieve higher accuracy in specific cases.

While OSACA returns an accurate prediction for the armclang-compiled version of the kernel, the predic-
tion by LLVM-MCA is far off. This is due to the fact that the compiler uses ldp and stp instructions for
loading and storing a pair of registers. LLVM-MCA expects stp to need one µ-op, which can be executed
on one of the two data ports. This differs from our assumption of two µ-ops on the data ports as well as two
µ-ops on the AGUs port and consequently leads to a wrong prediction.

4.2.2. Vector add

In a vector add kernel, the CPU loads two values from two different arrays and stores the sum into a third
array. The C code can be written as follows:
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Open Source Architecture Code Analyzer (OSACA) - v0.3
Architecture: tx2

Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV | 1 - 1DV | 2 | 3 | 4 | 5 || CP | LCD |

-------------------------------------------------------------------------
273 | | | | | | || | | .L17:
274 | 0.33 | 0.33 | 0.33 | | | || | | add x16, x15, 16
275 | | | | 0.50 | 0.50 | || | | ldr q9, [x19, x15]
276 | 0.33 | 0.33 | 0.33 | | | || | | add x30, x15, 32
277 | 0.33 | 0.33 | 0.33 | | | || | | add x17, x15, 48
278 | | | | 0.50 | 0.50 | || | | ldr q16, [x19, x16]
279 | | | | 0.50 | 0.50 | || | | ldr q18, [x19, x30]
280 | 0.33 | 0.33 | 0.33 | | | || | | add x18, x15, 64
281 | 0.33 | 0.33 | 0.33 | | | || | | add x1, x15, 80
282 | | | | 0.50 | 0.50 | || | | ldr q17, [x19, x17]
283 | | | | 0.50 | 0.50 | || | | ldr q19, [x19, x18]
284 | 0.33 | 0.33 | 0.33 | | | || | | add x3, x15, 96
285 | 0.33 | 0.33 | 0.33 | | | || 1.0 | | add x2, x15, 112
286 | | | | 0.50 | 0.50 | || | | ldr q20, [x19, x1]
287 | | | | 0.50 | 0.50 | || | | ldr q21, [x19, x3]
288 | | | | 0.50 | 0.50 | 1.00 || | | str q9, [x20, x15]
289 | | | | 0.50 | 0.50 | || 4.0 | | ldr q22, [x19, x2]
290 | 0.33 | 0.33 | 0.33 | | | || | 1.0 | add x15, x15, 128
291 | | | | 0.50 | 0.50 | 1.00 || | | str q16, [x20, x16]
292 | | | | 0.50 | 0.50 | 1.00 || | | str q18, [x20, x30]
293 | | | | 0.50 | 0.50 | 1.00 || | | str q17, [x20, x17]
294 | | | | 0.50 | 0.50 | 1.00 || | | str q19, [x20, x18]
295 | | | | 0.50 | 0.50 | 1.00 || | | str q20, [x20, x1]
296 | | | | 0.50 | 0.50 | 1.00 || | | str q21, [x20, x3]
297 | | | | 0.50 | 0.50 | 1.00 || 4.0 | | str q22, [x20, x2]
298 | 0.33 | 0.33 | 0.33 | | | || | | cmp x23, x15
299 | | | | | | || | | * bne .L17

3.00 3.00 3.00 8.00 8.00 8.00 9.0 1.0

Loop-Carried Dependencies Analysis Report
-----------------------------------------
290 | 1.0 | add x15, x15, 128 | [290]

Listing 4.3: Condensed OSACA output for the analysis of the gcc-compiled COPY benchmark kernel on a Marvell
TX2 micro-architecture.

Instruction Info:
[1]: #uOps [4]: MayLoad
[2]: Latency [5]: MayStore
[3]: RThroughput [6]: HasSideEffects (U)

[1] [2] [3] [4] [5] [6] Instructions:
3 4 0.50 * ldr q9, [x19, x15]
4 1 0.67 * str q16, [x20, x16]

Resource pressure per iteration:
[0] [1] [2] [3] [4] [5]
11.32 11.33 11.35 - 8.00 8.00

Resource pressure by instruction:
[0] [1] [2] [3] [4] [5] Instructions:
0.66 0.33 0.01 - - - add x16, x15, #16
- 0.67 0.33 - - 1.00 ldr q9, [x19, x15]

0.67 0.33 - - - - add x30, x15, #32
0.33 0.33 0.34 - - - add x17, x15, #48
0.33 0.34 0.33 - 1.00 - ldr q16, [x19, x16]
0.34 0.33 0.33 - - 1.00 ldr q18, [x19, x30]
0.33 0.33 0.34 - - - add x18, x15, #64
0.33 0.34 0.33 - - - add x1, x15, #80
0.34 0.33 0.33 - 1.00 - ldr q17, [x19, x17]
0.33 0.33 0.34 - - 1.00 ldr q19, [x19, x18]
0.33 0.34 0.33 - - - add x3, x15, #96
0.34 0.33 0.33 - - - add x2, x15, #112
0.33 0.33 0.34 - 1.00 - ldr q20, [x19, x1]
0.33 0.34 0.33 - - 1.00 ldr q21, [x19, x3]
0.66 0.68 0.66 - - 1.00 str q9, [x20, x15]
0.34 0.33 0.33 - 1.00 - ldr q22, [x19, x2]
0.33 0.33 0.34 - - - add x15, x15, #128
0.68 0.66 0.66 - 1.00 - str q16, [x20, x16]
0.66 0.66 0.68 - - 1.00 str q18, [x20, x30]
0.66 0.68 0.66 - 1.00 - str q17, [x20, x17]
0.68 0.66 0.66 - - 1.00 str q19, [x20, x18]
0.66 0.66 0.68 - 1.00 - str q20, [x20, x1]
0.66 0.68 0.66 - - 1.00 str q21, [x20, x3]
0.66 0.66 0.68 - 1.00 - str q22, [x20, x2]
0.34 0.33 0.33 - - - cmp x23, x15
- - 1.00 - - - b.ne .L17

Listing 4.4: Extract of the LLVM-MCA analysis for the gcc-compiled COPY benchmark kernel on a MArvell TX2
micro-architecture.
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double * restrict a, * restrict b, * restrict c;

for(long i=0; i < size; ++i){
a[i] = b[i] + c[i];

}

The code is again throughput bound and easily vectorizable by the compiler. The results of the analysis
are shown in Table 4.2.

Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP CP LCD TP CP LCD TP BlockTP

TX2 armclang 32×2 49.82 48.00 10 1 39.02 104 99 — — 96 % 78 % —
gcc 8×2 19.84 12.00 11 1 17.01 43 39 — — 60 % 86 % —

CSX icc 2×8 3.13 3.00 8 1 2.03 17 2 3.00 3.00 96 % 65 % 96 %
gcc 8×4 12.12 12.00 8 1 8.06 29 8 12.00 12.00 99 % 67 % 99 %

Zen gcc 8×4 12.04 12.00 7 1 12.00 32 9 — — 100 % 100 % —

Table 4.2.: Prediction results of the VECTOR ADD benchmark in Section 4.2.2.

OSACA predicts a throughput of 96 % to 99.7 % compared to the actual measurements for all x86 and the
armclang-built versions of the kernel and is better than or on par with the other tools. Only for the gcc-
compiled version on TX2 it mispredicts the runtime by 40 %. This example is especially interesting since
the armclang version is predicted almost perfectly and the two code snippets are similar to each other. Both
use 128-bit quadwords and the fadd instruction for summing up the vectors. Thus, the inaccuracy is likely
related to one or more of the following properties::

• Unroll factor
While the armclang version unrolls by the factor of 32 excluding the SIMD unrolling, the gcc-
compiled code is only unrolled eight times. Combined with insufficient speculative execution and
deep pipelines, this may prevent the code to be executed at the throughput limit.

• Use of LOAD and STORE instructions
The armclang-built code uses ldp and stp instructions for loading and storing data while gcc uses
simple ldr and str instructions. We cannot measure any difference in the throughput behaviour
between two ldr/str and one ldp/stp instruction and therefore assume TX2 internally splits a
pair-wise LOAD and STORE into two separate instructions.

• Instruction ordering
We can observe two different behaviours in interleaving the high-level iterations to overcome laten-
cies in dependency chains: On the one hand the armclang version interleaves the computation of four
quadwords, i.e., eight high-level iterations, before adding a similar code snippet after the previous
one to complete one assembly iteration after eight of these snippets. After half of the assembly kernel
the behaviour is slightly changed and no repeating pattern in ordering LOAD, ADD and STORE in-
structions can be found. On the other hand the gcc version only interleaves the LOAD and the ADD
instruction of the vectors and puts seven of the overall eight STORE instructions at the very end of the
kernel. This would suggest that the out-of-order engine of the TX2 architecture is not able to exploit
the kernel’s full instruction level parallelism. We therefore assume this to be the most likely reason
for the observed runtime behaviour of the CPU; the TX2 is not able to handle many adjacent STORE
instructions without a penalty in execution. However, for adding this to our model more investigation
is necessary.

The LLVM-MCA tool has again a higher accuracy of 86 % for the gcc-compiled kernel due to the a bottle-
neck in the arithmetic ports and, thus, does not help for enhancing our model based on different assumptions.

4.2.3. Vector update

The vector update benchmark is an in-place update of an array by multiplying it with a scalar floating-point:
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double * restrict a;

for(long i=0; i < size; ++i){
a[i] = scale * a[i];

}

The kernel executes one LOAD, one MUL, and one STORE. Therefore, we assume the code to be bound
to the AGUs or the store port for the architectures our testbed. The analysis by OSACA, LLVM-MCA and
IACA is presented in Table 4.3.

Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP CP LCD TP CP LCD TP BlockTP

TX2 armclang 4×2 5.22 4.00 10 1 6.04 19 14 — — 77 % 116 % —
gcc 8×2 11.01 8.00 20 1 9.02 28 21 — — 73 % 82 % —

CSX icc 2×8 2.15 2.00 8 1 2.00 16 2 2.00 2.48 93 % 93 % 115 %
gcc 8×4 8.02 8.00 8 1 8.00 25 8 8.00 8.00 100 % 100 % 100 %

Zen gcc 8×2 8.03 8.00 8 1 8.00 24 8 — — 100 % 100 % —

Table 4.3.: Prediction results of thee VECTOR UPDATE benchmark in Section 4.2.3.

On TX2 OSACA predicts an execution time of only 73 % to 77 % of the measured runtime. For both kernels
the bottleneck is predicted to be the data ports, which confirms our expectations. Nonetheless, we were
unable to identify the reason for the discrepancy between our model and the actual execution and assume
the difference is due to an unsufficient unrolling in case of the armclang-compiled version and a high amount
of adjacent STORE instructions in case of the gcc-built kernel. LLVM-MCA expects the bottleneck for both
kernels to be the arithmetic ports and achieves a better accuracy of 82 % for the gcc-compiled code because
it assumes a reciprocal throughput of 1.0 cy per fmul instruction, which is double of what OSACA predicts.
Furthermore, LLVM-MCA overpredicts the armclang version of the kernel. Looking at the x86 kernels our
tool achieves again highly accurate predictions on the same level as LLVM-MCA. IACA achieves precise
results for the gcc version on CSX but overpredicts the icc code by 15 % without giving insight about the
additional 0.48 cy, even though the pure TP prediction is accurate. Since the kernel uses only an unrolling
by the factor of two together with AVX-512 instructions, it seems this is the reason for the slightly worse
accuracy of OSACA and LLVM-MCA compared to the SSE and AVX-2 versions of the other x86 kernels
and the immoderate added penalty by IACA.

4.2.4. Sum reduction

The kernel of the sum reduction or vector reduction exhibits similar behavior to the vector update but differs
in accumulating the sum of all values of a vector into a register instead of storing it in another independent
array. This creates a dependency chain while iterating through the vector. The high-level code can be
written as:

double * restrict a;

for(long i=0; i < size; ++i){
scale = scale + a[i];

}

Consequently, we expect to see a loop-carried dependency in the assembly code, since all the vector ele-
ments sum up to one scalar value. By using unrolling with modulo variable expansion (MVE), the compiler
can shift the bottleneck from the compute part to the memory. Nevertheless, the kernel should be still LCD-
bound. We therefore compare the measurements with the LCD value of the predictions. The results of the
analysis is shown in Table 4.4.
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Open Source Architecture Code Analyzer (OSACA) - v0.3
Architecture: csx

Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV| 1 | 2 - 2D| 3 - 3D| 4 | 5 | 6 | 7 || CP | LCD |

---------------------------------------------------------------
305| | | | | | | | || | | .L19:
306|0.5 |0.5|0.5 0.5|0.5 0.5| | | | || 8 | 4 | vaddpd (%rcx), %ymm3, %ymm4
307|0.0 |0.0| | | |0.5|0.5| || | | addq $256, %rcx
308|0.5 |0.5|0.5 0.5|0.5 0.5| | | | || 4 | 4 | vaddpd -224(%rcx), %ymm4, %ymm5
309|0.5 |0.5|0.5 0.5|0.5 0.5| | | | || 4 | 4 | vaddpd -192(%rcx), %ymm5, %ymm6
310|0.5 |0.5|0.5 0.5|0.5 0.5| | | | || 4 | 4 | vaddpd -160(%rcx), %ymm6, %ymm8
311|0.5 |0.5|0.5 0.5|0.5 0.5| | | | || 4 | 4 | vaddpd -128(%rcx), %ymm8, %ymm9
312|0.5 |0.5|0.5 0.5|0.5 0.5| | | | || 4 | 4 | vaddpd -96(%rcx), %ymm9, %ymm10
313|0.5 |0.5|0.5 0.5|0.5 0.5| | | | || 4 | 4 | vaddpd -64(%rcx), %ymm10, %ymm11
314|0.5 |0.5|0.5 0.5|0.5 0.5| | | | || 4 | 4 | vaddpd -32(%rcx), %ymm11, %ymm3
315|0.0 |0.0| | | |0.5|0.5| || | | cmpq %rcx, %r15
316| | | | | | | | || | | jne .L19

4.0 4.0 4.0 4.0 4.0 4.0 1.0 1.0 36 32

Loop-Carried Dependencies Analysis Report
-----------------------------------------
314 | 32.0 | vaddpd -32(%rcx), %ymm11, %ymm3 | [306, 308, 309, 310, 311, 312, 313, 314]
315 | 2.0 | cmpq %rcx, %r15 | [307, 315]

Listing 4.5: Condensed OSACA output for the analysis of the gcc-compiled SUM REDUCTION benchmark kernel on
a CSX micro-architecture using the -Ofast optimization flag.

Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP CP LCD TP CP LCD TP BlockTP

TX2
armclang 32×2 25.41 16.00 28 24 28.00 79 67 — — 94 % 264 % —

gcc 8×2 46.76 4.50 52 48 5.98 60 48 — — 103 % 103 % —
gcc (-O3) 16×1 96.04 16.50 105 96 17.01 115 96 — — 100 % 100 % —

CSX
icc 4×8 4.09 2.00 8 4 2.14 15 4 2.00 4.00 98 % 98 % 98 %
gcc 8×4 30.29 4.00 36 32 4.05 42 32 4.00 32.00 106 % 106 % 106 %

gcc (-O3) 16×1 64.17 8.00 68 64 12.01 74 64 12.00 64.00 100 % 100 % 100 %

Zen gcc 8×2 23.60 4.00 28 24 8.00 27 16 — — 102 % 68 % —
gcc (-O3) 16×1 48.02 8.00 52 48 8.02 72 64 — — 100 % 133 % —

Table 4.4.: Prediction results of the SUM REDUCTION benchmark in Section 4.2.4.

We can see that for the armclang and the icc version OSACA’s prediction is highly accurate, but for the stan-
dard gcc-compiled versions it overpredicts each kernel. This behavior results from the use of the -Ofast
flag that allows the compiler to use unsafe math operations to optimize the code. For a better understanding,
the OSACA analysis for the gcc-compiled kernel on CSX is shown in Listing 4.5.

Since the use of SIMD instructions in the lines 306 and 308–314 already break the order of operations as
given in the high-level code, the gcc compiler neglects the constraints by the dependency chain as detected
in the “CP” column by OSACA between two repetitions of the benchmark, i.e., repetitions done to achieve
a runtime higher than a reasonable amount of time, and therefore creates an overlap of the single repeti-
tions7. Therefore, even though all tools expect a LCD of 32 cy, the code runs slightly faster and OSACA
mispredicts the gcc versions by 2 %–6 % with the same accuracy as LLVM-MCA and IACA. Only on
Zen LLVM-MCA predicts far below the actual runtime due to the assumption of a latency of 2 cy for the
vaddpd instruction inside of the LCD. OSACA assumes here 3 cy.

We can overcome this behavior during the measurements by writing the assembly manually, avoiding rep-
etitions of benchmark or forbid the use of “unsafe” instructions, which necessarily rules out SIMD vec-
torization. To check the accuracy of OSACA in the latter case, we compiled the high-level kernels with
gcc using the -O3 flag instead of -Ofast. The results are listed in Table 4.4 with “-O3” in parenthe-
ses next to the compiler. In the column showing the unroll factor we can now see the compiler only used
scalar accumulates, resulting in a highly accurate prediction with 99.73 %–99.95 % accuracy. Both IACA
and LLVM-MCA now are also able to predict a correct runtime for the TX2 and CSX system and only

7Discovered and explained by Georg Hager in https://blogs.fau.de/hager/archives/7658 (accessed January 29, 2020).
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Open Source Architecture Code Analyzer (OSACA) - v0.3
Architecture: csx
Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV| 1 | 2 - 2D | 3 - 3D | 4 | 5 | 6 | 7 || CP | LCD |

----------------------------------------------------------------
392 | | | | | | | | || | | ..B1.38:
393 | | | | | | | | || | | # Execution count [2.22e+03]
394 |0.5 | |0.5 0.5|0.5 0.5| |0.5| | || | 4 | vaddpd (%r13,%rax,8), %zmm4, %zmm4
395 |0.5 | |0.5 0.5|0.5 0.5| |0.5| | || | | vaddpd 64(%r13,%rax,8), %zmm3, %zmm3
396 |0.5 | |0.5 0.5|0.5 0.5| |0.5| | || | | vaddpd 128(%r13,%rax,8), %zmm2, %zmm2
397 |0.5 | |0.5 0.5|0.5 0.5| |0.5| | || 8 | | vaddpd 192(%r13,%rax,8), %zmm1, %zmm1
398 |0.0 |0.5| | | |0.0|0.5| || | | addq $32, %rax
399 |0.0 |0.5| | | |0.0|0.5| || | | cmpq %r14, %rax
400 | | | | | | | | || | | jb ..B1.38

2.0 1.0 2.0 2.0 2.0 2.0 2.0 1.0 8 4

Loop-Carried Dependencies Analysis Report
-----------------------------------------
394 | 4.0 | vaddpd (%r13,%rax,8), %zmm4, %zmm4
395 | 4.0 | vaddpd 64(%r13,%rax,8), %zmm3, %zmm3
396 | 4.0 | vaddpd 128(%r13,%rax,8), %zmm2, %zmm2
397 | 4.0 | vaddpd 192(%r13,%rax,8), %zmm1, %zmm1
399 | 2.0 | cmpq %r14, %rax

Listing 4.6: Condensed OSACA output for the analysis of the icc-compiled SUM REDUCTION benchmark kernel on
a CSX micro-architecture using the -Ofast optimization flag.

..B1.39: # Preds ..B1.38
# Execution count [4.00e+02]

vaddpd %zmm3, %zmm4, %zmm3 #76.5
vaddpd %zmm1, %zmm2, %zmm1 #76.5
vaddpd %zmm1, %zmm3, %zmm4 #76.5

# LOE r13 r14 ebx r12d r15d xmm0 xmm5 zmm4
..B1.40: # Preds ..B1.39 ..B1.36

# Execution count [4.00e+02]
vshuff32x4 $238, %zmm4, %zmm4, %zmm1 #76.5
vaddpd %zmm4, %zmm1, %zmm2 #76.5
vpermpd $78, %zmm2, %zmm3 #76.5
vaddpd %zmm3, %zmm2, %zmm4 #76.5
vpermpd $177, %zmm4, %zmm6 #76.5
vaddpd %zmm6, %zmm4, %zmm7 #76.5
vaddsd %xmm0, %xmm7, %xmm0

Listing 4.7: Code snippet of the final accumulation due to MVE in the icc-compiled SUM REDUCTION kernel on
CSX.

LLVM-MCA overpredicts the kernel on Zen due to a different assumption of latency for vaddsd of 3 cy
inside of the LCD while in comparison OSACA assumes 4 cy (which is the correct value on CSX).

But why does OSACA achieve accurate results for the armclang- and icc-compiled versions? To answer
this question, we show the OSACA output of the CSX analysis in Listing 4.6.

The Intel compiler uses MVE on top of SIMD and therefore creates four parallel executable LCDs as
shown in the bottom in the Loop-Carried Dependencies Analysis Report (instructions 394–397). This way,
it bounds the code to the ADD peak of 4 cy per assembly iteration. By all means, this requires extra work
after all iterations to accumulate the 32 results which we can find in the assembly file after the loop body
and is shown in Listing 4.7. Since this is only done once at the end of all loop iterations, we can neglect the
overhead of this code snippet. The armclang-compiled code uses MVE as well but unrolls additionally by
a factor of four. Thus, the LCD within this kernel has a length of four instructions instead of one in icc’s
version. It is not completely clear why LLVM-MCA assumes a runtime of more than 1.5 times the actual
measurement in that case but it seems it can not distinguish precisely between the independent MVE loops
or struggles with ldp instructions since the block TP is already higher than the measured runtime.
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4.2.5. DAXPY

The DAXPY benchmark adds a scalar multiple of a floating-point vector to another floating-point vector
and is therefore well suited to analyze the fused multiply–add (FMA) units in a micro-architecture. The
high-level loop is written as follows:

double * restrict a, * restrict b;

for(long i=0; i < size; ++i){
a[i] = a[i] + scale * b[i];

}

The analysis of OSACA, LLVM-MCA and IACA for the DAXPY kernel can be found in Table 4.5.

Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP LCD CP TP LCD CP TP BlockTP

TX2 armclang 32×2 48.40 48.00 10 1 41.02 106 99 — — 99 % 85 % —
gcc 8×2 13.12 12.00 20 1 12.00 37 31 — — 91 % 91 % —

CSX icc 1×8 1.82 1.50 8 1 1.25 16 1 1.50 1.74 83 % 69 % 96 %
gcc 8×4 12.12 12.00 8 1 8.06 29 8 12.00 12.00 99 % 67 % 99 %

Zen gcc 8×2 12.02 12.00 8 1 12.00 30 8 — — 100 % 100 % —

Table 4.5.: Prediction results of the DAXPY benchmark in Section 4.2.5.

In all versions OSACA expects the code to be throughput bound and identifies the bottleneck at the data
ports. It achieves for all cases a higher or equal accuracy than LLVM-MCA and predicts the same through-
put for the Intel architectures as IACA. By adding an unknown penalty to the throughput prediction in the
icc-compiled case, IACA predicts the iteration runtime with 96 % accuracy more precisely than OSACA.
Even though we can find five consecutive STORE instructions at the end of the gcc-built loop body for the
TX2 system and have the same unroll factor of 16, we do not experience a big loss in accuracy as seen for
the VECTOR ADD benchmark in Section 4.2.2, which might be related to the fact that the computation is
done in-place for the array in case of DAXPY but is completely independent in case of the VECTOR ADD.
This cannot be verified at the time of writing.

4.2.6. STREAM triad

In comparison to the previously covered STREAM kernels, i.e., copy and add, the triad benchmark shows
a more complex scenario. Its kernel accumulates and multiplies two vectors and a scalar floating-point and
stores the result in a third vector:

double * restrict a, * restrict b, * restrict c;

for(long i=0; i < size; ++i){
a[i] = b[i] + scale * c[i];

}

The analysis results are shown in Table 4.6.

Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP CP LCD TP CP LCD TP BlockTP

TX2 armclang 32×2 64.61 61.50 10 1 42.02 133 127 — — 95 % 65 % —
gcc 8×2 19.73 12.00 11 1 17.01 43 39 — — 61 % 86 % —

CSX icc 1×8 1.74 1.50 8 1 1.25 16 1 1.50 1.74 86 % 72 % 100 %
gcc 8×4 12.12 12.00 8 1 8.06 29 8 12.00 12.00 99 % 67 % 99 %

Zen gcc 8×2 12.05 12.00 9 1 12.00 30 8 — — 100 % 100 % —

Table 4.6.: Prediction results of the TRIAD benchmark in Section 4.2.6.

Once again OSACA accurately predicts the runtime for the armclang-compiled code on TX2, the icc-built
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kernel on CSX and the gcc version on Zen and shows a small deviation for the icc-built code using AVX-512
instruction with no additional unrolling, for which IACA adds a penalty to predict the throughput precisely
but does not give any deeper insight. For all versions OSACA assumes the AGU ports as the bottleneck,
which meets our expectations. We can see LLVM-MCA returns relatively inaccurate predictions for the
armclang version and the kernels on CSX, which is due to stp instructions on ARM and the utilization
of AGU port 7 on CSX for complex memory addressing, respectively. Nevertheless, it assumes a better
runtime for the gcc-compiled kernel on the TX2 than OSACA. This results from the assumption that the
bottleneck are the arithmetic ports since it predicts a reciprocal throughput of 12 cy for both data ports and
16.49 cy, 16.50 cy and 17.01 cy for the three ALU ports. We assume the reason for OSACA’s accuracy of
only 61 % for that kernel is the high amount of adjacent STOREs at the end of the kernel.

4.2.7. Schönauer triad

The Schönauer triad represents a variation of the classic STREAM triad in which the scalar value is replaced
by another vector, creating a multiply-add of three vectors, and stores the result in a fourth vector. The high-
level code can be written as:

double * restrict a, * restrict b, * restrict c, * restrict d;

for(long i=0; i < size; ++i){
a[i] = b[i] + c[i] * d[i];

}

Since the STREAM triad was already AGU-bound and the processor needs to generate one additional
address in the present case, we expect the bottleneck at the AGUs. The compiler can reduce this bottleneck
on modern Intel architectures by using simple addressing for STOREs to make use of the AGU on port 7.
However, we observe very few situations in which compilers make use of the simple AGU on port 7. All
measurements and analysis results can be found in Table 4.7.

Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP CP LCD TP CP LCD TP BlockTP

TX2 armclang 32×2 67.54 66.00 10 1 50.02 139 134 — — 98 % 74 % —
gcc 8×2 22.81 16.00 11 1 20.01 52 47 — — 70 % 88 % —

CSX icc 2×8 4.34 4.00 8 1 3.03 25 3 4.00 4.00 92 % 70 % 92 %
gcc 8×4 16.08 16.00 8 1 12.04 33 12 16.00 16.00 100 % 75 % 100 %

Zen gcc 8×2 16.05 16.00 8 1 16.00 34 13 — — 100 % 100 % —

Table 4.7.: Prediction results for the SCHÖNAUER TRIAD benchmark in Section 4.2.6.

Unfortunately neither icc nor gcc use simple addressing on CSX for this code. Nevertheless, OSACA
predicts x86 code compiled by gcc with 100 % accuracy and is as precise as IACA for both kernels on
Intel CSX. The prediction of LLVM-MCA for CSX shows only 70 % and 75 % accuracy, respectively, due
to the assumption that the processor in fact uses port 7 for generating the store address.

On the ARM-based TX2, OSACA returns a precise prediction for the armclang-compiled kernel, but reveals
weaknesses for the gcc version. We can identify five consecutive STORE instructions at the end of the
kernel but still cannot verify this to be the reason for a possible penalty. Different to OSACA, LLVM-MCA
assumes the bottleneck for both TX2 kernels in the arithmetic ports and achieves an accuracy of 74 % for
the armclang version and 88 % for the gcc-built code.

4.2.8. Gauss-Seidel method

Almost all kernels investigated so far do not show more than the “trivial” LCD due to the loop counter
update. A relevant kernel that is more interesting in this respect is the two-dimensional Gauss-Seidel
method [36]. It iterates over a grid, accumulates the neighbors of a cell, multiplies the result with a scalar
value and updates the current cell with the new value:
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Open Source Architecture Code Analyzer (OSACA) - v0.3
Architecture: tx2

Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV | 1 - 1DV | 2 | 3 | 4 | 5 || CP | LCD |

----------------------------------------------------------------------------
740 | | | | | | || | | .LBB0_62:
745 | 0.33 | 0.33 | 0.33 | 0.50 | 0.50 | || 4.0 | | ldr d1, [x7], #8
746 | 0.50 | 0.50 | | | | || 6.0 | 6.0 | fadd d0, d1, d0
747 | | | | 0.50 | 0.50 | || | | ldr d2, [x22]
748 | 0.33 | 0.33 | 0.33 | 0.50 | 0.50 | || | | ldr d3, [x23], #8
749 | 0.50 | 0.50 | | | | || | | fadd d2, d2, d3
750 | 0.50 | 0.50 | | | | || 6.0 | 6.0 | fadd d0, d0, d2
751 | 0.33 | 0.33 | 0.33 | | | || | | sub w26, w26, #1
752 | 0.50 | 0.50 | | | | || 6.0 | 6.0 | fmul d0, d0, d9
753 | | | | 0.50 | 0.50 | 1.00 || 4.0 | | stur d0, [x22, #-8]
754 | 0.00 | 0.00 | 1.00 | | | || | | add x22, x22, #8
755 | 0.00 | 0.00 | 1.00 | | | || | | cmp w26, #2
756 | | | | | | || | | b.gt .LBB0_62

3.00 3.00 3.00 2.00 2.00 1.00 26.0 18.0

Loop-Carried Dependencies Analysis Report
-----------------------------------------
745 | 0.0 | ldr d1, [x7], #8 | [745]
748 | 0.0 | ldr d3, [x23], #8 | [748]
752 | 18.0 | fmul d0, d0, d9 | [746, 750, 752]
754 | 1.0 | add x22, x22, #8 | [754]

Listing 4.8: Condensed OSACA output for the analysis of the armflang-compiled GAUSS-SEIDEL method kernel for
the TX2 micro-architecture.

double ** restrict a;

for(long k=1; k < size_k-1; ++k){
for(long i=1; i < size_i-1; ++i){

a[k][i] = scale * (
a[k][i-1] + a[k+1][i]
+ a[k][i+1] + a[k-1][i]

);
}

}

As this update happens in-place, each iteration depends on the previously calculated value of its “left”,
i.e., a[k][i-1], and “bottom”, i.e., a[k-1][i], neighbor. Therefore, we expect this dependency chain
to be the bottleneck. The result of the predictions and measurements are presented in Table 4.8.

Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP CP LCD TP CP LCD TP BlockTP

TX2 armflang 1×1 18.37 3.00 26 18 5.00 27 18 — — 98 % 98 % —
gfortran 4×1 74.77 8.50 92 72 14.00 97 83 — — 96 % 111 % —

CSX ifort 4×1 56.23 8.00 68 56 8.01 76 59 8.00 56.00 100 % 105 % 100 %
gfortran 8×1 102.94 16.00 100 96 16.02 113 104 16.00 96.00 93 % 101 % 93 %

Zen gfortran 8×1 83.51 19.50 84 80 24.00 112 104 — — 96 % 125 % —

Table 4.8.: Prediction results of the GAUSS-SEIDEL sweep in Section 4.2.8.

Note that the code for this benchmark is written in Fortran, therefore we used the corresponding Fortran
compilers armflang, ifort, and gfortran, respectively. As expected, the actual runtime differs tremendously
from the plain TP prediction of all tools. Furthermore, all kernels have a SIMD factor of 1 because of the de-
pendency constraint to process one cell after another. OSACA returns an accurate prediction throughout all
kernels on all systems and provides an equally good or better prediction than the related tools LLVM-MCA
and IACA.

To gain more insight into the kernel by OSACA’s analysis, its output of the armflang-compiled code for
TX2 is shown in Listing 4.8. The assembly kernel consists of three LOADs since the fourth element
representing the previous cell in the grid is already stored in a register, in this particular case in d0. The
kernel accumulates (fadd) all four cells and multiplies (fmul) the scalar floating-point. Subsequently, the
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740: label

745: ldr

0.0

746: fadd0.0

750: fadd
6.0

745: LOAD
4.0

752: fmul

6.0

747: ldr

749: fadd

4.0

6.0

6.0 753: stur6.0

748: ldr

0.0

0.0
748: LOAD

4.0

754: add

1.0

751: sub 755: cmp 756: b.gt

Figure 4.1.: Depdendency graph of the GAUSS SEIDEL method kernel compiled by armflang for TX2. Vertices repre-
sent individual instruction forms while the edges indicate dependencies in between the instruction forms,
weighted with the latency of the start vertex of the edge. Each LCD is symbolized by a different color
and the CP is marked with bold frames. The graph is created by OSACA using the --export-graph
command line option and adjusted for printing.

result gets stored into the memory. As we can see in the LCD-column, only two ADDs and the MUL are
part of the LCD since the load and store, which are part of the CP, can be done independently and therefore
overlap with previous and following iterations. To visualize CP and LCDs as well as the data flow of the
kernel, OSACA can produce a dependency graph as a DOT file when given the --export-graph option
to the command line. This is shown in Figure 4.1. While the CP is marked in bold for the whole path, each
LCD is represented in a different color. In Figure 4.1, the LCD defining the bottleneck is marked in red.
We can see the compiler creates suboptimal code (as do the other compilers) since a rearrangement of the
ADDs can shorten the LCD by one instruction: If the kernel accumulates all three memory values of the
neighbor cells first, only one fadd, i.e., the ADD containing the previously updated cell, and the MUL are
part of the LCD and the dependency chain. Consequently, the LCD would have a length of 12 cy instead of
18 cy for the shown code.

Furthermore, besides the LCD consisting of the loop pointer increment in line 754, marked in orange, we
can identify two more LCDs in the load instructions at 745 and 748. These two LOADs use post-indexing,
i.e., the base register is stored with its new value after calculating the memory address using the immediate
index. We assume that these LCDs take 1 cy to execute, but they are currently not considered for CP and
LCD analysis. We therefore assume the latency of the additional accumulate of the base register as 0 for
now and need to investigate the validity of assigning it a latency of 1 cy since the processor might overcome
this computation time by using shadow registers or overlap with the LOAD.

All other kernels for the Gauss-Seidel method are based on the same structure but use a higher unroll factor
of 4 and 8, respectively. LLVM-MCA overpredicts four out of the five kernels as it cannot identify the LCD
precisely.

4.2.9. 2D-5pt stencil

A two-dimensional five-point stencil code, also called 2D Jacobi kernel, is a well known method of iterative
kernel updates as such structured kernels emerge from finite difference discretizations.. It computes the
arithmetic mean of a cell out of its four neighbors in a 2D grid and, other than the Gauss-Seidel method,
writes the result into a second matrix:
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double ** restrict a, ** restrict b;

for(long k=1; k < size_k-1; ++k){
for(long i=1; i < size_i-1; ++i){

a[k][i] = 0.25 * (
b[k][i-1] + b[k+1][i]
+ b[k][i+1] + b[k-1][i]

);
}

}

Since the kernel computes each cell independently and needs four LOADS, three ADDS, one MUL and
one STORE per SIMD iteration, we expect it to be throughput bound by the AGU ports. The analysis
results are shown in Table 4.9.

Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP CP LCD TP CP LCD TP BlockTP

TX2 armclang 16×2 49.31 34.00 28 1 43.49 130 122 — — 69 % 88 % —
gcc 4×2 22.73 8.50 23 1 4.98 38 14 — — 37 % 22 % —

CSX

icc 4×8 18.10 10.00 21 1 9.43 36 9 10.00 11.53 55 % 52 % 64 %
icc (AVX) 4×4 11.78 10.00 20 1 8.03 31 7 10.00 10.53 85 % 68 % 89 %
icc (SSE) 4×2 9.51 8.50 12 1 8.00 31 7 8.50 10.53 89 % 84 % 102 %

gcc 4×4 14.00 10.00 16 1 8.03 30 8 10.00 10.47 71 % 57 % 75 %
gcc (SSE) 4×2 10.82 8.00 17 1 8.01 28 7 8.00 9.79 74 % 74 % 91 %

Zen gcc 4×2 10.67 8.50 15 1 12.00 28 11 — — 80 % 112 % —

Table 4.9.: Prediction results of the 2D5PT STENCIL or 2D JACOBI kernel in Section 4.2.9.

In addition to the code versions used in previous examples, we also created specific versions for CSX
forcing the compiler to use only AVX or SSE instructions. These kernels are marked with their instruction
set limitation mentioned in the Compiler column. We can observe the prediction done by OSACA for the
regular kernels is highly imprecise as it ranges from an accuracy of 37 % for the gcc-compiled code on TX2
up to 80 % for Zen. However, comparing these results to the predictions of LLVM-MCA and IACA, we
see both tools predict a runtime similar to OSACA. While IACA achieves an accuracy of 64 % and 75 %
for the icc-built and the gcc-compiled version, respectively, LLVM-MCA shows no detectable pattern as it
overpredicts the kernel on Zen, reaches an accuracy of 52 % and 57 % on CSX and predicts a runtime less
than a quarter of the measured runtime for the gcc-compiled kernel on TX2. Only for the armclang version
it achieves an accuracy of 88 % and predicts a bottleneck in the two NEON ports. A manual analysis of the
assembly did not show any noticeable problems, thus, we decided to additionally run an analysis by all tools
for less vectorized versions of the kernel on CSX to be able to comprehend the process. While OSACA
achieves a slightly better accuracy of 74 % (previously 71 %) for the gcc-compiled version using only SSE
instructions, we can notice a conspicuously rise of accuracy with icc from 55 % to 85 % and further 89 % for
the AVX-only and SSE-only variants, respectively. The analysis with LLVM-MCA shows similar behavior
as the accuracy rises from 57 % to 74 % for the gcc-built kernel using only SSE instructions and from 52 %
to 68% and 84 %, respectively, using the icc compiler. IACA adds for all kernels an unknown penalty to its
BlockTP value and reaches 89 % and 91% accuracy for the AVX-only icc code and the SSE-only gcc code
also overpredicts the SSE-only icc-built kernel. These results let us assume an unknown factor in all three
models for CSX whose impact gets stronger as the SIMD width grows. Likewise, the code on TX2 must
hit some unknown limitations not encompassed by our architecture-specific model yet.

This unexpected behavior needs to be taken into consideration for future enhancements of the model and
reveals weaknesses in all the investigated tools.
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5
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5.1. Summary

We have shown that the automatic detection of dependencies within an assembly loop kernel to detect the
critical path (CP) and loop-carried dependencies (LCDs) is possible and its analysis allows a detailed insight
into in-core loop performance. This is not only feasible for x86-based micro-architectures but has been ap-
plied to an ARM-based hardware architecture as well. The OSACA tool can extract loop kernels out of a
marked x86 or AArch64 assembly files and applies a machine model on the instruction forms of the selected
code to return an accurate runtime prediction based on lower-bound optimally scheduled throughput pre-
diction, loop-carried dependencies and a worst-case critical path estimation. For the supported platforms,
ISA- and instruction-specific performance data was heavily extended and OSACA’s database allows both
the out-of-the-box analysis of simple kernels and an extension of the machine model by the user to analyze
complex, user-specific codes of interest. OSACA can differentiate between various memory addressing for-
mats and dynamically combines memory addressing within instruction forms to provide a broader support
of instructions and simplify the database handling for the user.

While especially the ARM-based ThunderX2 (TX2) and modern AVX-512 kernels show performance lim-
itations not fully covered by our current model, OSACA provides an overall accurate prediction for various
scientific kernels and, thus, stands out against related tools with limited functionality in terms of support
of multiple micro-architectures, dependency detection within and in between loops, user insight and adapt-
ability. By using OSACA, an experienced user can gain insight into the investigated hardware by spotting
abnormalities that otherwise might have stayed undetected, such as inefficient code generation of the com-
piler, loop overlapping or hidden hardware limitations. With its current scope of functionality OSACA may
be used as a replacement for Intel’s proprietary IACA tool, which reached its end-of-life, and represents
an alternative to the LLVM Machine Code Analyzer (LLVM-MCA) tool provided by the LLVM project.
OSACA is also integrated in Kerncraft to be used as in-core performance predictor for a complete analysis,
e.g., with the ECM model.
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CHAPTER 5. CONCLUSION AND FUTURE WORK

5.2. Future Work

In the future we intend to extend OSACA in several ways. It is planned to support further micro-architectures
like AMD’s Zen 2, ARM Neoverse N1 and eventually IBM’s Power9. For the support of IBM Power ar-
chitectures it is inevitable to implement a new assembly parser and to address vendor peculiarities and
therefore it is an open question how challenging a support of all functionalities will be.

The hardware model of the most recent generations of ARM-based and x86 micro-architectures require
more insight to let OSACA return precise runtime predictions under all circumstances. We therefore want
to explore the behavior of Intel Cascade Lake X (CSX) as well as Intel Skylake-X (SKX) systems to identify
possible penalties occurring during the execution of AVX-512 kernels without additional unrolling. Fur-
thermore, we intend on gaining more insight on the Marvell TX2 architecture. We noticed an increase of
performance for single-core execution when disabling simultaneous multithreading (SMT). We therefore
assume a static distribution of resources among the logical cores and want to model this in OSACA if this
premise applies to this specific machine. Consequently, we want to investigate the behavior of consecutive
STORE instructions on TX2 to validate our assumptions made in Section 4.2 and identify if this behavior
is system or instruction set architecture (ISA)-specific to apply the knowledge to our current and future
hardware models. As seen in Section 4.2.9, some kernels experience penalties during execution. This could
neither be detected by OSACA nor by any other tested tool. Thus, we want to investigate more complex
kernels to enhance the robustness and versatility of OSACA.

Furthermore, we want to overcome some known issues in the LCD analysis of OSACA. Due to the lack of
runtime information, we cannot build fully accurate dependency chains with static analysis. Nonetheless,
we intend on modeling static read-after-write dependencies within and across loops. A dependency analysis
on kernels unrolled by a higher factor than two will be able to detect longer LCDs occurring only after
several iterations. Even though we stored the information in the data files, we currently do not make
use of the number of µ-ops of an instruction form. Considering this we additionally could pinpoint the
instruction throughput of the kernel as bottleneck. Pre- and post-indexing on ARM as well as flag register
modifications can be modeled as separate sub-instructions to enable a more precise LCD detection and
simplify the representation for the user. In addition, we want to enhance the modeling of latencies for
macro-operations that do not need an operand in the beginning of the execution, e.g., a fused-multiply-add
instruction might access the register for adding the product out of the other two registers later than the rest.
The fusion of µ-ops is currently not supported, but can be achieved by changes in the hardware model in
future releases.

The consideration of performance characteristics done both out-of-order and in-order before the execution,
e.g., the decode stage, the reorder buffer or shadow registers, is currently out of scope, even though they all
may limit the execution throughput and impose latency penalties.

Finally, to simplify the access to OSACA for non-experienced users, we want to provide a web interface to
interactively run OSACA, similar to the LLVM-MCA support in M. Godbolt’s Compiler Explorer1.

1See https://godbolt.org/ (accessed January 29, 2020).
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A
OSACA MANUAL

In the following the usage of OSACA as command line tool will be explained. All functionalities and
options are based on OSACA version 0.3.2dev51.

For an overview, Listing A.1 shows the output of the command osaca --help. The functionality
of OSACA can be separated in three parts: (i) the main analysis of a assembly file based on a micro-
architecture, (ii) the import of micro-benchmark results done by asmbench or ibench, and (iii) a database
check to inspect the sanity of the architecture database (DB) and ISA DB. We will inspect all three parts by
themselves.

Assembly file analysis

To analyse an assembly file, one must first mark the kernel to be investigated so that OSACA can extract it
during parsing. The Intel Architecture Code Analyzer (IACA) tool, which provides similar functionality as
OSACA, requires byte markers since it operates on opcode-level. To provide a trade-off between reusability
for such tool and convenient usability, OSACA supports both byte markers and comment line markers.
While the byte markers for x86 are equivalent to IACA byte markers, the comment keywords “OSACA-
BEGIN” and “OSACA-END” are based on LLVM-MCA’s markers. All options for marking the assembly
of the currently supported ISAs are presented in Listing A.2.

OSACA in combination with Kerncraft provides a functionality for the automatic detection of possible loop
kernels and inserting markers. This can be done by using the --insert-marker flag together with the
path to the target assembly file. Currently only x86 byte marker insertion is provided but ARM support is
under development.

1https://github.com/RRZE-HPC/OSACA/releases/tag/v0.3.2.dev5, commit hash: 77aa7f8
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usage: osaca [-h] [-V] [--arch ARCH] [--fixed] [--db-check]
[--import MICROBENCH] [--insert-marker]
[--export-graph EXPORT_PATH] [--ignore-unknown] [--verbose]
file

Analyzes a marked innermost loop snippet for a given architecture type.

positional arguments:
file Path to object (ASM or instruction file).

optional arguments:
-h, -help show this help message and exit
-V, -version show program’s version number and exit
-arch ARCH Define architecture (SNB, IVB, HSW, BDW, SKX, CSX, ZEN1, TX2).
-fixed Run the throughput analysis with fixed probabilities or all

suitable ports per instruction. Otherwise, OSACA will print out
the optimal port utilization for the kernel.

-db-check Run a sanity check on the by "--arch" specified database.
The output depends on the verbosity level.

-import MICROBENCH Import a given microbenchmark output file into the corresponding
architecture instruction database. Define the type of
microbenchmark either as "ibench" or "asmbench".

-insert-marker Try to find assembly block containing the loop to analyse and
insert byte marker by using Kerncraft.

-export-graph EXPORT_PATH
Output path for .dot file export. If "." is given, the file will
be stored as "./osaca_dg.dot"

-ignore-unknown Ignore if instructions cannot be found in the data file
and print analysis anyway.

-verbose, -v Increases verbosity level.

For help, examples, documentation and bug reports go to:
https://github.com/RRZE-HPC/OSACA/ | License: AGPLv3

Listing A.1: OSACA output for running the --help command. The listing is adjusted for the reader’s convenience.

OSACA starts the analysis on a marked assembly file by running the following command with one or more
of the optional parameters:

osaca --arch ARCH [--fixed] [--ignore-unknown]
[--export-graph EXPORT_PATH]

file

The file parameter specifies the target assembly file and is always mandatory. The parameter ARCH is
positional for the analysis and must be replaced by the target architecture abbreviation. Currently OSACA
supports all Intel architectures from Ivy Bridge to Cascade Lake X, AMD Zen and Marvell TX2.

As explained in Section 3.2.1, OSACA assumes an optimal scheduling for all instructions and assumes
the processor to be able to schedule instructions in a way that it achieves a minimal reciprocal throughput.
However, in version up to 0.2.2 of OSACA, a fixed probability for port utilization was assumed. This
means, instructions with N available ports for execution were scheduled with a probability of 1/N to each
of the ports. This behavior can be enforced by using the --fixed flag.

If one or more instruction forms are unknown to OSACA, it refuses to print an overall throughput, CP and
LCD analysis and marks all unknown instruction forms with “X” next to the mnemonic. This is done so the
user does not miss out on this unrecognized instruction and might assume an incorrect runtime prediction.
To force OSACA to apply a throughput and latency of 0.0 cy for all unknown instruction forms, the flag
--ignore-unknown can be specified.

To get a visualization of the analyzed kernel and its dependency chains, OSACA provides the option to
additionally produce a graph as DOT file [37], which represents the kernel and all register dependencies
inside of it. The tool highlights all LCDs and the CP. The graph generation is done by running OS-
ACA with the --export-graph EXPORT_GRAPH flag. OSACA stores the DOT file either at the by
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mov $111, %ebx # START MARKER
.byte 100,103,144 # START MARKER

.loop:
# loop body ...
jb .loop
mov $222, %ebx # END MARKER
.byte 100,103,144 # END MARKER

a: Byte markers for x86 AT&T syntax.

mov x1, #111 // START MARKER
.byte 213,3,32,31 // START MARKER

.loop:
// loop body...
b.ne .loop
mov x1, #222 // END MARKER
.byte 213,3,32,31 // END MARKER

b: Byte markers for AArch64 syntax.

# OSACA-BEGIN
.loop:

# loop body ...
jb .loop
# OSACA-END

c: Comment line markers for x86 AT&T syntax.

// OSACA-BEGIN
.loop:

// loop body ...
b.ne .loop
// OSACA-END

d: Comment line markers for AArch64 syntax.

Listing A.2.: Possible OSACA markers (indicated through bold font) for inserting into the assembly file. Listing A.2a
and Listing A.2b show the byte markers for x86 and AArch64, respectively. The comment line markers
are shown in Listing A.2c (x86) and Listing A.2d (AArch64).

EXPORT_GRAPH specified filepath or uses the default filename “osaca_dg.dot” in the current working
directory. Subsequently, the DOT-graph can be adjusted in its appearance and converted to various output
formats such as PDF, SVG, or PNG using the dot2 command, e.g., dot -Tpdf osaca_dg.dot -o
graph.pdf to generate a PDF document.

To illustrate this process, both the analysis report and a dependency graph are shown for the STREAM triad
on CSX in Figure A.1.

Benchmark import

OSACA supports the automatic integration of new instruction forms by parsing the output of the micro-
benchmark tools asmbench3 and ibench4. This can be achieved by running OSACA with the command line
option --import MICROBENCH:

osaca --arch ARCH --import MICROBENCH file

MICROBENCH specifies one of the currently supported benchmark tools, i.e., “asmbench” or “ibench”.
ARCH defines the abbreviation of the target architecture for which the instructions will be added and file
must be the path to the generated output file of the benchmark. The format of this file has to match either
the basic command line output of ibench, e.g.,

[INSTRUCTION FORM]-TP: 0.500 (clock cycles) [DEBUG - result: 1.000000]
[INSTRUCTION FORM]-LT: 4.000 (clock cycles) [DEBUG - result: 1.000000]

or the command line output of asmbench including the name of the instruction form in a separate line at the
beginning, e.g.:

[INSTRUCTION FORM]
Latency: 4.00 cycle
Throughput: 0.50 cycle

Not that there is an empty line after the throughput measurement as part of the output. For the ISA-
specific naming conventions of the instruction form name to be parsed correctly, please check the OSACA

2For more information see the DOT guide by Graphviz: https://graphviz.gitlab.io/_pages/pdf/dotguide.pdf
3https://github.com/RRZE-HPC/asmbench
4https://github.com/RRZE-HPC/ibench
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Open Source Architecture Code Analyzer (OSACA) - v0.3
Analyzed file: manual-triad.s
Architecture: csx

* - Instruction micro-ops not bound to a port
X - No throughput/latency information for this instruction in data file

Combined Analysis Report
------------------------

Port pressure in cycles
| 0 - 0DV | 1 | 2 - 2D | 3 - 3D | 4 | 5 | 6 | 7 || CP | LCD|

---------------------------------------------------------------------
2 | | | | | | | | || | | ..TRIAD:
3 | | |0.50 0.50|0.50 0.50| | | | || | | vmovups (%r13,%rax,8), %zmm1
4 |0.50 | |0.50 0.50|0.50 0.50| |0.50| | || 8 | | vfmadd213pd (%rcx,%rax,8), \

%zmm2, %zmm1
5 | | |0.50 |0.50 |1.00| | | || 0 | | vmovupd %zmm1, (%r14,%rax,8)
6 |0.25 |0.25| | | |0.25|0.25| || | 1 | addq $8, %rax
7 |0.00 |0.50| | | |0.00|0.50| || | | cmpq %r12, %rax
8 | | | | | | | | || | |* jb ..TRIAD

0.75 0.75 1.50 1.00 1.50 1.00 1.00 0.75 0.75 8 1

Loop-Carried Dependencies Analysis Report
-----------------------------------------

6 | 1.0 | addq $8, %rax | [6]

(a) Analysis report

4: vfmadd213pd 5: vmovupd4
4: LOAD

4.0

6: addq

1.0

7: cmpq1.0

2: label

3: vmovups

8: jb

(b) Dependency graph

Figure A.1.: Sample output of an OSACA analysis for the STREAM triad (a[i] = b[i] + scale * c[i]) on
CSX. Listing A.1a shows the analysis report with the predicted port utilization, the CP and the LCDs.
Figure A.1b shows the generated DOT dependency graph. The LCD is colored in purple while the CP
is marked with bold frames. The edge weights represent the latency of the instruction forms of the start
vertex. The output format was adjusted for the convenience of the reader.

git repository5. OSACA parses the output for an arbitrary number of instruction forms and adds them as
entries to the architecture DB. The user must edit the ISA DB in case the instruction form shows irregular
source and destination operands for its ISA syntax. OSACA applies the following rules by default:

• If there is only one operand, it is considered as source operand

• In case of multiple operands the target operand (depending on the ISA syntax the last or first one) is
considered to be the destination operand, all others are considered as source operands.

Database check

Since a manual adjustment of the ISA DB is currently indispensable when adding new instruction forms,
OSACA provides a database sanity check using the --db-check flag. It can be executed via:

osaca --arch ARCH --db-check [-v] file

5https://github.com/RRZE-HPC/OSACA/
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ARCH defines the abbreviation of the target architecture of the database to check. The file argument
needs to be specified as it is positional but may be any existing dummy path. When called, OSACA prints
a summary of database information containing the amount of missing throughput values, latency values or
µ-ops assignments for an instruction form. Furthermore, it shows the amount of duplicate instruction forms
in both the architecture DB and the ISA DB and checks how many instruction forms in the ISA DB are
non-existent in the architecture DB. Finally, it checks via simple heuristics how many of the instruction
forms contained in the architecture DB might miss an ISA DB entry. Running the database check including
the -v verbosity flag, OSACA prints in addition the specific name of the identified instruction forms so that
the user can check the mentioned incidents.
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B
ASSEMBLY CODE SUMMARY TABLE

In the following, all results shown during evaluation in Section 4.2, i.e., Table 4.1 to Table 4.9, are sum-
marized in Table B.1. To calculate the runtime of one high level iteration, one must divide the result by
the unroll and SIMD factor. The accuracy represents the quotient of the predicted and the measured perfor-
mance. Since OSACA’s prediction is a lower bound of the runtime, we aim to achieve an accuracy slightly
below 100 % and consider a prediction with accuracy above 100 % failed. For convenience, the accuracy
cells are accordingly colored using a gradient scale from red representing an inaccurate prediction to green
representing an accurate prediction. A dark red cell with an accuracy written in bold white represents an
overprediction. All analysis outputs and instructions for reproducing the results can be found in the artifact
description [35].
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Arch Compiler
Unroll
× SIMD

factor
Measured
[cy/asm it]

Prediction [cy/asm it] Accuracy
OSACA LLVM-MCA IACA OSACA LLVM-

MCA IACATP CP LCD TP CP LCD TP BlockTP

C
O

PY

TX2 armclang 32×2 37.29 32.00 4 1 16.00 42 39 — — 86 % 43 % —
gcc 8×2 11.07 8.00 5 1 11.35 28 20 — — 72 % 103 % —

CSX icc 1×8 1.17 1.00 4 1 1.01 12 1 1.00 1.23 86 % 86 % 105 %
gcc 8×4 8.11 8.00 4 1 8.00 21 8 8.00 8.00 99 % 99 % 99 %

Zen gcc 8×2 8.09 8.00 4 1 8.00 22 8 — — 99 % 99 % —

A
D

D

TX2 armclang 32×2 49.82 48.00 10 1 39.02 104 99 — — 96 % 78 % —
gcc 8×2 19.84 12.00 11 1 17.01 43 39 — — 60 % 86 % —

CSX icc 2×8 3.13 3.00 8 1 2.03 17 2 3.00 3.00 96 % 65 % 96 %
gcc 8×4 12.12 12.00 8 1 8.06 29 8 12.00 12.00 99 % 67 % 99 %

Zen gcc 8×4 12.04 12.00 7 1 12.00 32 9 — — 100 % 100 % —

U
PD

A
T

E TX2 armclang 4×2 5.22 4.00 10 1 6.04 19 14 — — 77 % 116 % —
gcc 8×2 11.01 8.00 20 1 9.02 28 21 — — 73 % 82 % —

CSX icc 2×8 2.15 2.00 8 1 2.00 16 2 2.00 2.48 93 % 93 % 115 %
gcc 8×4 8.02 8.00 8 1 8.00 25 8 8.00 8.00 100 % 100 % 100 %

Zen gcc 8×2 8.03 8.00 8 1 8.00 24 8 — — 100 % 100 % —

SU
M

R
E

D
U

C
T

IO
N

TX2
armclang 32×2 25.41 16.00 28 24 28.00 79 67 — — 94 % 264 % —

gcc 8×2 46.76 4.50 52 48 5.98 60 48 — — 103 % 103 % —
gcc (-O3) 16×1 96.04 16.50 105 96 17.01 115 96 — — 100 % 100 % —

CSX
icc 4×8 4.09 2.00 8 4 2.14 15 4 2.00 4.00 98 % 98 % 98 %
gcc 8×4 30.29 4.00 36 32 4.05 42 32 4.00 32.00 106 % 106 % 106 %

gcc (-O3) 16×1 64.17 8.00 68 64 12.01 74 64 12.00 64.00 100 % 100 % 100 %

Zen gcc 8×2 23.60 4.00 28 24 8.00 27 16 — — 102 % 68 % —
gcc (-O3) 16×1 48.02 8.00 52 48 8.02 72 64 — — 100 % 133 % —

D
A

X
PY

TX2 armclang 32×2 48.40 48.00 10 1 41.02 106 99 — — 99 % 85 % —
gcc 8×2 13.12 12.00 20 1 12.00 37 31 — — 91 % 91 % —

CSX icc 1×8 1.82 1.50 8 1 1.25 16 1 1.50 1.74 83 % 69 % 96 %
gcc 8×4 12.12 12.00 8 1 8.06 29 8 12.00 12.00 99 % 67 % 99 %

Zen gcc 8×2 12.02 12.00 8 1 12.00 30 8 — — 100 % 100 % —

T
R

IA
D TX2 armclang 32×2 64.61 61.50 10 1 42.02 133 127 — — 95 % 65 % —

gcc 8×2 19.73 12.00 11 1 17.01 43 39 — — 61 % 86 % —

CSX icc 1×8 1.74 1.50 8 1 1.25 16 1 1.50 1.74 86 % 72 % 100 %
gcc 8×4 12.12 12.00 8 1 8.06 29 8 12.00 12.00 99 % 67 % 99 %

Zen gcc 8×2 12.05 12.00 9 1 12.00 30 8 — — 100 % 100 % —

SC
H

.T
R

IA
D

TX2 armclang 32×2 67.54 66.00 10 1 50.02 139 134 — — 98 % 74 % —
gcc 8×2 22.81 16.00 11 1 20.01 52 47 — — 70 % 88 % —

CSX icc 2×8 4.34 4.00 8 1 3.03 25 3 4.00 4.00 92 % 70 % 92 %
gcc 8×4 16.08 16.00 8 1 12.04 33 12 16.00 16.00 100 % 75 % 100 %

Zen gcc 8×2 16.05 16.00 8 1 16.00 34 13 — — 100 % 100 % —

G
A

U
SS

-S
. TX2 armflang 1×1 18.37 3.00 26 18 5.00 27 18 — — 98 % 98 % —

gfortran 4×1 74.77 8.50 92 72 14.00 97 83 — — 96 % 111 % —

CSX ifort 4×1 56.23 8.00 68 56 8.01 76 59 8.00 56.00 100 % 105 % 100 %
gfortran 8×1 102.94 16.00 100 96 16.02 113 104 16.00 96.00 93 % 101 % 93 %

Zen gfortran 8×1 83.51 19.50 84 80 24.00 112 104 — — 96 % 125 % —

JA
C

O
B

I

TX2 armclang 16×2 49.31 34.00 28 1 43.49 130 122 — — 69 % 88 % —
gcc 4×2 22.73 8.50 23 1 4.98 38 14 — — 37 % 22 % —

CSX

icc 4×8 18.10 10.00 21 1 9.43 36 9 10.00 11.53 55 % 52 % 64 %
icc (AVX) 4×4 11.78 10.00 20 1 8.03 31 7 10.00 10.53 85 % 68 % 89 %
icc (SSE) 4×2 9.51 8.50 12 1 8.00 31 7 8.50 10.53 89 % 84 % 102 %

gcc 4×4 14.00 10.00 16 1 8.03 30 8 10.00 10.47 71 % 57 % 75 %
gcc (SSE) 4×2 10.82 8.00 17 1 8.01 28 7 8.00 9.79 74 % 74 % 91 %

Zen gcc 4×2 10.67 8.50 15 1 12.00 28 11 — — 80 % 112 % —

Table B.1.: Summary of all prediction result tables in Section 4.2.
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