
The Cost of Computation: Metrics and Models
for Modern Multicore-based Systems in Scientific Computing

Master Thesis in Computational Engineering

Ayesha Afzal

born 11.11.1991

Matriculation no. 21800113

Advisor

Prof. Dr. G. Wellein

Dr.-Ing. G. Hager

INSTITUT FÜR INFORMATIK

Regionales Rechenzentrum Erlangen (RRZE)

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG

Declaration:

I confirm that I developed this thesis on my own, without any help of others and that no sources

and facilities other than those mentioned in this thesis were used. This thesis has never been

submitted in total, in part or in modified form to any other examination board. All quotations

taken from other sources are referenced accordingly.

Erklärung:

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der

angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch

keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung

angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß ubernommen wurden,

sind als solche gekennzeichnet.

Ayesha Afzal

Erlangen July, 2015

3

Acknowledgments

I would like to take this opportunity to express my profound gratitude to my parents in Pak-

istan and my husband for their continuous support and encouragement during the course of

master’s studies at FAU Erlangen. Working in the productive research environment of the High

Performance Computing group was a learning experience and I am thankful to Prof. Dr. Ger-

hard Wellein for providing me an opportunity to do my thesis work at the institute. This work

provided me with an invaluable insight into many aspects of modern multi-core-based systems.

I want to pay my special thanks to my thesis advisor Dr. Georg Hager for his valuable

guidance, kind behaviour and help in a light and friendly environment throughout the entire

duration of this work. His support and interesting discussions were always refreshing and espe-

cially helpful in evaluating the results and writing this thesis. I am grateful to him for spending

time read this thesis and providing useful suggestions about this thesis. Furthermore, I wish to

express my sincere thanks to Moritz Kreutzer for providing the “27-point stencil matrices” for

evaluating my conjugate gradient solver and Holger Stengel for helping me with “Jacobi” code.

Lastly, I would like to acknowledge Thomas Röhl, Dr. Thomas Zeiser, Faisal Shahzad and my

other colleagues for their help and support in understanding the world of HPC. The initial days

of working with available multi-core-based systems and tools were made easy by their useful

discussions.

Table of Contents

1. Abstract 1

2. Introduction 3

2.1. Fundamental metrics for characterising a multi-core processor 4

2.2. Role of power consumption in supercomputing 5

2.3. Understanding Power behaviour using analytical models 6

2.4. Previous work . 6

2.5. Related work . 7

2.6. Thesis organization . 8

3. Test Systems and Tools 9

3.1. “phinally” Testsystem . 9

3.2. “ivyep1” Testsystem . 11

3.3. “hasep1” Testsystem . 11

3.4. “emmy” Compute-Cluster . 13

3.5. Measurement methodology . 15

3.5.1. Module and compiler . 15

3.5.2. Batch Scripts and LIKWID Tools . 15

3.5.3. Levenberg-Marquardt Non-linear fitting algorithm 18

4. Performance, Power and Energy Characteristics of Benchmark Codes 21

4.1. Dense matrix-matrix multiplication (Core-bound case) 21

4.2. 2D Jacobi stencil (Memory-bound case) . 22

4.3. Conjugate Gradient Method . 22

4.4. Frequency and cores variation effect on power/energy characteristics 25

5. An Analysis of Analytical Models and Validation 31

5.1. CPU Power Model Refinement . 31

5.2. DRAM Power dissipation Model . 33

5.3. Multi-core Total System Power dissipation Model 34

5.4. Multi-core Total System Energy to solution Model 34

6. Consequences for Code execution 37

6.1. Energy delay product and its generalization . 37

6.2. Power Capping . 39

6.3. Trading performance for energy . 40

i

6.4. Results for different architectures . 42

6.4.1. Comparison in terms of Performance . 42

6.4.2. Comparison in terms of Power . 42

6.4.3. Comparison in terms of Energy to solution 46

6.4.4. Overall comparison across architectures 46

7. Statistical Variation of Power Characteristics 49

7.1. Methods and results . 49

7.1.1. Measurement methodology . 49

7.1.2. Statistical Results . 51

7.2. Consequences for code execution . 57

8. Connection to Microscopic Power Models 59

8.1. Tunable Intensity effect on CPU and DRAM Power model 60

8.1.1. CPU and DRAM Power versus intensity characterisation 60

8.1.2. CPU Power model parameters versus intensity characterisation 62

8.1.3. DRAM Power model parameters versus intensity characterisation 63

8.2. Energy efficiency of different kind of instructions 64

8.3. Microscopic performance, power and/or energy models 65

8.4. Vuduc parameters to Wi parameters . 68

9. Conclusion 69

Appendix 76

A. List of Symbols and Abbreviations 77

B. Matlab codes 79

B.1. Non-linear Curve fitting Levenberg-Marquardt Algorithm 79

B.2. Histogram Plot Matlab code . 80

C. C++/Fortran codes 81

C.1. Dense matrix-matrix multiplication . 81

C.2. 2D Openmp jacobi stencil code . 82

C.3. OpenMP-parallel Conjugate Gradient Method . 84

C.4. Variable Intensity Benchmarks . 88

D. HistogramPlots 91

D.1. Accelerator Nodes . 91

D.1.1. CPU Power and Model Parameters for DGEMM and Jacobi benchmarks 91

D.1.2. DRAM Power and Model Parameters for DGEMM and Jacobi benchmarks 94

ii

Chapter 1
Abstract

The increasing concern on power consumption in many computing systems points to need for

power/energy modelling and estimation of high-end computing systems. The goal of the present

work is to propose power/energy models that can predict the run-time energy consumption of

loop kernels and programs by specifying their properties with respect to scaling behaviour, data

transfer through the memory hierarchy, and low-level operations. This model should ultimately

be able to answer following questions:

“How algorithm properties may help to inform power management?”

“How can a program be run so that the overall energy consumption is minimized without

compromising time to solution?”

“How can a program can be executed so that the overall energy consumption is minimized, with

a maximum increase in time to solution?”

“How to treat a problem slowdown in case of the power capping? What is the potential of larger

machines towards energy saving by compensating for the slow code?”

This work proposes component level (CPUs and DRAMs) power and/or energy models and

synthesizes a significant number of techniques to get an energy-efficient system for a wide range

of situations by focusing on common architectural characteristics. To validate predicted models

and results, experimental measurements based on the selective benchmarks are compared against

estimated model’s outcomes on multi-core based systems.

The present work describes the characteristics of different multi-core processors available in

RRZE computing centre by elaborating every micro-architecture change with a die shrink of

the process technology. A comparison of these systems is performed from the perspective of the

performance, the power dissipation and especially relevant from considerations of the energy

consumption.

A statistical analysis of power characteristics is obtained to get an idea about variations of the

power dissipation across the Ivy Bridge EP processor in “emmy” production system available at

RRZE centre. This enables us to define a policy for power aware scheduling on “emmy” cluster

and thereby saves energy cost of “emmy” cluster.

This work also elaborates how different type of processor executed instructions and the tun-

able intensity benchmarks effect the power dissipation and its model parameters Wi on recent

processors. In addition, it elaborates that low level microscopic parameters (i.e., energy cost for

one flop or for one byte transfer) between memory hierarchy levels predict energy cost at macro-

scopic level. Finally these two modelling techniques are combined to determine macroscopic Wi

parameters form these low level microscopic parameters.

1

Chapter 2
Introduction

The huge power consumption of modern high performance microprocessors with increasing clock

speed and circuit density is becoming increasingly important in design consideration, not only

in mobile processors, servers and data-centres, but also in high-performance supercomputers.

Today, each market segment has its own power requirements and constraints, making power

limitation an imperative factor in any new micro-architecture. This means that some segments

are designed to achieve the highest performance possible while other systems are optimized for

best performance under a given power cap.

In the past years, microprocessors have gone through significant changes. Each new micro-

processor generation introduces higher frequency that increases work per instruction and results

in a larger total power consumption of the microprocessor. Improvements in fabrication process

technology and microprocessor micro-architecture have resulted in the phenomenon known as

“Moore’s law” [1] which stated that the chip density doubles every 18 to 24 months. With

increase in core counts on processors, the high-end computing systems built with multi-core

processors provide thread-level parallelism. Programmers tend to use OpenMP [2] or message

passing interface MPI [3] programming models, to exploit multiple cores on a cache-coherent

shared-memory node or on clusters of nodes to obtain efficient execution of parallel applications,

respectively. Thus, steadily growing transistor budget, which has produced many more transis-

tors on a chip running at much higher frequencies, has drastically raised the power dissipation.

Today, it has become an issue in high performance microprocessors.

When adding complexity to exploit performance, one must understand and consider the power

impact. The arrival of multi-threaded and multi-core architectures exaggerates thermal prob-

lems, since concentrating more computational activity on smaller chip areas leads to increased

chip temperature. For high performance computing, clock frequencies continue to increase, caus-

ing the dissipated power to reach the thresholds of current packaging technology. If the trend

persists, soon we may experience a chip with the power density of a nuclear power plant. Con-

sequently, the improved cooling solutions and the power distribution are utilized for reducing

high power consumption. However, such components are costly and cannot be expected to scale

to higher power levels as transistor dimensions shrink.

So far only the active power has been primarily considered whereas the leakage power is

ignored. The leakage power is dissipated by current running in gates and wires even when there

is no activity. Similar to the active power dissipation which increases as a result of increasing

performance and complexity, the enhanced static power in terms of sub-threshold drain-source

leakage is because of lower threshold voltage usage to gain performance; the higher gate-substrate

3

2. Introduction

leakage power is reflected by the oxide thickness scaling with technology scaling and the increased

junction leakage power is justified by higher power densities. As such, controlling power density

has become a major challenge and even more crucial in future technologies.

For a long time, the only metric that was used for assessing supercomputer performance was

their “speed” (see Top500 list ranking [4]). However, nowadays the power dissipation and power

density have become a critical design constraint by limiting system performance. Therefore,

the architecture which maximizes the “performance per watt” (power efficiency) will maximizes

performance (see Green500 list ranking [5]).

2.1. Fundamental metrics for characterising a multi-core processor

During the previous years, microprocessors have gone through significant variations; however,

the basic computational model operating on the architecture hierarchical states (i.e., memory

and registers) remains same. A program consists of data and instructions encoded in a specific

instruction set architecture, ISA. To understand the trade-offs of various designs, following

different key metrics are considered in present work [6], [7].

Microprocessor complexity is primarily determined by the effort it requires to manufac-

ture a microprocessor. This metric is discussed only implicitly in present work as it is reflected by

other microprocessor metrics such as performance, power and cost metrics. Thus, the enhanced

complexity of the microprocessor causes an increase in its energy consumption in processing an

instruction.

Microprocessor performance reflects the time it takes to complete a task, since time

to solution is inverse performance with an assumption that we always run the same problem.

Performance is affected by the specific workload, compiler optimizations, instruction set architec-

ture, operating architectural configuration, and many more. A “Cycle Per Instructions (CPI)”

metric can be observed from a performance perspective, since an enhancement in performance

can be achieved by increasing the number of clock cycles per second or by decreasing the average

number of cycle per instructions, CPI.

Microprocessor power shows energy performance product and is measured in watts. How-

ever, two different metrics are utilized to characterize the power of modern processors i.e, “CPU

Power” metric and “DRAM Power” metric. These metrics measure the power consumed by the

processor and the power dissipated by the memory controller when running a particular applica-

tion. Higher performance demands more power. However, the power dissipation is constrained

due to thermal dissipation and power density (i.e., power dissipated by the chip per unit area,

in watts/cm2), and thus causes a limit in performance growth. In order to keep transistors

within their temperature limits, the heat generated due to increased power density need to be

dissipated from the source in a cost-effective manner. However, the latest x86 systems already

contain support for multiple sleep states with various latencies and standby power levels. A lot

of research has been dedicated to exploiting the benefits of these extra states by doing energy

management of the inactive components, which implies minimum total energy consumption of

sleeping machines [8].

Microprocessor cost is measured in terms of the physical size of the manufactured silicon

die. Larger die area causes higher power consumption, thus the increased manufacturing cost.

Microprocessor energy efficiency is another important power and/or performance related

metric which reflects the power to performance ratio, in Joules. Event monitoring counters

included in modern microprocessors can be used to create energy profiles describing the energy

4

2.2. Role of power consumption in supercomputing

characteristics of individual tasks. In order to gauge operating efficiency, “Energy to solution”

metrics for both CPU and DRAM are utilized, since total energy per unit of work is concerned.

An alternative is to employ the “Energy Delay Product (EDP)” and its generalization metrics

as they provides more information than a pure energy to solution metric.

2.2. Role of power consumption in supercomputing

Modern multi-core chips show complex behaviour with respect to performance and power. Be-

sides performance aspects, considerations on power dissipation of multi-core chips have become

more popular in supercomputing. It is highly conceivable that in future, processor designs will

not only be faster but also more power-efficient than their predecessors.

In high performance computing centres, each cluster is designed to support a certain kilowatts

hours (kWh). This means that the higher power causes shorter operating time of a cluster. Lets

consider a cluster of a dual socket nodes in which every node includes CPU, DRAM, network,

disk, and many more components. Each cluster node dissipates a maximum power of 150 Watts

per socket for both central processing unit, CPU, and installed random access memory, RAM.

However, the baseline power of rest of system, which includes disks, network, and more, is about

100 Watts which implies that the system node has overall power dissipation of 400 Watts per

node.

Such a cluster node roughly cost around 4000e and consumes 400 Watts of power within

six years of its operational runtime. The consumed kilowatts hours for this node can be mow

calculated with price of electric power.

Socket 0

150 Watts

max. Power

dissipation

Socket 1

150 Watts

max. Power

dissipation

100 Watts baseline power

Figure 2.1.: Energy-cost model for a dual-socket production cluster node

Electricity prices vary between countries and can even vary within a single region or distri-

bution network of the same country. For example, the energy cost in Germany is 0.298 e/kWh

for private households and 0.16 e/kWh for the university whereas it costs 0.06 e/kWh in USA.

Moreover, Power Utility Efficiency (PUE) factor helps to estimate the amount of power spend

over six years of operational runtime of this node by considering the additional cost of dedicated

cooling, beyond its actual electric power dissipation. At RRZE centre, PUE is about 2.5, i.e.,

for every Watt of electric power we have to spend about 1.5 Watts in addition for cooling while

at LRZ centre, PUE is of 1.2, i.e., they only have 20% overhead for cooling, since they use free

hot water cooling for most of the year.

These numbers gives a rough estimation of energy cost depending on the location where

this node is running. For instance, the energy cost at RRZE or LRZ computing centre is

8415e or 4039e in addition to the hardware cost of 4000e, respectively, which is beyond the

budget constraint of some high-end computing centers. In the power-constrained systems, such

5

2. Introduction

information is useful for programmers to explore the design space for energy-efficient system

and to assure that overall system power saves a non-negligible amount of money by increasing

the “science per e” to meet the specified budget.

2.3. Understanding Power behaviour using analytical models

The increasing concern on power issues in many computing systems points out the need for the

power modelling and estimation for high-end computing systems. Therefore, accounting power

is imperative for accurate power modelling in the light of intensive workloads. Moreover, the

power estimation can help to estimate how optimization effects the complete system behaviour

from the perspective of energy consideration.

The most striking observation is the strong correlation between power consumption and the

microprocessor performance during application execution. As tools and the methodology to

measure these metrics exist on modern microprocessors, analytical models can be proposed to

estimate the power dissipation for run time energy management. The detail and explanation of

these proposed models will come in Chapter 5.

2.4. Previous work

A refined performance modelling of streaming loop kernels has been done through “ECM model”

[9], [10], to extend a “roofline model” [11] and to predict a more accurate description of the serial

and parallel performance of codes by developing interaction of code with the hardware. Hager et

al.[10] constructed an elementary CPU power model from some derived simplified assumptions

by exploring the power dissipation characteristics of the Sandy Bridge processor on several

benchmark codes. They suggested that the dynamic CPU power dissipation is a second-degree

polynomial,

W (f, n) = W0 +W1nf +W2nf
2 = W0 + w1f + w2f

2 (2.1)

with w1,2 = W1,2 n and it implies the following conclusions

� The dynamic power dissipation W(f, n) is a quadratic polynomial in the clock frequency

with deviations from some baseline frequency f0 such that f = (1+∆ν)f0, where ∆ν = ∆f
f0

,

which is parametrize by w2. This quadratic part w2 depends strongly on the characteristics

of running application, and has some inverse relation with the performance metric “CPI”.

� The linear factor w1 is generally small compared to w2.

� The baseline or leakage power of the chip W0 with powered on, is independent of the type

of application executed, the number of active cores and the clock speed. However, it is

different from the reported “idle power” of the chip, which is considerably lower due to

advanced power gating mechanisms.

� The dynamic power dissipation W(f, n) has a linear dependence on the number of active

cores, n, in the non-saturated regime. However, the type of running application has much

less influence on power dissipation than the number of active cores, which is reflected by

a slow increase in the power dissipation per core in the saturation regime compare to

non-saturated regime.

6

2.5. Related work

� Although hyper-threading result in the performance gain depending on the running code;

but at the same time, it implies high Power dissipation due to the improved utilization of

the pipelines, so it may be more power-efficient to ignore the SMT threads.

Using these conclusions, Hager et al.[10] established a simple qualitative chip “energy to solution”

model

E =
W (f, n)

P (f, n)
=

W0 +W1nf +W2nf
2

min((1 + ∆ν)nP0, Pmax)
(2.2)

to obtain optimized energy to solution of parallel codes on a multi-core chip. The performance

scales linearly with the number of cores, n, and the normalized clock speed, 1 + ∆ν until it hits

a memory bandwidth bottleneck. This model provides following useful guidelines for energy-

efficient executions of parallel applications.

� The more cores are used, the smaller energy to solution for scalable codes, whereas, for

codes that show performance saturation at some ns = Pmax
(1+∆ν)P0

, energy to solution is

minimal at this point and using more cores is just wastage of energy.

� In non-saturated regime, optimal frequency for energy-efficient execution fopt =
√

W0
W2n

depends on the number of cores used and the ratio of baseline and dynamic power i.e., a

large dynamic power factor W2 leads to lower fopt. When f <fopt, large baseline power W0

causes “clock race to idle” rule [12], i.e., running a processor with a high clock frequency to

complete a computation as fast as possible and go to sleep as early as possible to eventually

save energy. Whereas, beyond saturation point in saturated regime, minimum energy to

solution is achieved at the lowest possible clock speed as it grows with the frequency.

2.5. Related work

A lot of research emphasised on reducing energy consumption through dynamic frequency and

voltage scaling, DVFS, by scaling down the clock speed together with core voltage to save power

without limiting performance [8], [13]. Moreover, Dynamic Concurrency Throttling (DCT),

controls the number of active threads that execute shared memory applications to provide en-

ergy savings by tuning performance and power consumption. Since due to system bottlenecks

(e.g., memory bandwidth), the scalability of the regions can vary significantly so DCT often

simultaneously reduces both execution time and power consumption [1].

Choi and Vuduc [14] has modified the research of Demmel et al.[15] and postulate a “power

line model” for power and an energy-based analogue of the time-based “roofline model” [11]

that connect the properties of an algorithm with their costs in time and energy. They also

defined “energy balance” analogue of “time balance” as ratio of useful compute operations to

bytes per unit energy and “time-energy balance gap” as a difference between time-balance and

energy-balance.

Choi and vuduc suggested that the “energy-based roofline” model [14] is actually a smooth

“arch line” unlike the “time-based roofline” model [11], since energy cannot be overlapped

while time can. With “time-energy balance gap”, there are distinct intensity points for being

“compute bound” or “memory-bound” depending on whether the aim is to save time or energy.

When energy-balance overtakes time-balance, algorithmic energy-efficiency is more difficult to

achieve. Consequently, energy-efficiency implies time-efficiency while the converse is not true.

Today, time-balance exceeds energy-balance due to idle power and other micro-architectural

7

2. Introduction

inefficiencies and causes race-to-halt [12] strategies as most reasonable technique to save energy.

Their experiments show that the hypothetical “time-energy balance gap” does not yet really

exist, which consequently explains why on today’s platforms “race-to-halt” is likely to work

well.

Their work also suggested that although the cost ratio between reading data from memory

and computing on data is expected to remain constant [16], wire capacitance will not scale.

Consequently, the cost of moving data will stay the same. Unless the distance between memory

and the cores decreases significantly via memory-die stacking, the time-energy balance gap will

increase.

2.6. Thesis organization

The rest of work is structured as follows. Chapter 3 discusses the important features and

characteristics of multi core modern processors on several test systems and tools available at

RRZE computing centre, which are subsequently utilized in Chapter 6 to provide a power and/or

energy aware comparison of these systems. Chapter 4 analyses the performance, the power

dissipation and the energy consumption characteristics under a verity of workload scenarios,

that is dense matrix-matrix multiplication, jacobi stencil solver and conjugate gradient method

on a multi-threaded, multi-core Sandy Bridge EP processor.

Chapter 5 presents a modification of the analytical chip power model by Hager et al. [10]

and construction of an elementary DRAM power model to provide a complete model for the

power dissipation and thus the energy consumption estimation. It also validates the presented

models against the measurement results. Chapter 6 provides possible techniques to achieve an

energy-efficient execution of scientific computing workload in best possible way for a wide range

of situations. Chapter 7 presents a statistical analysis of power dissipation of Ivy Bridge EP

processor for both compute and accelerator nodes in “emmy” cluster and chapter 8 provides a

connection of these macroscopic model parameters Wi to microscopic level parameters (energy

cost for one flop and one byte transfer). Chapter 9 concludes the results.

8

Chapter 3
Test Systems and Tools

This section elaborates the description and the characteristics of different test clusters and tools

available at RRZE high performance computing centre to study their power consumption and

the performance behaviour under a wide range of workloads. The command “Likwid-topology

-g” delivers the graphical output of machines topology. Intel introduced the “Running Average

Power Limit (RAPL)” energy sensors with the Sandy Brigde micro-architecture for measuring

energy consumption of short code paths and now it is available in almost all recent Intel CPUs

[17]. The Intel “Tick/Tock” model [18] discusses every micro-architectural change with a die

shrink of the process technology as shown in Figure 3.1.

32 nm Processor Technology 22 nm Processor Technology

Westmere

New Intel

Processor

Ivy Bridge

3rd generation

New Intel

Processor

Sandy Bridge

2nd generation

New Intel

Microarchitecture

Haswell

4th generation

New Intel

Microarchitecture

TICK TICKTOCK TOCK

-- =⇒

Figure 3.1.: Intel tick tock model towards Intel’s next generations

3.1. “phinally” Testsystem

The “phinally” test system has a dual-socket 8 cores Intel Sandy Bridge EP processor with 16

logical cores per socket through hyper-threading (see Fig. 3.2). It operates at 2.7 GHz base

clock speed and features Intel turbo mode for increased performance on an as-needed basis.

Sandy Bridge is the codename for micro-architecture based on the 32 nm manufacturing process

developed by Intel to replace Westmere micro-architecture. Due to Advanced Vector Extensions

(AVX) 256 bits instruction set with wider vectors, a full socket of phinally system has overall

theoretical peak performance Ppeak of 172.8 GFlops/s and 345.6 GFlops/s for double and single

9

3. Test Systems and Tools

precision, respectively at base clock speed:

Ppeak = n ∗ F ∗ S ∗ f
= 8 ∗ 2 ∗ 4(DP) or 8(SP) ∗ 2.7

= 172.8GFlops/s(DP) or 345.6GFlops/s(SP)

(3.1)

where n is the number of cores, F is the floating point instruction per cycle (i.e, one addition

and one multiplication), S is the floating point operations per instruction and f is the clock

speed.

Figure 3.2.: Intel eight cores Sandy Bridge EP processor Socket

Important features of the Intel Sandy Bridge micro-architecture are [6], [7]:

� Sandy Bridge has Intel’s second-generation core processor technologies.

� Sandy Bridge core can sustain one full-width AVX load and one half-width AVX store per

cycle for 48 bytes/cycle as load throughput of the L1 cache is doubled from 16 to 32 bytes

per cycle with double precision AVX instruction against SSE instruction of its predecessor,

Westmere.

� The core can execute one addition and one multiplication instruction per cycle.

� The L3 cache is segmented, with one segment per core. All segments of L3 cache have the

same bandwidth capabilities as the L2 cache (i.e., 256 bits per cycle), so streaming loop

kernels provide a good scaling behaviour when the data comes from L3 cache.

� Sandy Bridge has a 256 bit/cycle ring bus interconnect between cores, graphics, cache and

system agent domain.

� A full 64-byte cache line read or write takes two cycles.

� All components of Sandy Bridge run at the same clock frequency, which can be set to a

fixed value in the range from 1.2 - 2.7 GHz.

� Thermal design power, TDP, of Sandy bridge processor at 2.7 GHz base clock speed is 130

Watts.

� Sandy Bridge has 64 GB (DDR3-1333) memory module per node for a peak bandwidth of

42 GB/s.

� The clock speed of the DRAM module is constant and independent of the core clock.

10

3.2. “ivyep1” Testsystem

3.2. “ivyep1” Testsystem

The “ivyep1” test system contains a dual-socket Intel 10 cores Ivy Bridge EP processor with

20 logical cores per socket through simultaneous multi-threading. It operates at 3.0 GHz base

clock speed and features Intel turbo boost technology by allowing processors to operate above

the rated frequency. The codename for the successor to Sandy Bridge micro-architecture is Ivy

Bridge which is based on the 22 nm manufacturing process developed by Intel. A full socket

of “ivyep1” system has the overall theoretical peak performance Ppeak of 240 GFlops/s and 480

GFlops/s for double precision and single precision, respectively:

Ppeak = n ∗ F ∗ S ∗ f
= 10 ∗ 2 ∗ 4(DP) or 8(SP) ∗ 3

= 240GFlops/s(DP) or 480GFlops/s(SP)

(3.2)

Ivy Bridge-EP chips include following significant changes over Sandy Bridge [6], [7]:

� Ivy Bridge-EP has Intel’s third-generation core processor technologies instead of second-

generation.

� “Tick-Tock” is a model adopted by Intel chip manufacturer in which every “tick” is a

shrinking of process technology of the previous micro-architecture and every “tock” is a

new micro-architecture. Ivy Bridge is a “tick” and Sandy Bridge was “tock” as die shrink

from 32 nm to 22 nm (see Fig. 3.1).

� Intel has added some additional features in Ivy Bridge as well, such as, more advanced

integrated graphics and a new type of three dimensional “Tri-gate” transistor in order to

reduce die size.

� Performance generally improves more between “ticks” and “tocks” than between “tocks”

and “ticks”. Thus, compared to its predecessor, Ivy Bridge is expected to offer a small

improved performance over Sandy Bridge.

� Ivy Bridge-EP and its predecessor Sandy Bridge are backward-compatible i.e. Sandy

Bridge processors work in Ivy Bridge motherboards, and vice versa with upgraded moth-

erboard’s BIOS.

� All components of Sandy Bridge processor run at the same clock frequency, which can be

set to a fixed value in the range from 1.2 - 3.0 GHz.

� With die shrinks, Ivy Bridge processors generally come with reduction in power consump-

tion than Sandy Bridge processors under load. Detail analysis of its power consumption

will come in Section 6.4.

� Ivy Bridge-EP has 64 GB (DDR3-1866) memory module per node for a theoretical peak

bandwidth of about 48 GB/s.

3.3. “hasep1” Testsystem

The “hasep1” test system has a dual-socket Intel 14 cores Haswell EX processor with 56 logi-

cal cores through hyper-threading per node. It operates at 2.3 GHz base clock speed and also

features Intel Turbo mode for increased performance. Haswell is the codename for a processor

micro architecture developed by Intel as the successor to the Sandy Bridge and Ivy Bridge archi-

tecture. Its architecture is specifically designed to optimize the power savings and performance

11

3. Test Systems and Tools

benefits from the move to “FinFET non-planar 3D transistors” on the improved 22 nm process

node. Haswell microprocessors represents the “tock” in Intel’s CPU development program. The

“hasep1” system has overall theoretical peak performance Ppeak of 515.2 GFlops/s and 1030.4

GFlops/s per socket for double precision and single precision, respectively at base clock speed.

Ppeak = n ∗ F ∗ S ∗ f
= 14 ∗ 4 ∗ 4(DP) or 8(SP) ∗ 2.3

= 515.2GFlops/s(DP) or 1030.4GFlops/s(SP)

(3.3)

Important features of Haswell microprocessor architecture over Sandy Bridge and Ivy Bridge

are as [18]:

� Haswell is Intel’s fourth-generation core microprocessor family instead of second or third-

generation.

� The execution units in Haswell are vastly improved over previous generations, particularly

to support AVX2 and the new fused multiply add (FMA). Generally, the SIMD integer

performance doubled due to wider 256-bit AVX2 instructions. The theoretical peak float-

ing point performance has basically doubled by virtue of the 256-bit FMA instructions

i.e. extra add in the FMA is essentially free from a latency perspective, yielding 16 DP

FLOP/cycle for each Haswell core.

� Haswell adds advance features as well e.g., an integer dispatch port so it can handle many

instructions while the SIMD dispatch ports are fully utilized, and a new memory port.

� The memory hierarchy for Haswell is probably the biggest departure from the previous

generation. The whole memory system has been enhanced to support gather instructions

and transactional memory.

� More significantly, the cache hierarchy has same capacity, organization, and latency but

can sustain twice the bandwidth, two 256-bit loads and a 256-bit store per cycle, for 96

Bytes/cycle compared with 48 Bytes/cycle for Sandy Bridge.

� A full 64 Bytes cache line can be read each cycle.

� All components of Haswell processor run at the same clock frequency, which can be set to

a fixed value in the range from 1.2 - 2.3 GHz.

� 64 GB main memory per Haswell EP processor node for a theoretical peak bandwidth of

about 60 GB/s.

Memory Hierarchies of Sandy Bridge, Ivy Bridge and Haswell architectures

Table 3.1 summarizes the cache topology of different generation of Intel’s micro-processors [9],

[19]. Moreover, All Intel’s design caches uses 64 byte cache lines and single ported L1 cache

(that is, L1 cache cannot communicate with the registers and L2 cache at the same time).

12

3.4. “emmy” Compute-Cluster

Table 3.1.: Memory Hierarchies of Sandy Bridge, Ivy Bridge and Haswell

Metrics Sandy Bridge Ivy Bridge Haswell

Core frequency 2.7 GHz 3 GHz 2.3 GHz

Cores per node 8 10 14

Peak DP FP performance 172.8 GFlops/s 240 GFlops/s 515.2 GFlops/s

Peak SP FP performance 345.6 GFlops/s 480 GFlops/s 1030.4 GFlops/s

L1 instruction cache 32 KB 32 KB 32 KB

L1 data cache 32 KB 32 KB 32 KB

Load Bandwidth 32 Bytes/cycle 32 Bytes/cycle 64 Bytes/cycle

Store Bandwidth 16 Bytes/cycle 16 Bytes/cycle 32 Bytes/cycle

Total Bandwidth 48 Bytes/cycle 48 Bytes/cycle 96 Bytes/cycle

L2 unified cache 256 KB 256 KB 256 KB

Bandwidth to L1 32 Bytes/cycle 32 Bytes/cycle 64 Bytes/cycle

L3 shared cache 20 MB 25 MB 35 MB

Memory 64 GB (DDR3-1333) 64 GB (DDR3-1866) 64 GB

Memory Bandwidth ∼42 GB/s ∼48 GB/s ∼60 GB/s

3.4. “emmy” Compute-Cluster

RRZE production cluster “emmy” was installed in 2013 and was named after famous German

mathematician Amalie Emmy Noether who was born in Erlangen. It is designed for running

massively parallel programs using significantly more than one node and high speed interconnect.

It has overall theoretical peak performance Ppeak of 197.12 TFlop/s and LINPACK Performance

Pmax of 191.5 TFlop/s [4].

Ppeak = Nnodes ∗ n ∗ F ∗ S ∗ f
= 560 ∗ 20 ∗ 2 ∗ 4(DP) or 8(SP) ∗ 2.2

= 197.12TF lops/s(DP) or 394.24TF lops/s(SP)

(3.4)

where Nnodes and n are the number of nodes and cores, respectively.

Moreover, emmy has rank 407 in Top500 list published in June 2015, which rank parallel

computers based on their performance in the LINPACK benchmark [4]. Despite of the increased

degree of parallelism and peak performance of the complete emmy systems compare to previous

systems, non-vectorised serial code can neither benefit from the wider SIMD units nor from the

increased number of cores per node but suffers from the decreased clock frequency.

Short overview of emmy compute cluster is as following.

� Vendor: NEC (Dual-Twin Supermicro)

� Operating system: CentOS (Redhat Enterprise without support)

� SIMD vector length: 256 bit (AVX)

� Power consumption: 169 KW (back-door heat exchanger)

� Compiler: Intel, GCC and others in various versions

� Math Library: Intel MKL

� 2 frontend nodes with the same CPUs (“emmy1” and “emmy2”)

13

3. Test Systems and Tools

Hardware Topology

The RRZE “emmy” cluster consists of total 560 compute nodes with 11200 physical cores and

22400 logical cores through hyper-threading. Out of total 560 compute nodes, there are 544

regular compute nodes and 16 accelerator nodes. The command “pbsnodes -a | grep ‘ˆe’ | wc

-l” searches and counts all available nodes. Their further hardware topology is as follows:

� 544 regular compute nodes

– each node has dual-socket ten cores Intel Xeon E5-2660v2 “Ivy Bridge EP”processor

with hyper-threading (i.e. 20 physical cores per node showing up as 40 virtual cores

per node). It operates at 2.2 GHz base clock speed and also include Intel turbo mode

feature.

– each with 64 GB DDR3-1600 memory modules per emmy node

– each with NO local disks

– All 544 nodes distributed on 11 Racks [9], [19]

* Rack 1 with 56 compute nodes

* Rack 2 with 52 compute nodes

* Rack 3 with 56 compute nodes

* Rack 4 with 52 compute nodes

* Rack 5 with 52 compute nodes

* Rack 6 with 56 compute nodes

* Rack 7 with 52 compute nodes

* Rack 8 with 52 compute nodes

* Rack 9 with 52 compute nodes

* Rack 10 with 32 compute nodes

* Rack 11 with 32 compute nodes

� 16 nodes with accelerators

– 8 nodes with 2 x NVIDIA K20 GPGPUs

– 8 nodes with 2 x Intel Xeon Phi coprocessors

– 64 GB DDR3-1866 memory modules per node

– 1 TB local hard disk

– All 16 accelerator nodes distributed on 2 Racks [9], [19]

* 8 nodes on Rack 10

* 8 nodes on Rack 11

Interconnect Network

The network on emmy is a full Quad Data Rate (QDR) Infiniband interconnect fabric. It is

fully non-blocking and each link has 40 Gbit/s bandwidth per direction.

14

3.5. Measurement methodology

3.5. Measurement methodology

3.5.1. Module and compiler

On RRZE HPC systems, a modules environment is provided to facilitate access to software

packages and the “module avail” command delivers a list of all available packages. However,

Intel compilers (i.e., ifort (Fortran77/90), icc (C) and icpc (C++)) were used for present work,

since they provide higher performance than the GCC. To set up a PATH with the Intel compilers,

a “module load intel64” command was executed once per shell, where the Intel compiler with

specify a version number “Intel64” sets the necessary setting for 64 bit systems. Intel compiler

command line option -O3 -xAVX -fno-alias was preferred for current work. Here is the makefile

for 2D-Jacobi stencil benchmark code:

1 LIKWID=${LIKWID_INC} −DLIKWID_PERFMON ${LIKWID_LIB} −llikwid −pthread
2 RZOMP=−openmp
3

4 jacobi2d . exe : relax_line . h relax_line . c jacobi2d . c

5 icc ${RZOMP} −O3 −xAVX −fno−alias −vec−report3 −restrict −fno− i n l i n e relax_line .←↩
c jacobi2d . c −o jacobi2d . exe ${LIKWID}

6

7 asm : relax_line . c

8 icc −O3 −xAVX −fno−alias −vec−report3 −restrict −fno− i n l i n e −fsource−asm −S ←↩
relax_line . c −o relax_line . s

9

10 clean :

11 rm −rf jacobi2d . exe * . o

The makefile for DGEMM benchmark is shown in Appendix C.1.

3.5.2. Batch Scripts and LIKWID Tools

All resources of HPC production clusters are controlled through a batch system. The user jobs

with a shell script are submitted through the batch system to the cluster as:

1 qsub −l nodes=<nnn>:ppn=xx , walltime=HH : MM : SS script . sh

These are further details and explanation of this queue:

qsub: The command for job submission, qsub , provides the job ID, standard output file and

error output file which can later be used for identification purposes. File name for the standard

output or error stream is compiled from batch script file name and the job ID.

Further options: As always, full nodes have to be requested on qsub:

1 −l nodes=<nnn>:ppn=xx , walltime=HH : MM : SS

These Job parameters specifies the required number of nodes/CPUs “<nnn>”, the number of

hardware threads per nodes “xx” and the estimated wall clock runtime “HH:MM:SS” respec-

tively. For example, the number of threads per nodes need to be specified as ppn=40 for “emmy”,

ppn=32 for “phinally” and ppn=56 for “hasep1”.

Whenever a particular node has to be required, it is requested as

15

3. Test Systems and Tools

1 −l nodes=exxxx : ppn=xx , walltime=HH : MM : SS

Whenever a specific node type is required, it is requested by affixing “:property” with above men-

tioned queue. For example, on “emmy” cluster, different memory modules and likwid properties

are requested as:

1 −l nodes=<nnn>:ppn=40:ddr1600 , walltime=HH : MM : SS to qualify 544 nodes

2 −l nodes=<nnn>:ppn=40:ddr1866 , walltime=HH : MM : SS to qualify 516 nodes

3 −l nodes=<nnn>:ppn=40:likwid , walltime=HH : MM : SS to use likwid

Script file: A bash-based shell script file contains all executable commands.

1 #!/ bin /bash − l

2 cd $PBS_O_WORKDIR

3 module load likwid intel64

4

5 FREQ=`likwid−setFrequencies −l | sed −e ' s /Ava i l ab l e f r e qu en c i e s : // ' `

6 f o r f in $FREQ ; do

7 likwid−setFrequencies −f $f

8

9 # i t e r a t e thread count on each socket in turn

10 f o r s in S0 S1 ; do

11 f o r t in `seq 0 9 ` ; do

12 likwid−perfctr −m −C ${s}:0−${t} −g ENERGY . / jacobi2d . exe 8000 8000 0 0 100 > ←↩
RESULT_${HOSTNAME}_${f}_${s}_${t } . dat

13 done

14 done

15 done

Here in line 1, “-l” switch is used to load modules from the inside of a batch script. All batch

scripts are start executing in the user’s $HOME directory so line 2 is used to change it to the

directory where the job was submitted.

likwid-setFrequencies tool: For getting accurate timings in terms of processor cycles, i need

to fix the clock speed of the CPU, which is done by using likwid-setFrequencies tool [9], [19].

The line 5 delivers a list of supported frequencies for a system and a specific frequency is set in

line 7. In this script, the clock speed of all cores on each socket is sequentially set to all available

CPU clock frequencies. For example, for emmy with 2.2 GHz base clock speed, it selected from

the following options: f2.201, f2.2, f2.1, f2.0, f1.9, f1.8, f1.7, f1.6, f1.5, f1.4, f1.3, f1.2. However,

the turbo mode “f2.201” feature was deliberately ignored for present work.

likwid-pin tool: Correct pinning of the OpenMP threads is essential to achieve optimum perfor-

mance and also to avoid the devastating effects of ccNUMA machines. Pinning is done by using

likwid-pin tool [9], [19] which enforced thread-core affinity in a multi-threaded application with-

out touching the source code and also set the environment variable “OMP NUM THREADS”

automatically. As default, physical numbering of the cores given by likwid-topology tool [9],

[19] is set, but also logical numbering inside the node (e.g., via N prefix) or inside the sockets

(via S# prefix, e.g., S0 or S1) can be used. Physical cores come first in logical numbering. In

the present script, the cores are logical numbered over the whole node and physical cores come

16

3.5. Measurement methodology

first with using a N prefix (-c N:0-9). For example, emmy has 10 cores with 20 SMT threads per

socket, so all physical cores can obtain with “-c N:0-9” and all physical cores and SMT threads

can access via “-c N:0-19”.

likwid-perfctr tool: likwid-perfctr [9], [19] measures performance counter metrics over the com-

plete application runtime or between arbitrary points in the code with API support. It includes

all functionality of likwid-pin for pinning a threaded application and possible to specify the full

hardware-dependent event names with existing pre-configured event sets. These groups provide

useful event sets and compute common derived metrics. However, the uncore counters measure

per socket. Therefore, likwid-perfctr has a socket lock which ensures that only one thread per

socket starts the counters and only one thread per socket stops them. The first thread arriving

in start or stop gets the lock. The following illustrates the use of the marker API in a Jacobi

stencil code with named region “J2D”.

1 #inc lude <l i kw id . h>

2 LIKWID_MARKER_INIT ;

3 #pragma omp p a r a l l e l {
4 LIKWID_MARKER_THREADINIT ;

5 }
6 #pragma omp p a r a l l e l {
7 LIKWID_MARKER_START (”J2D”) ;

8 }
9 ! measured code region ”J2D” here

10 #pragma omp p a r a l l e l {
11 LIKWID_MARKER_STOP (”J2D”) ;

12 }
13 LIKWID_MARKER_CLOSE ;

likwid header is included in line 1 to ensure compilation of 2D-jacobi stencil benchmark code

even with unavailability of LIKWID tool. It contains a set of macros which allowed activa-

tion of the marker API by defining LIKWID PERFMON. The function calls in line 2 and

13 (i.e., LIKWID MARKER INIT and LIKWID MARKER CLOSE) are done from the serial

part of the application but routines, such as, LIKWID MARKER THREADINIT (line 4), LIK-

WID MARKER START(“J2D”) (line 7) and LIKWID MARKER STOP(“J2D”) (line 11) are

called in a parallel region for each thread.

1 likwid−perfctr −m −C ${s}:0−${t} −g ENERGY . / jacobi2d . exe

In above mentioned script command, likwid-perfctr for a threaded OpenMP jacobi application

is compiled with pinning and measures the performance group “ENERGY” between arbitrary

points in jacobi benchmark with API support. The “OMP NUM THREADS” command is

omitted so it is set by likwid automatically. Flag -C configures the core ids of the measured

counters and flag -g specified measures group or event (e.g., ENERGY in this case). The output

consists of different tables with the raw event counts, with derived metrics and with statistical

data as minimum, maximum and mean. For gathering processor specific information about

hardware performance capabilities and groups, “-a”, “-g” and “-H” switches are used. For

example, “likwid-perfctr -a” prints available groups on an architecture.

1 likwid−perfctr −m −C ${s}:0−${t} −g ENERGY . / jacobi2d . exe 8000 8000 0 0 100 > ←↩
RESULT_${HOSTNAME}_${f}_${s}_${t } . dat

17

3. Test Systems and Tools

Shortly, the power and energy characteristics of an OpenMP-parallel 2-D Jacobi stencil solver is

analysed on all available threads of both sockets in turn with working set “isize”, “jsize”, “iblock-

size” and “jblocksize” of 8000 and 100 sweeps. It measures the performance group “ENERGY”

and delivers “CPU”, “DRAM” and “PP0” power and energy measurements. The results are to

stdout with specifying “.dat” as suffix. Following script is used for analysis of these outcomes

individually with a variation in subsequent number of cores and frequency per socket.

1 #!/ bin /bash − l

2

3 # Li s t a v a i l a b l e f r e qu en c i e s

4 FREQ=`likwid−setFrequencies −l | sed −e ' s /Ava i l ab l e f r e qu en c i e s : // ' `

5

6 # i t e r a t e thread count on each socket in turn

7 f o r s in S0 S1 ; do

8 f o r n in seq 0 9 ; do

9 f o r f in $FREQ ; do

10

11 # Set f r e qu en c i e s

12 likwid−setFrequencies −f $f

13

14 grep ”Power DRAM” ./ RESULT_exxxx_${f}_${s}_${n } . dat >> Power_DRAM . dat

15

16 done

17 done

18 done

To graph a specific parameter just “grep” that parameter from text file. For example, here

grep “Power DRAM” searches the input file named RESULT exxxx ${f} ${s} ${n} for lines

containing a match to the Power DRAM and prints the matching lines to another file name

Power DRAM.dat. Also, search can either be done for other parameters of “ENERGY” perfor-

mance group (e.g., CPU power, CPU and DRAM energy etc.) or of “MEM” performance group

(e.g., memory bandwidth etc).

The event monitoring counters of modern processors count various processor-internal events

correspond to activities on the processor chip and allow estimating the power/energy consump-

tion of the memory controller and CPU-level components listed in Table 3.2.

Table 3.2.: List of available Power/Energy counters

Counters Description

Power(/Energy) PKG Power/Energy consumption of whole CPU package

Power(/Energy) PP0 Power/Energy consumption of Processor cores, L1 and L2 caches

Power(/Energy) DRAM Power/Energy consumption of memory controller

3.5.3. Levenberg-Marquardt Non-linear fitting algorithm

The Levenberg-Marquardt (LM) curve-fitting method [20] is a standard technique used to solve

non-linear least-squares problems, and is employed to get wi parameters of analytical CPU power

model. It involves an iterative improvement of wi parameter values that locates the minimum

18

3.5. Measurement methodology

of the CPU power function expressed as the sum of squares of non-linear functions. Non-linear

least squares problem arises when fitting a parametrized non-linear power function to a set of

measured data points by minimizing the sum of the squares of the errors between the data points

and the non-linear power function.

Levenberg-Marquardt vs. Steepest descent and Gauss-Newton algorithm

The Levenberg-Marquardt curve-fitting method [20], [21] uses a search direction that is a com-

bination of both the steepest descent and the Gauss-Newton (GN) minimization method. In

the steepest descent method, the sum of the squared errors is reduced by updating the param-

eters in the direction of the greatest reduction of the least squares objective. Whereas, in the

Gauss-Newton method, the sum of the squared errors is reduced by assuming the least squares

function is locally quadratic.

When the wi parameters are far from their optimal value, the Levenberg-Marquardt algorithm

behaves like a steepest descent method i.e. slow, but guaranteed to converge; however, when close

to their optimal value, it acts like a Gauss-Newton method [21]. For well-behaved functions and

reasonable starting wi parameters, the LMA tended to be a bit slower than the Gauss-Newton

that means Gauss-Newton method is generally more effective when the residual is zero at the

solution. However, the Levenberg-Marquardt method is more robust than the Gauss-Newton

method i.e. in many cases it finds a solution even if it start very far off the final minimum.

Levenberg-Marquardt algorithm

Levenberg-Marquardt is a popular method of finding the minimum of a function f(x) that is a

sum of squares of nonlinear functions,

min
x
f(x) = ‖F (x)‖22 = min

x

∑
i

F 2
i (x), (3.5)

where the residual ‖F (x)‖ is smallest at the optimum since realistically achievable target tra-

jectories are established. Let the Jacobian matrix of F(x) be denoted J(x), then the Levenberg-

Marquardt method searches in the direction given by the solution of the linear set of equations

(J(xk)
TJ(xk)) + λkI)dk = −J(xk)

TF (xk), (3.6)

where I is the identity matrix, J(xk)
TJ(xk) is approximate hessian and the non-negative damping

factor λk controls both the magnitude and direction of dk.

With zero value of damping factor λk, the direction dk is identical to that of the Gauss-Newton

method. However, when daming factor λk tends to infinity, the direction dk tends towards the

steepest descent direction with magnitude tending to zero implying that the term F (xk + dk) <

F (xk) holds true. Thus, for the next value of damping factor λk+1, the algorithm divide current

damping factor value by ten. However, when the step is unsuccessful, the algorithm sets λk+1

by multiplying its current value with ten [21], [22].

Levenberg-Marquardt MATLAB code

A Matlab code was developed for plotting data-fitting of nonlinear Power function with frequency

variation using Levenberg-Marquardt algorithm. Matlab has built-in Levenberg-Marquardt al-

gorithm which provides a fitresult (i.e, a fit object representing the fit) variable and gof (i.e, a

structure with goodness-of fit info) variable (see Appendix B.1).

19

Chapter 4
Performance, Power and Energy

Characteristics of Benchmark Codes

Recently, the increased microprocessor complexity and frequency have caused the power con-

sumption to grow to the level where power has become a first-order issue. Therefore, in this

chapter, the properties of different benchmarks will be investigated from the performance, the

power dissipation and the energy consumption perspective.

To obtain predictive models for system power/energy, the actual measurements were analysed

from characterization experiments on selective benchmark codes. All the measurements and

resulting curves of benchmark codes were performed on the phinally machine (i.e, 8 cores Intel

Sandy Bridge processor with 2.7 GHz base clock speed), which operated at varying number of

active cores and clock frequency. All measurements were obtained after a “warm-up” phase to

have steady state values. The “warm-up” phase means that we have run the code N seconds

before starting the actual measurement. The following first two benchmarks (see Section 4.1,4.2)

were selected specifically as they represent a typical “corner case” scenario (i.e., perfectly scalable

and saturating cases) for loop-based scientific computing and third benchmark (see Section 4.3)

was used as it is a complete algorithm that actually does something useful.

4.1. Dense matrix-matrix multiplication (Core-bound case)

A dense matrix-matrix multiply, DGEMM, is a corner case for applications that are almost

perfectly scalable. Here, the function of DGEMM code is to implement the multiplication of

two dense double precision matrices of size 80002, which results in 1.02 GB data and fits into

memory. This code is a “pure compute” case (i.e., scalable with speed up of 7.78 on eight cores)

and implemented using thread parallel Intel MKL math library (see Appendix C.1).

The performance, power and/or energy related data of this DGEMM code tabulated in Table

4.1 shows that it runs very close to peak performance of phinally machine (i.e., 91% of arithmetic

peak performance) which makes it the hottest code among all these studied benchmarks with

highest on-chip power and energy consumption. Furthermore, for applications which are core-

bound, we can say that although the data comes from memory but due to blocking and unrolling

in core, pressure on memory interface is not high so memory bandwidth is not saturating which

causes lower DRAM power consumption compare to memory-bound applications.

21

4. Performance, Power and Energy Characteristics of Benchmark Codes

Table 4.1.: The performance, power and/or energy related data of benchmark codes on 8 cores of Sandy

Bridge processor at 2.7 GHz base clock speed

Metrices DGEMM Jacobi

Performance (Pmax) 157.3 GFlops/s 6.2 GFlops/s

Cycles per Instruction (CPI) 0.35 7.8

Instruction per cycles (IPC) 2.86 0.128

Memory Bandwidth 6 GB/s 38 GB/s

CPU power (WCPU) 108.4 W 91.3 W

DRAM power (WDRAM) 14.6 W 35.5 W

Total power (W Total) 123 W 126.8 W

CPU energy (ECPU) 7218 J @ 157.3 GF/s 375 J @ 6.2 GF/s

DRAM energy (EDRAM) 1422 J @ 157.3 GF/s 146 J @ 6.2 GF/s

Total energy (ETotal) 8640 J @ 157.3 GF/s 521 J @ 6.2 GF/s

4.2. 2D Jacobi stencil (Memory-bound case)

An OpenMP-parallel 2D Jacobi stencil solver (see Appendix C.2) is defined as a function that

updates a point based on values of its neighbours and is a corner case for applications that gets

limited by off-chip bandwidth. An AVX-vectorized Jacobi code performs 100 sweeps through

80002 double precision lattice sites data structure that is much larger (1.02GB data set) than

the capacity of the available data caches in Sandy Bridge processor. This chosen configurable

problem size has a well-defined layer condition [23] for L3 cache (i.e., 3∗n∗imax∗8B < L3Cache
2).

Overall performance of jacobi stencil computation is memory-bound, since its code balance

Bc is much larger than the machine balance Bm. Beyond saturation point, roofline model is used

to analyse and predict the performance of Jacobi stencil [11]. For each lattice site update (LUP),

a Jacobi stencil will perform 4 floating point operations for every 24 bytes of memory traffic

on write-allocate architecture, implying a code balance of 6 B/F. Roofline model can predict

performance by ratio of saturated memory bandwidth ,bs, to effective code balance Bc in non-

saturated region (i.e., Proof = min(Pmax,
bs
Bc

)). The computational intensity Ic of 0.167 F/B is

the inverse of code balance Bc and reflects the number of floating point operations transferred

from memory . Hence, expected saturation performance calculated by roofline model [11] will be

1666 MLUP/s or 6.6 GF/s on a full Sandy Bridge chip, which matches the actual measurement

result quite well (see Table 4.1).

These measurements reflect that jacobi solver runs at 3.6% of arithmetic peak performance of

phinally machine so the memory-bound codes runs vary far from peak performance of operating

system. Moreover, due to memory bandwidth bottleneck, they demonstrate a relatively higher

dynamic random access memory (DRAM) power and energy consumption compare to compute

bound applications.

4.3. Conjugate Gradient Method

An OpenMP parallel Conjugate Gradient Method is used as an iterative method of choice to

solve a large sparse systems of linear equations due to its low memory requirements and exact

convergence in a finite number of iterations. The CG algorithm is better than other iterative

22

4.3. Conjugate Gradient Method

solvers like Jacobi Method, since the solution is obtained in fewer iterations. It has been analysed

for two different sizes of real symmetric positive definite matrices for comparison; First is steady

state thermal problem, named as Schmid/thermal2, with out-of-cache data storage of 8.58 M * (8

B + 4 B) = 0.1 GB (matrix dimensions of 1, 228, 0452 and 8,580,313 number of non-zeros entries,

Nnnz). Second is 27-point stencil matrix, Hpccg-100, with 1 M2 matrix size and 26,463,592 Nnnz

entries. It results in 0.3 GB data set. Schmid/thermal2 problem converges in 5720 iterations,

whereas Hpccg-100 provides solution in 56 iterations for prescribed tolerance of 10−10 without

any preconditioning.

The CG algorithm is compose of couple of kernels, such as, it has three vector updates,

two inner products, one sparse matrix vector product (spMVM) and two sequential parts (see

Appendix C.3). By analysing the code the most time consuming step of algorithm was found to

be sparse matrix-vector multiplication, which has a complexity of order of n. The performance

of the CG algorithm is mainly dominated by the efficiency of implementation of this sparse

matrix-vector product.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

P
e

rf
o

rm
an

ce
 [

G
Fl

o
p

s/
s]

Number of Threads

Thermal--SpMVM

Hpccg100--SpMVM

Figure 4.1.: Performance of spMVM kernal in CG Method for “Schmid/Thermal2” and “hpccg-100”

matrices at 2.7 GHz base clock speed of “phinally” system

While looking at the performance it was observed that spMVM for Thermal2 matrix does not

seem to be saturating compare to Hpccg-100 which is a well defined matrix (see Fig. 4.1) with

a performance different of about a factor of 2 (see Table 4.2).The reason for this non-saturating

behaviour of a matrix might be that the matrix may fit into cache which does not apply in

the present case as both matrices are really large and fit into memory. This non-saturating

behaviour of spMVM in the conjugate gradient method can be explained by following three

reasons:

1. There exists some load-imbalance, since number of non-zeros per row, Nnzr are not con-

stant across the matrix rows. This problem can be fixed by using static OpenMP schedule

with a suitable chunk size.

2. The memory bandwidth drawn by the spMVM with the “Thermal2” matrix was signif-

icantly lower than the maximum (i.e., 27 GB/s memory bandwidth against saturated

bandwidth of the Sandy Bridge architecture), which is justified by some latency effect.

One can’t do much about latency effect because of scattered structure of matrix. Further,

if a matrix is really scattered, so every time it gets a complete cache line with accessing

23

4. Performance, Power and Energy Characteristics of Benchmark Codes

only one element for right hand side vector and results in wastage of the bandwidth. In

addition, when one jumps from cache line to cache line, pre-fetchers does not work. The

only way to fix it is to reorder matrix with non-zero’s closer to diagonal, as the case with

Hpccg-100 matrix. The main reason why Hpccg-100 matrix saturates the bandwidth is

that it has a completely regular structure (dense subdiagonals), i.e., the memory access

is streaming type. A well defined matrix drives lower traffic for loading right hand side

vector (i.e., alpha goes down) and the pre-fetchers work better with more organize access.

3. Alpha effect for spMVM [24], which quantifies traffic for loading right hand side vector,

is dependent on number of threads. The more threads used, the less cache and the less

reuse potential will obtain per threads with simple static decomposition. There seems to

appear some alpha effect with “Thermal2” matrix as loading more data with minimum

actual data.

In conjugate gradient method, first step is sparse matrix-vector multiplication and all other steps

come afterwards. As first step for spMVM already streams a big matrix to cache; thus there

is no space left for other steps. Hence, other scalar product steps are saturated and similarly

all left vector operations with 3 vectors each of 1.2M or 1M entries leads to memory bound

characteristics of vector operations. In the end, the CG algorithm for “Thermal2” matrix is a

mixture of scalable and saturated kernels because of non-saturating behaviour of spMVM kernel;

whereas “Hpccg-100” matrix is purely compose of memory-bound kernels.

Table 4.2.: The performance, power and/or energy related data of spMVM step in CG method for both

“Thermal2” and “Hpccg-100” problems on 8 cores of Sandy Bridge processor at 2.7 GHz

base clock speed

Metrices Thermal2-spMVM Hpccg100-spMVM

Performance (Pmax) 3.05 GFlops/s 5.92 GFlops/s

Memory Bandwidth 27 GB/s 38 GB/s

Iteration count for convergence 5720 56

CPU power (WCPU) 83.15 Watts 88.34 Watts

DRAM power (WDRAM) 30.35 Watts 31.26 Watts

Total power (W Total) 113.5 Watts 119.6 Watts

CPU energy (ECPU) 2674.5 Joules 44.05 Joules

DRAM energy (EDRAM) 976.29 Joules 15.67 Joules

Total energy (ETotal) 3650.8 Joules 59.72 Joules

Total energy per flop 37 nJoules 20 nJoules

per iteration (ETOTALFlop)

The overall energy consumption of an application is affected by the total amount of work

done. Each iteration of “Hpccg-100” matrix (i.e., 26M number of non-zeros Nnnz) does about a

factor of 3 more work per sparse matrix-matrix multiplication against “Thermal2” matrix (i.e.,

8.5M number of non-zeros Nnnz). On the other hand, the “Thermal2” matrix has a much higher

number of iteration required for convergent solution (i.e., 5720 versus 56 number of iterations).

Hence, an overall energy consumption per flop value for one iteration is calculated for comparison

of both studied matrices.

Hence, the studied benchmark applications can organized according to their computational

intensities. The maximum intensity for spMvM kernel is 1/6 flop/bytes and the Hpccg-100

24

4.4. Frequency and cores variation effect on power/energy characteristics

matrix is at this limit.

.... spMVM .. Jacobi .. DGEMM ...

Low Intensity ⇒ High intensity

Figure 4.2.: The order of studied benchmarks with respect to their respective computational intensities

4.4. Frequency and cores variation effect on power/energy

characteristics

In a system, two variables have a significant effect on the power draw of an individual active

machine. First is the CPU frequency, which also affects core voltage and second is the number

of cores utilized. Other influence factors such as code characteristics and chip temperature have

a measurable but smaller impact. Therefore, an exploration of the interesting properties of

both multi-core CPU and DRAM power dissipation and energy consumption are described with

respect to clock frequency and number of utilized cores by studying selective benchmark codes.

Variation effect on Power dissipation

Actual measurements of the dynamic on-chip power dissipation are in line with results of Hager

et al. [10] that it is a quadratic polynomial in the clock frequency, f , and has a linear dependence

on the number of active cores, n, in non-saurated region for any fixed f and n, respectively.

Moreover, when applications get limited by off-chip bandwidth, the slope of the power dissipa-

tion decreases slightly without providing any performance improvement because the cores start

become idle while waiting for memory (see Fig. 4.3).

Measurements of the system DRAM power dissipation depending on workloads (memory-

bound vs. cache-bound) with variant cores and frequency configurations illustrates that it

correlates with performance and is linear in clock speed and number of threads until it hits a

bottleneck. However, beyond saturation, DRAM power remains maximum (see Fig. 4.4).

In Fig. 4.4(c,d), for 1 core of compute-bound DGEMM case, expected perfect linearity of the

DRAM power dissipation in clock frequency is not visible, since very low pressure on memory

interface implies a negligible amount of memory bandwidth for one core (0.83 GB/s @1core)

such that it does not play any significant role. Whereas, for memory-bound jacobi case, even

for 1 core, perfectly linearity in frequency can observe because of substantial amount of memory

bandwidth (12 GB/s @1core).

For memory bandwidth limited Jacobi benchmark case, instead of constant DRAM power, a

drop at lower frequency is observed when it gets limited by bottleneck (see Fig. 4.4(d)). This

falling curve might be caused due to two reasons: Bandwidth dependency on clock frequency or

non-saturating performance at lower frequency (see Fig. 4.4(b)). For example, at 5 cores, falling

curve of DRAM power is justified by second reason that it saturates at base frequency but no

more saturating at lower frequency. Similarly, for 8 number of cores, a drop of DRAM power

dissipation is justified by bandwidth reduction at lower frequency. The DRAM bandwidth is

not linear in the core clock speed even of the code saturates at all frequencies. The exact reason

for this peculiar effect is not clear, but we know that it is gone on Haswell (i.e., on Haswell, the

memory BW is almost insensitive to core clock speed).

25

4. Performance, Power and Energy Characteristics of Benchmark Codes

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

C
P

U
 P

o
w

e
r

[W
]

Frequency[GHz]

Power@8cores

Power@7cores

Power@6cores

Power@5cores

Power@4cores

Power@3cores

Power@2cores

Power@1cores

(a) DGEMM Benchmark Code

0

0 0.5 1 1.5 2 2.5 3
Frequency[GHz

0

0 0.5 1 1.5 2 2.5 3
Frequency[GHz

0

0 0.5 1 1.5 2
Frequency[GHz

y = 2.4514x2 + 0.7281x + 15.655

y = 3.5152x2 + 1.632x + 15.988

y = 4.6859x2 + 2.0727x + 16.672

y = 6.3533x2 + 0.8385x + 18.646

y = 7.149x2 + 2.2207x + 18.54
y = 8.8799x2 + 0.7884x + 20.739

y = 9.5083x2 + 2.8052x + 20.035

y = 11.757x2 - 0.8505x + 24.264

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3

C
P

U
 P

o
w

e
r

[W
]

Frequency[GHz]

Power@1cores
Power@2cores
Power@3cores
Power@4cores
Power@5cores
Power@6cores
Power@7cores
Power@8cores

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5

D
R

A
M

 P
o

w
e

r
[W

]

Frequency[GHz

20

30

40
Power DRAM@2.7GHz

Power DRAM@2GHz

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

C
P

U
 P

o
w

e
r

[W
]

Number of Threads

Power@2.7GHz

Power@2GHz

Power@1.2GHz

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

C
P

U
 P

o
w

e
r

[W
]

Frequency[GHz]

Power@8cores

Power@7cores

Power@6cores

Power@5cores

Power@4cores

Power@3cores

Power@2cores

Power@1cores

(b) Jacobi Benchmark Code

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

C
P

U
 P

o
w

e
r

[W
]

Number of Threads

Power[W]@2.7GHz

Power[W]@2GHz

Power[W]@1.2GHz

(c) DGEMM Benchmark Code

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

C
P

U
 P

o
w

e
r

[W
]

Number of Threads

Power[W]@2.7GHz

Power[W]@2.0GHz

Power[W]@1.2GHz

(d) Jacobi Benchmark Code

Figure 4.3.: (a,b) The on-chip power dissipation is a quadratic polynomial in the clock frequency at

fixed number of threads (see Chapter 5 for a detailed analysis). (c,d) The on-chip power

has a linear dependence on the number of active cores at fix clock speed of the “phinally”

machine

In Fig. 4.4(e), a drop in DRAM power at 8 cores is observed instead of expected perfect linear

trend of a purely compute-bound application. This can be justified by fact that depending on

different number of threads and problem size per thread, it may choose different blocking factor

while switching from one thread count to other. This implies a decrease in pressure on memory

interface. Also, as DGEMM code is far away from bottleneck (8 GB/s compare to 42 GB/s

for “phinally” machine), this fluctuation of 2 GB/s bandwidth is really negligible. The power

dissipation of installed DRAM is in the range of 6 W to 15 W and between 15 W to 38 W

per socket with variant number of cores utilized and frequency configurations for DGEMM and

jacobi workloads, respectively.

Variation effect on Energy consumption

It is already known from the previous work that for a minimum on-chip energy to solution, a

system should tune at optimum frequency with maximum number of available cores for core-

bound cases and is near saturation point with lower frequency for applications limited by some

bottleneck [10].

26

4.4. Frequency and cores variation effect on power/energy characteristics

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8

M
e

m
o

ry
 B

an
d

w
id

th
 [

G
B

/s
]

Number of Threads

memory bandwidth@2.7GHz

memory bandwidth@1.2GHz

(a) DGEMM Benchmark Code

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8

M
e

m
o

ry
 B

an
d

w
id

th
 [

G
B

/s
]

Number of Threads

Bandwidth@ 2.7 GHz frequency

Bandwidth@ 1.2 GHz frequency

(b) Jacobi Benchmark Code

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3

D
R

A
M

 P
o

w
e

r
[W

]

Frequency[GHz]

Power DRAM@8cores

Power DRAM@7cores

Power DRAM@6cores

Power DRAM@5cores

Power DRAM@4cores

Power DRAM@3cores

Power DRAM@2cores

Power DRAM@1cores

(c) DGEMM Benchmark Code

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3

D
R

A
M

 P
o

w
e

r
[W

]

Frequency[GHz]

Power DRAM@8cores

Power DRAM@7cores

Power DRAM@6cores

Power DRAM@5cores

Power DRAM@4cores

Power DRAM@3cores

Power DRAM@2cores

Power DRAM@1cores

D
R

A
M

 P
o

w
e

r
[W

]

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3

D
R

A
M

 P
o

w
e

r
[W

]

Frequency[GHz]

Power DRAM@8cores

Power DRAM@7cores

Power DRAM@6cores

Power DRAM@5cores

Power DRAM@4cores

Power DRAM@3cores

Power DRAM@2cores

Power DRAM@1cores

(d) Jacobi Benchmark Code

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8

D
R

A
M

 P
o

w
e

r
[W

]

Number of Threads

Power DRAM@2.7GHz

Power DRAM@2GHz

Power DRAM@1.2GHz

(e) DGEMM Benchmark Code

0

6

12

18

24

30

36

42

0 1 2 3 4 5 6 7 8

D
R

A
M

 P
o

w
e

r
[W

]

Number of Threads

Power DRAM@2.7GHz

Power DRAM@2.0GHz

Power DRAM@1.2GHz

(f) Jacobi Benchmark Code

Figure 4.4.: A linear dependence of Memory bandwidth and dynamic DRAM power dissipation on the

number of active cores and clock speed till saturation point on “phinally” system

Measurements for DRAM energy demonstrate that it correlates with performance and the

minimum DRAM energy to solution is obtained at the maximum value of performance. Hence,

the optimal value of DRAM energy to solution of a system is achieved at the highest clock

frequency and maximum number of available cores until it hits a bottleneck and remains constant

27

4. Performance, Power and Energy Characteristics of Benchmark Codes

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.5 1 1.5 2 2.5 3

D
R

A
M

 E
n

e
rg

y
[J

]

Frequency[GHz]

Energy DRAM@1cores

Energy DRAM@2cores

Energy DRAM@3cores

Energy DRAM@4cores

Energy DRAM@5cores

Energy DRAM@6cores

Energy DRAM@7cores

Energy DRAM@8cores

(a) DGEMM Benchmark Code

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3

En
e

rg
y

to
 s

o
lu

ti
o

n
 [

Jo
u

le
s]

Frequency[GHz]

Energy DRAM@1cores

Energy DRAM@2cores

Energy DRAM@3cores

Energy DRAM@4cores

Energy DRAM@5cores

Energy DRAM@6cores

Energy DRAM@7cores

Energy DRAM@8cores

(b) Jacobi Benchmark Code

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8

En
e

rg
y

to
 s

o
lu

ti
o

n
 [

Jo
u

le
s]

#Number of Threads

Total Energy [J]@2.7 GHz

CPU Energy [J] @2.7 GHz

DRAM Energy [J]@2.7 GHz

(c) DGEMM Benchmark Code

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8

En
e

rg
y

to
 s

o
lu

ti
o

n
 [

Jo
u

le
s]

Number of Threads

Total Energy to solution [J]@2.7 GHz

CPU Energy [J]@2.7 GHz

DRAM Energy [J]@2.7 GHz

(d) Jacobi Benchmark Code

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0 0.5 1 1.5 2 2.5 3

To
ta

l E
n

e
rg

y
[J

]

Frequency[GHz]

total Energy[J]@1cores

total Energy[J]@2cores

total Energy[J]@3cores

total Energy[J]@4cores

total Energy[J]@5cores

total Energy[J]@6cores

total Energy[J]@7cores

total Energy[J]@8cores

(e) DGEMM Benchmark Code

0

100

200

300

400

500

600

700

800

900

1000

0 0.5 1 1.5 2 2.5 3

To
ta

l E
n

e
rg

y
[J

]

Frequency[GHz]

Total Energy[J]@1cores

Total Energy[J]@2cores

Total Energy[J]@3cores

Total Energy[J]@4cores

Total Energy[J]@5cores

Total Energy[J]@6cores

Total Energy[J]@7cores

Total Energy[J]@8cores

(f) Jacobi Benchmark Code

Figure 4.5.: The energy consumption with variation of cores utilized and clock speed on “phinally”

machine

beyond saturation (see Fig. 4.5).

The figure 4.5(c) illustrates that a drop in energy consumption measurements at 8 cores is

directly related to the drop in memory BW pressure as discussed in Sect. 4.4. In Fig. 4.5(d),

while looking at energy measurements it is detected that with 3 cores Jacobi benchmark was

28

4.4. Frequency and cores variation effect on power/energy characteristics

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8

To
ta

l E
n

e
rg

y
p

e
r

Fl
o

p
 [

n
Jo

u
le

s]

Number of Threads

thermal--SpMVM

hpc100--SPMVM

(a) spMVM in CG method

0

5

10

15

20

25

30

35

40

45

50

55

0 2 4 6 8

To
ta

l E
n

e
rg

y
p

e
r

Fl
o

p
 [

n
Jo

u
le

s]

Number of Threads

thermal--vector op
hpc100-- vector op
thermal--vector op & scalar product
hpc100--vector op & scalar product
thermal--scalar product
hpc100--Scalar product

(b) Scalar product and vector operations in CG

Figure 4.6.: The energy consumed by different steps of CG algorithm with variation of cores utilized

on “phinally” system

already close enough to saturation; however, switching from 3 cores to 4 cores makes the Jacobi

application a still scalable with a bit more performance and implies a little bit save in DRAM

energy. Practically, its somehow difficult to get the vicinity of the saturation point. Moreover,

for total energy to solution results, it can be seen that beyond saturation the rising effect of

the chip energy is damped a bit by constant DRAM energy. Hence, in order to consider a total

energy to solution of a machine, DRAM energy to solution can’t be neglected especially for an

architecture with large installed memory.

Finally we take a look at the spMVM and BLAS-1 operations in the CG algorithm (see Sect.

4.3) from an energy consumption point of view. Figure 4.6 illustrates a comparison of overall

energy consumption per flop for one iteration of disorganized “Thermal2” matrix and well-

organized “Hpccg-100” matrix. Comparison exhibits that the well-defined “Hpccg-100” matrix

shows a better performance and saves energy. In addition, energy consumption measurements

detect an optimized overall energy consumption at 4 cores for each step of conjugate gradient

algorithm.

29

Chapter 5
An Analysis of Analytical Models and

Validation

Most of the previous works on power modelling and estimation have focused primarily on multi-

core CPU dynamic power and ignore DRAM power consumption. This chapter describes the

refinement of the previously defined simple CPU power model (in Section 2.4) and introduces a

DRAM power model as well while considering the interesting features of both multi-core CPU

and DRAM power dissipation by studying selective benchmark codes discussed in previous

chapter. Moreover, the predicted model are validated against previously shown experimental

measurements using different workloads.

5.1. CPU Power Model Refinement

Previous multi-core chip power model by Hager el al. (see section 2.4) is

W (f, n) = W0 +W1nf +W2nf
2 = W0 + w1f + w2f

2 (5.1)

where w1 = W1n is measured in W/GHz and w2 = W2n is measured in W/GHz2. Parameters

Wi, i = 0,1,2, are determined by curve fitting using Levenberg-Marquardt method (discussed in

Section 3.5.3).

The Figure 5.1 detect that the on-chip power estimation for the “phinally” test system using

this model was fairly accurate. For example, for fixing Wi parameters, two benchmarks DGEMM

and Jacobi were considered. For both applications, the linear factor w1 is very small compare

to the quadratic factor w2 and constant baseline power W0 as expected and both the W1 and

W2 factors vary with core count. Moreover, when the Jacobi application hits the memory

bandwidth bottleneck, cores begin to be starved for data and the observed slow increase in CPU

power is reflected by higher value of the linear factor w1 compare to the quadratic factor w2.

However, preliminary results for the CPU power dissipation indicate that the assumption of this

model about extrapolated baseline power consumption W0 (i.e, the whole chip consumes same

W0 independent of number of the active cores) seems not true, since it varies with switching

on different number of cores. Baseline power consumption W0 is still independent of type of

running code but varies in the range from 15 W to 24 W depending on number of cores utilized

for the “phinally” test system.

The figure 5.2 shows a chip with some cores over it. It illustrates the baseline power mod-

ification concept that instead of fixed baseline power, some baseline power goes away when a

31

5. An Analysis of Analytical Models and Validation

WCPU = (2.45f2 + 0.47f)*1+ 15.6

WCPU = (1.8f2 + 0.62f)*2+ 16.36

WCPU = (1.46f2 + 1.1f)*3+ 15.52

WCPU = (1.59f2 + 0.21f)*4 + 18.65

WCPU = (1.43f2 + 0.44f)*5 + 18.54

WCPU = (1.48f2 + 0.13f)*6 + 20.74

WCPU = (1.46f2 + 0.4f)*7+ 20.04

WCPU = (1.45f2 - 0.11f)*8 + 24.26

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2 2.5 3

C
P

U
 P

o
w

e
r

[W
]

Frequency[GHz]

Power@1cores

Power@2cores

Power@3cores

Power@4cores

Power@5cores

Power@6cores

Power@7cores

Power@8cores

Wo = 24.2

Wo = 15.6

(a) DGEMM Benchmark Code

WCPU = (2.26f2 + 1.51f)*1 + 15.9

WCPU = (1.55f2 + 1.64f)*2 + 16.36

WCPU = (1.14f2 + 2.2f)*3 + 15.52

WCPU = (0.81f2 + 2.65f)*4 + 14.43

WCPU = (0.7f2 + 2.24f)*5 + 16.62

WCPU = (0.78f2 + 1.57f)*6 + 19.32

WCPU = (0.78f2 + 1.25f)*7 + 20.78

WCPU = (0.85f2 + 0.89f)*8 + 22.54

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2 2.5 3

C
P

U
 P

o
w

e
r

[W
]

Frequency[GHz]

Power@1cores

Power@2cores

Power@3cores

Power@4cores

Power@5cores

Power@6cores

Power@7cores

Power@8cores

Wo = 22.5

Wo = 15.9

(b) Jacobi Benchmark Code

Figure 5.1.: A comparison of measured CPU power dissipation data points (circles) with the CPU power

model (5.1) (dotted curves) on “phinally” platform

certain active core is switched off. Considering this concept, some refinements have been done

in multi-core chip power modelling with making baseline power W0 as a combination of w00 and

w01:

WCPU (f, n) = W00 + (W01 +W1f +W2f
2)n = W00 + w01 + w1f + w2f

2, (5.2)

with W0(n) = W00 + w01, where W00 is the part of the baseline power which is really constant

irrespective of number of cores utilized and w01 = W01n is the variable part of the baseline

power which varies with switching on different number of cores and has a smaller contribution

of the variable part W01 compare to the fixed part W00. For “phinally” system, the absolute real

baseline power W00 is around 14 W which is independent of anything and extra W01 of about

1.2 W per core is added when switch on a core.

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8

Variable baseline power W0=W00+W01nFixed baseline power W0

(b) Modified Baseline Power Model(a) Previous Baseline Power Model

Figure 5.2.: The baseline power model for a single-socket 8 cores system node

The modified CPU power dissipation model for optimal frequency fopt of scalable applications

is compared against measurement curves. This model fairly describes the actual optimal clock

speed with a difference of about 0.1 GHz at some points as shown in Fig. 5.3. Also the optimal

clock speed slows down when switch on different number of cores which is reflected by much

smaller contribution of variable baseline power W01 against quadratic factor W2.

fopt(n) =

√
W00 +W01n

W2n
=

√
W0(n)

w2

(5.3)

32

5.2. DRAM Power dissipation Model

2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

0 0.5 1 1.5 2 2.5 3

C
P

U
 E

n
e

rg
y

[J
]

Frequency[GHz]

Energy@1cores

Energy@2cores

Energy@3cores

Energy@4cores

Energy@5cores

Energy@6cores

Energy@7cores

Energy@8cores

Measured fopt

Model fopt

Figure 5.3.: A comparison of measured optimal frequency with modified modelled optimal frequency fopt
of the dynamic CPU power dissipation model for DGEMM benchmark code on “phinally”

system

5.2. DRAM Power dissipation Model

With the widespread use of multi-threaded, multi-core processors, the rapid increase in demands

on installed memory bandwidth and capacity is fulfilled by replacing conventional memory de-

signs with new proposed designs. However, memory accesses become slower with respect to the

processor (“memory wall” [25]) and consume more power with increasing memory system and

complexity of applications. Thus, the focus of memory performance and power consumption has

become increasingly important in the overall system power profile.

Memory system behavior and architecture of each type of DRAM system (i.e., SDRAM,

DDR, and more) is sensitive to supportable bandwidths and topologies (i.e., number of DIMMs,

number of channels), which in turn affects performance. However, trend for memory system

performance is difficult to discern as it is affected by interaction of many parameters includ-

ing DRAM timing parameters, memory system topologies and memory controller policies [26].

Moreover, a comparison of the memory system architectures becomes non-trivial when the di-

mensions of the power consumption and the manufacturing cost are added.

Starting with the Intel Sandy Bridge processor, it has become possible to directly measure

the power dissipation of dynamic random access memory and correlate this data with the perfor-

mance properties of the running code depending on the workload (in Section 4.4). From analysis

of preliminary results for the power dissipation of installed DRAM on benchmark programs, a

simple, phenomenological DRAM power model is derived:

WDRAM (B) = WDRAM
0 + wB (5.4)

where, memory bandwidth B = min(n∗f/f0∗B0, bs) is the limiting factor measured in GBytes/s,

w is a constant, in Watts
GBytes/s , which tells that how much power is needed for each GB/s drawn

from memory. Further, WDRAM
0 is the background power that a DRAM consumes all the time

with or without operations. Furthermore, the actual parameters (slope w, base power WDRAM
0)

depend on the particular type and number of DRAM DIMMs, and they are determined by curve

fitting method.

This dynamic random access power model takes the memory bandwidth as input parameter

and predicts the power burnt in DRAM for different workloads with variant multi-core density

33

5. An Analysis of Analytical Models and Validation

and frequency configurations. Further, this model suggests a DRAM power proportionality with

memory bandwidth and certain background power. To validate the DRAM power dissipation

model, measurement curves are compared against modelled curves. It was observed that the

background power WDRAM
0 is smaller for DGEMM code instead of being constant. This effect

might be explained by its smaller bandwidth utilization compared to Jacobi case that causes

the DRAM power to go to a power saving state. However, it does not happen with Jacobi case

because it constantly stream data and pre-fetchers work perfectly. Hence, the DRAM power

model describes nicely the actual measured memory power consumption (see Fig. 5.4).

0

4

8

12

16

20

24

0 1 2 3 4 5 6 7 8

D
R

A
M

 P
o

w
e

r
[W

]

Number of Threads

Power DRAM@2.7GHz

Power DRAM@2GHz

Power DRAM@1.2GHz

W0
DRAM

WDRAM = 6.1 + 1.19 B

WDRAM = 5.8 + 0.76 B

WDRAM = 5.8 + 1.38 B

(a) DGEMM Benchmark Code

0

4

8

12

16

20

24

28

32

36

40

44

0 1 2 3 4 5 6 7 8

D
R

A
M

 P
o

w
e

r
[W

]

Number of Threads

Power DRAM@2.7GHz

Power DRAM@2.0GHz

Power DRAM@1.2GHz

W0
DRAM

WDRAM = 9.3 + 0.82 B

WDRAM = 9.4 + 0.99 B

WDRAM = 10.3 + 0.62 B

(b) Jacobi Benchmark Code

Figure 5.4.: A comparison of measured power dissipation data points of memory (circles) with the

DRAM power dissipation model (5.4) (dotted lines) on “phinally” platform

5.3. Multi-core Total System Power dissipation Model

This section provides a complete model for estimation of whole system dynamic power consump-

tion of an installed system. This refined overall system power consumption model also considers

the modelling for dynamic power consumption of memory module in addition to CPU power

modelling, since DRAM power can’t be neglected especially for an architecture with a lot of

memory installed. The overall power dissipation model is

W Total(f, n,B) = WCPU (f, n) +WDRAM (B)

= W00 + (W01 +W1f +W2f
2)n+WDRAM

0 + wB
(5.5)

5.4. Multi-core Total System Energy to solution Model

At the heart of many approaches towards energy efficient computing lie energy models that

allow extrapolating the future energy consumption of a system. The model for estimating the

overall energy to solution of whole system during a certain period of time is obtained as:

ETotal(f, n,B, T) = W Total(f, n,B, P) ∗ T (5.6)

where W Total is the overall dynamic power dissipation, T is the total execution time of that

program and T = 1
P is an assumption that is valid if we always solve the same problem (i.e.,

the “work” can be normalized to one). Therefore, the energy consumption at the granularity of

34

5.4. Multi-core Total System Energy to solution Model

an application is also calculated by concurrently estimating the overall system dynamic power

to performance ratio:

ETotal(f, n,B, P) = ECPU (f, n, P) + EDRAM (B,P)

=
W00 + (W01 +W1f +W2f

2)n+WDRAM
0 + wB

min((1 + ∆f
f0

)nP0, Pmax)

(5.7)

It should be noted here that the performance model makes a decisive simplification here: We

assume that the performance is linear in the clock speed until a bottleneck is hit. This is not

strictly true for strongly memory-bound loops, but the error is small.

This energy to solution model considers both the energy consumed by the whole CPU and

DRAM module. It is used to account the energy usage to the respective system for allowing an

application behaviour to remain within externally specified energy constraints. Many interesting

conclusions for system design can be drawn from this model with considering typical require-

ments of a computing centre. This energy model suggests that in order to save energy, a machine

should run at optimal frequency with maximum core counts for compute-bound codes, and at

lower frequency with core count near saturation for memory-bound codes [10]. Moreover, if we

look at consequences of the modification of the power model (i.e., addition of W01 and DRAM

power WDRAM) for these conclusions then there are no changes for scalable codes, because the

DRAM power is then a contribution to W00 and W1 (since B is linear in n and f). However,

for saturating codes, B = min(n ∗ f/f0 ∗ B0, bs), although the numerator in modified energy

model picks up a different characteristic from before but still it does not make a big difference

for these conclusions.

35

Chapter 6
Consequences for Code execution

To better understand how to achieve an energy-efficient execution of parallel programs, one

needs to see where the power is drawn, and to identify possible ways to increase the energy

efficiency of the system. Together with the previously described models and results, this section

explains many peculiarities in the performance and power behaviour of multi-core processors,

and derives guidelines about running scientific computing workload in best possible way. Later,

a power and energy comparison of the different architectures available at RRZE computing

centre is introduced in Section 6.4.

6.1. Energy delay product and its generalization

To derive a general necessary condition under a time-energy trade-off for improving the energy

efficiency, a more appropriate metrics such as “Energy delay product (EDP)” and its generaliza-

tion metrics are targeted which give more information than pure “Energy to solution” metric:

ETotal(f, n,B, T) ∗ T i =
ETotal

P i
=

W Total

P 2i
, (6.1)

where i is a small number (i.e., i= 1,2,3), T is the required total execution time for running an

application and P = 1
T is an assumption that is valid if the “work” can be normalized to one,

i.e., if we always solve the same problem. In particular, that rules out that we look at these

metrics in a weak scaling scenario. The energy delay product EDP and its generalization ED2P

and ED3P metrics are measured in Js, Js2 and Js3, respectively.

The energy delay product determines and quantifies that the improvements in energy-efficiency

may or may not require a slowdown. In other words, it shows whether the loss in performance

is outweighed by the gain in energy efficiency or not. Many approaches towards energy-efficient

system select configurations to avoid performance loss whereas some allow for a certain (con-

strained) performance loss while saving energy.

There are general scenarios to expect an time-energy trade-off at the granularity of an al-

gorithmic properties or a micro-architecture of the system. One relevant approach for consid-

erations of the running code is to trade more compute operations for less data transfers. On

the other hand, from an architecture perspective, when we play around frequency then there

happens some contradiction between maximum performance and minimum energy consump-

tion. For instance, the reduced frequency setting saves energy but at the same time we have

37

6. Consequences for Code execution

to compromise performance, due to the quadratic relationship between the frequency and the

CPU power (see Fig. 6.1).

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100 120 140 160 180

To
ta

l E
n

e
rg

y
to

 s
o

lu
ti

o
n

[J
]

performance [GF/s]

Total Energy to solution [J]@2.7 GHz

Total Energy to solution [J]@1.2 GHz

PPC = 1

PPC = 8
PPC = 8

PPC = 1

(a) DGEMM Benchmark Code

0

200

400

600

800

1000

0 500 1000 1500 2000

To
ta

l E
n

e
rg

y
to

 s
o

lu
ti

o
n

[J
]

Performance[MLUP/s]

Total Energy to solution [J]@2.7 GHz

Total Energy to solution [J]@1.2 GHz

PPC = 1

PPC = 6

PPC = 1

PPC = 4

(b) Jacobi Benchmark Code

Figure 6.1.: A “Z-Plot”of the energy to solution versus performance for available number of cores utilized

with optimal value of “Energy delay product” on “phinally” machine

For studying energy to solution and EDP, it is quite useful to plot the energy consumption

and the performance in a “Z-Plot”, which illustrates the energy to solution versus performance

for different core counts. In a Z-plot, all points with a constant energy-delay product lie on a

straight line through the origin. In fact, the slope of this line is equal to the EDP if P=1/T and

EDP unit varies with the unit of performance due to our convention of P=1/T.

The “Z-plot” is useful for quantifying the amount of the energy reduction at the cost of

performance loss. It suggests that one would like to operate a code as far to the right and

bottom as possible in the “Z-plot” to save energy. It illustrates that in this “Z-Plot” how the

basic characteristics of scalable (DGEMM-like) and saturating (Jacobi-like) codes look like, i.e.,

the performance improvement with the energy reduction continue to grow with the increasing

number of cores until it hits a bottleneck; whereas, after saturation the energy consumption

starts to increase with the performance remains constant. Furthermore, the “Z-plot” explains

the general behaviour with the clock speed changes, i.e., the clock speed reduction causes a large

growth in performance loss for scalable codes comparable to saturating codes where we have a

comparatively smaller performance reduction.

The “energy efficiency” of a system is a “low EDP”. The large performance sacrifice was

observed at lower frequency setting for scalable applications (i.e., almost double slope of the EDP

for DGEMM code). Therefore, for energy efficient execution of a scalable application, the energy

model 5.4 suggests that it is highly recommendable to run such applications at optimal or higher

frequencies with maximum number of available cores with or without sacrificing performance,

respectively. However, for energy efficient execution of a saturating application, the performance

loss near saturation point for the lower frequencies is not so high compare to a core-bound case.

Thus, this is totally dependent on desirable goal that either it allow a performance loss or not.

For instance, to achieve the minimum overall energy consumption it is suggested to run Jacobi

smoother at 4 cores with 2.7 GHz without compromising time to solution or to run it at 6 cores

and 1.2 GHz with a maximum increase in time to solution, respectively. However, the EDP is

larger in the latter case.

38

6.2. Power Capping

6.2. Power Capping

Today power dissipation, being a limiting factor, has emerged at the forefront of challenges

facing the microprocessor designer. In the past, the cooling infrastructures were designed for

the worst situation of a microprocessor in which the processor is constantly operating at its

theoretical maximum power and thus dissipates a maximum of heat. However, such components

are costly and cannot be expected to scale to the higher power levels as transistor dimensions

shrink. Although, most ordinary tasks do not cause the processor to consume this maximum

power but when they do so the alternative is to choose a more moderate thermal design power.

Nowadays, the goal of some scientific computing centre environments is to keep the overall

power dissipation below some threshold (i.e., W Total ≤ Wmax), which is called power capping.

This power capping feature does not work with energy to solution or energy delay product

metrics, in fact it strictly works with power dissipation of a system. Therefore, it is important

to look at different general approaches to run an application to be cooler but with the same

performance.

The properties of an algorithm can help to inform power management. For instance, if given

allowed power dissipation of Sandy Bridge EP processor in “phinally” system is 120 W, then

overall power dissipation is higher for both scalable DGEMM and saturating Jacobi cases as

shown in Figure 6.2. However, for saturating applications, the goal of lower power dissipation

is easily achievable by running this application with smallest necessary number of cores near

saturation point without limiting performance (e.g., at run jacobi code at 5 cores in Figure

6.2(b)). Although, for scalable applications, this goal of power capping requirement is more

complex and difficult to achieve. A processor must be clock down if it becomes too hot after

executing scalable tasks which exceed this power constraint. Hence, frequency reduction de-

grades the system’s performance with less science achieved and should only be applied if really

necessary. For example, in Figure 6.2(a), DGEMM code has the whole power dissipation of 123

W at maximum 8 number of cores of “phinally” system with 2.7 GHz base clock speed. Suppose

this power dissipation is above threshold value then one has to sacrifice time to solution by clock

speed slowdown to achieve the power capping goal.

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3

To
ta

l P
o

w
e

r
d

is
si

p
at

io
n

 [
W

at
ts

]

Frequency[GHz]

Total Power@8cores

Total Power@7cores

Total Power@6cores

Total Power@5cores

Total Power@4cores

Total Power@3cores

Total Power @2cores

Total Power@1cores

(a) DGEMM Benchmark Code

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3

To
ta

l P
o

w
e

r
d

is
si

p
at

io
n

 [
W

at
ts

]

Frequency[GHz]

Total Power@8cores

Total Power@7cores

Total Power@6cores

Total Power@5cores

Total Power@4cores

Total Power@3cores

Total Power@2cores

Total Power@1cores

(b) Jacobi Benchmark Code

Figure 6.2.: Overall power dissipation of a Sandy Bridge EP processor in “phinally” system.

Figure 6.3 shows a graph with “foced performance loss versus overall (CPU + DRAM) power

39

6. Consequences for Code execution

cap”, which quantifies how much performance needs to sacrifice if power capping is really present.

This curve is largely horizontal for saturating Jacobi but sloped for scalable DGEMM as ex-

pected. It illustrates the suitability of Jacobi code for running under power capping. If there

is a power cap, we may be able to run Jacobi with no noticeable performance loss but without

hitting the power cap, just by setting a low frequency and adjusting the core count.

0

20

40

60

80

100

120

140

160

180

50 60 70 80 90 100 110 120 130

P
e

rf
o

rm
an

ce
 [

G
Fl

o
p

s/
s]

Total Power Cap [W]

1.2 GHz

2.7 GHz

(a) DGEMM Benchmark at 8 cores

0

200

400

600

800

1000

1200

1400

1600

1800

60 70 80 90 100 110 120 130

P
e

rf
o

rm
an

ce
 [

M
LU

P/
s]

Total Power Cap [W]

2.7 GHz

1.2 GHz

(b) Jacobi Benchmark at 5 cores

Figure 6.3.: Overall power dissipation vs. power cap of a Sandy Bridge EP processor in “phinally”

system.

6.3. Trading performance for energy

This section elaborates general approach to treat problem slowdown under a time-energy trade-

off. For instance, some goals like power capping of computing centres result in the performance

loss by reducing the clock speed of scalable codes as discussed in previous Section 6.2. This is

an interesting dimension that things get more complicated with sacrificing the performance.

There are two general approaches to build an energy-efficient system design compared to their

baseline power W0. First approach is to build a very cool systems like BlueGenes with very small

baseline power W0. These systems are typically slow because of low clock speed but they are

very parallel with hundreds of thousands of processors. On the other hand, second approach is

to build very fast and hot processors with large value of baseline power W0 (e.g., one processor

with 1000 watts). This approach is very interesting but practically no one build such systems

as technology challenges are very hard and such a large watts of space is not feasible. These

two corner cases (i.e., many cold CPU with low clock speed and few hot CPU with high clock

speed) are examined with energy cost model to trade some performance for saving the energy

consumption.

Suppose if the performance reduction is accepted for considered energy cost model system

in Section 2.2 then it means that this machine always have less science for its six years of

operational runtime. However, this saved money can be used in energy to buy a larger system

for compensate performance loss. We can assume the point of view that a certain system is

running at the optimal clock speed fopt and then adjust the size of the system to compensate

for the performance loss. Hence, now this considered system will be cooler but probably larger

to get same science over six years. In addition, the potential of larger machines towards energy

saving needs to be targeted that either it costs more or less.

40

6.3. Trading performance for energy

If we neglect the small linear part in the power model 5.2, then the ratio of power dissipation

between the optimized and the base clock frequencies is smaller than one for equal sized systems:

W (fopt, n)

W (fo, n)
=
W0(n) +W2nf

2
opt

W0(n) +W2nf2
o

=
2W0(n)

W0(n) +W2nf2
o

(6.2)

However, if we adjust the size of the optimized system by a factor fo
fopt

that reflects the chip

performance ratio (and assume perfect scaling for applications), so the resultant dimensionless

ratio R quantifies the energy saving potential of the large machine to compensate for the loss

in performance. The R metric can explore the design space of possible parallel machines with

different values for W0, W2, and n.

R =
W (fopt, n)

W (fo, n)

fo
fopt

=
2fo

√
W0(n)W2n

W0(n) +W2nf2
o

(6.3)

Rcool ≈
2

fo

√
W0(n)

W2n
=

2fopt
fo

; W0 �W2f
2
on (6.4)

Rhot ≈
2fo
√
W2n√

W0(n)
=

2fo
fopt

; W0 �W2f
2
on (6.5)

It is straightforward to show that the energy saving potential matrix R = 1 for W0 = W2nf
2
o ,

and R < 1 otherwise. A value of R = 1 marks the inflection point where it is not possible to

save energy by trading clock speed for machine size. In the limit of very small baseline power

W0 � W2f
2
on, a large number of cores per chip thus favors large, cool systems. On the other

hand, energy can also be saved with a very high clock frequency for “hot” machines where

W0 �W2f
2
on.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000

En
e

rg
y

sa
vi

n
g

p
o

te
n

ti
al

 R

Baseline power Wo [W]

2.7 GHz @8Cores

1.2 GHz @8Cores

2.7 GHz @16Cores

900 MHz /100 W
3 * size 7 GHz /690 W

0.4 * size

Figure 6.4.: Energy saving potential R vs. baseline power W0(n) for running a system at the optimal

clock speed fopt and 1.5 W dynamic power parameter W2 with a scalable code and adjusting

the system size for constant aggregate performance.

If we plot R(W0), it is the combination W2f
2
on which determines the shape of the curve, and

especially the position of the inflection point R = 1 (see Fig. 6.4). At a given value of W2f
2
on,

the region left of R = 1 is where a clock slowdown can save energy corresponding to larger cool

machine, because the baseline power is small. The region to the right of R = 1 is where “clock

41

6. Consequences for Code execution

race to idle” applies , see Section 2.4 (and a correspondingly smaller machine). Here the chip is

so hot that it is beneficial to run at very high clock speed to “get it over with”.

Figure 6.4 shows three different scenarios by choosing a different number of cores and a

different base clock speed fo. Note that any change in W2 can be mapped to a proportional

change in n, so W2 was fixed to 1.5 W/GHz2, which is roughly the measured value for scalable

codes with the Intel Sandy Bridge EP processors in the “phinally” system at RRZE. For the

case fo = 2.7 GHz at eight cores, the inflection point R = 1 point is at W0 ≈ 90 W. All other

parameters being equal, a small baseline power of W0 = 10 W leads to a system that can be

made 3 times larger, runs at f = 900 MHz, and dissipates about 20 W per chip (including the

dynamic power). On the other hand, if W0 = 600W we get processors running at f = 7 GHz

and 1200 W, but the system can be built at 40% of its original size. The plus point in Fig. 6.4

marks the position of “phinally”, whose base frequency is 2.7 GHz at eight cores and an overall

baseline power of W0 ≈ 24 W. Since this point is far from the maximum where R = 1, it is

possible to save energy on this system by reducing the clock speed in favor of more hardware.

These considerations stretch the power model 5.2 very far, and it is not expected that the

numbers derived above have any useful accuracy as these calculations assume a scalable code and

really exact calculations for fopt. However, the model is still interesting for qualitative design

space exploration.

6.4. Results for different architectures

In this section we present the power dissipation and energy consumption behaviour for the test

systems from the benchmark programs under different type of workloads. All architectures run

Linux OS and use the intel compiler suites. The benchmarks are executed with the same input

set size on all four different platforms discussed in Chapter 3 (i.e., phinally, emmy, ivybridge and

haswell, 2.2 - 3 GHz base frequency) in order to have comparable numbers. Measurements of the

performance, the power dissipation and the energy consumption of full socket are performed for

all four platforms. Furthermore, from preliminary results of benchmark programs with vastly

different requirements to the hardware, a simple comparable conclusion is derived about the

characteristics for these platforms.

6.4.1. Comparison in terms of Performance

In terms of performance, the observed differences between the benchmark systems can be ex-

plained by their basic properties: peak performance and memory bandwidth (see Chapter 3).

All systems show close to peak performance for DGEMM; the bandwidth-bound Jacobi code

performs in accordance with the Roofline model (see Section 4.2). Figure 6.5 shows a summary

of the in-socket performance scaling data for the two benchmark on all four systems.

6.4.2. Comparison in terms of Power

In the case of both core-bound and memory-bound workloads, it is observed that the haswell

architecture in “hasep1” platform is significantly faster than others, but at the same time,

is really a hot processor whereas other platform consumes less power (see Fig. 6.6). The

increase in power occurs because of the overall rise in utilization and throughput of the processor,

i.e., the haswell processor completes the same work in a shorter period of time. Preliminary

42

6.4. Results for different architectures

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e

rf
o

rm
an

ce
 [

G
Fl

o
p

s/
s]

Number of threads
Performance [Gflops/s]@phinally Performance [Gflops/s]@Ivybridge

Performance [Gflops/s]@haswell Performance [Gflops/s]@Emmy

(a) DGEMM Benchmark Code

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e

rf
o

rm
an

ce
 [

M
LU

P/
s]

Number of Threads
performance[MLUP/s]@phinally performance[MLUP/s]@ivybridge

performance[MLUP/s]@haswell performance[MLUP/s]@emmy

(b) Jacobi Benchmark Code

Figure 6.5.: Performance of phinally, ivy bridge, haswell and emmy platforms at their respective base

clock frequencies.

measurements for whole CPU also witness that DGEMM is not absolute hottest code and has

more computational intensity compare to the hottest code.

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

C
P

U
 P

o
w

e
r

[W
]

Frequency [GHz]
Power [W]@phinally Power [W]@Emmy

Power [W]@Ivybridge Power[W]@haswell

(a) DGEMM Benchmark Code

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

C
P

U
 P

o
w

e
r

[W
]

Frequency [GHz]
Power [W]@phinally Power [W]@Emmy

Power [W]@Ivybridge Power[W]@haswell

(b) Jacobi Benchmark Code

Figure 6.6.: The on-chip power of phinally, ivy bridge, haswell and emmy platforms at their respective

number of available cores.

The power dissipation vs. clock speed data in Fig. 6.6 shows that the “phinally” and “ivyep1”

systems are quadratic, the “emmy” platform is linear, and the “hasep1” machine is exceptional.

When using the full chip, the exceptional behaviour of “hasep1” is justified by the fact that the

chip tries to keep power below its Thermal Design Power (TDP) by all means [27]. However, one

can be able to recover the smooth quadratic power frequency curve by using fewer cores, e.g.,

10 or 12 cores instead of 14 cores. Furthermore, the chip power of Ivy bridge processor in the

“emmy” platform illustrates a linear behaviour with the clock speed and implies a zero quadratic

factor W2 in multi-core CPU power model. In reality, the absolute values of the quadratic factor

W2 is very small compared to linear factor W1, so that the linear behaviour dominates for the

“emmy” cluster. This linear behaviour of chip power for “emmy” production cluster is justified

43

6. Consequences for Code execution

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
P

U
 P

o
w

e
r

[W
]

Number of threads

CPU Power[W]@Phinally CPU Power[W]@Ivybridge

CPU Power[W]@Haswell CPU Power[W]@Emmy

(a) DGEMM Benchmark Code

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
P

U
 P

o
w

e
r

[W
]

Number of Threads
Chip Power[W]@Phinally Chip Power[W]@Ivybridge

Chip Power[W]@Haswell Chip Power[W]@Emmy

(b) Jacobi Benchmark Code

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
R

A
M

 P
o

w
e

r
[W

]

Number of threads
 Power DRAM [W]@Phinally Power DRAM [W]@Ivybridge

Power DRAM [W]@Haswell Power DRAM [W]@Emmy

(c) DGEMM Benchmark Code

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
R

A
M

 P
o

w
e

r
[W

]

Number of Threads
 Power DRAM [W]@Phinally Power DRAM [W]@Ivybridge

Power DRAM [W]@Haswell Power DRAM [W]@Emmy

(d) Jacobi Benchmark Code

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

To
ta

l P
o

w
e

r
[W

]

Number of threads
Total Power[W]@Phinally Total Power [W]@Ivybridge

Total Power [W]@Haswell Total Power [W]@Emmy

(e) DGEMM Benchmark Code

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14

To
ta

l P
o

w
e

r
[W

]

Number of Threads
Total Power[W]@Phinally Total Power [W]@Ivybridge

Total Power [W]@Haswell Total Power [W]@Emmy

(f) Jacobi Benchmark Code

Figure 6.7.: The power dissipation of phinally, ivy bridge, haswell and emmy platforms at their respec-

tive base clock frequencies.

by its very low base clock speed. Due to the low base clock frequency of 2.2 GHz, there is

presumably no room for voltage adjustments over the accessible frequency range, leading to a

44

6.4. Results for different architectures

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
P

U
 E

n
e

rg
y

to
 s

o
lu

ti
o

n
 [

Jo
u

le
s]

Number of threads
 Chip Energy [J]@Phinally Chip Energy [J]@Ivybridge

 Chip Energy [J]@haswell Chip Energy [J]@Emmy

(a) DGEMM Benchmark Code

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
P

U
 E

n
e

rg
y

to
 s

o
lu

ti
o

n
 [

Jo
u

le
s]

Number of Threads
 Chip Energy [J]@Phinally Chip Energy [J]@Ivybridge

 Chip Energy [J]@Haswell Chip Energy [J]@Emmy

(b) Jacobi Benchmark Code

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
R

A
M

 E
n

e
rg

y
to

 s
o

lu
ti

o
n

 [
Jo

u
le

s]

Number of threads
 DRAM Energy [J]@Phinally DRAM Energy [J]@Ivybridge

DRAM Energy [J]@haswell DRAM Energy [J]@Emmy

(c) DGEMM Benchmark Code

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
R

A
M

 E
n

e
rg

y
to

 s
o

lu
ti

o
n

 [
Jo

u
le

s]

Number of Threads
 DRAM Energy [J]@Phinally DRAM Energy [J]@Ivybridge

DRAM Energy [J]@Haswell DRAM Energy [J]@Emmy

(d) Jacobi Benchmark Code

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

To
ta

l E
n

e
rg

y
to

 s
o

lu
ti

o
n

 [
Jo

u
le

s]

Number of threads
Total Energy [J]@Phinally Total Energy [J]@Ivybridge

Total Energy [J]@haswell Total Energy [J]@Emmy

(e) DGEMM Benchmark Code

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

To
ta

l E
n

e
rg

y
to

 s
o

lu
ti

o
n

 [
Jo

u
le

s]

Number of Threads
Total Energy [J]@Phinally Total Energy [J]@Ivybridge

Total Energy [J]@Haswell Total Energy [J]@Emmy

(f) Jacobi Benchmark Code

Figure 6.8.: The energy consumption of phinally, ivy bridge, haswell and emmy platforms at their

respective base clock frequencies

linear power behaviour. Furthermore, the CPU power model suggests that the “emmy” system

should always be run at its base clock speed to get an optimal frequency fopt(n) =
√

W00+W01n
W2n

,

45

6. Consequences for Code execution

since W2 is zero or very small.

When the power consumed by one socket is analysed, the dominant part of the total power

is spent on the CPU cores, while a smaller (but still significant) fraction goes into the mem-

ory modules. Although by increasing number of cores (multi-core density) the overall power

increases, the power consumed by shared components (such as memory) does not scale linearly

with the number of cores. The clock speed of the DRAM effects the DRAM power, but there are

other influence factors that can play a decisive role. The previous experiments suggest that the

DRAM power is a linear function of the memory bandwidth delivered to the application, with

a non-zero base power (see Section 4.4). The actual parameters (slope, base power) depend on

the particular type and number of DRAM DIMMs, so we can only measure them. It is entirely

possible that we could buy a node with the same performance characteristics of an emmy node

but which consumes much less DRAM power because somebody has chosen a different DIMM

manufacturer.

While looking at overall power dissipated by a core of haswell processor in “hasep1” machine,

the fact that a haswell core dissipates less overall power comes from the particularly low DRAM

power dissipation in that particular Haswell node (see Fig. 6.7). Intel has also equipped the

haswell based processors with more power ratings and lower power modes so they can switch

power modes faster than their predecessor.

6.4.3. Comparison in terms of Energy to solution

For scalable codes, like DGEMM, the implementation of SIMD floating-point unit comes at the

cost of increasing power consumption but at the same time the instructions with boost floating-

point performance result in improved energy efficiency. The previous studies elaborate that a

“haswell” core is significantly faster than others (Sect. 6.4.1) and at the same time uses overall

less power which this is a consequence of the low DRAM power of this particular system (Sect.

6.4.2). Thus, it results in a very smaller overall energy-to-solution per core and increases the

overall energy-efficiency of the “haswell” system (see Fig. 6.8).

6.4.4. Overall comparison across architectures

To get maximum performance a system should be operated at the highest frequency, which

causes highest power dissipation; however all aspects need to be analysed together for getting

an energy-efficient system. An analysis has been performed to determine the desirable setting

with variant cores and frequency to obtain an energy efficient execution of running applications.

Two metrics are used for this analysis: minimum energy to solution and minimum energy delay

product.

In figure 6.9, the blue bars represent the minimum energy to solution and the orange bars

show the minimum value of EDP. It is extremely interesting to note that these comparison results

collaborate and substantiate the findings from Section 6.1 for an energy-efficient system. It was

stated in Section 6.1 that a system should run at maximum cores with optimal or base clock

speed for core-bound case with or without sacrificing performance, respectively. Moreover, for

saturating memory-bound case, a machine should run near saturation point at lower or higher

clock speed with or without compromising performance, respectively.

The exceptional frequency setting with “emmy” can be observed with compute bound DGEMM

application because of zero quadratic factor. However, it is not observed beyond saturation point

for Jacobi case, since lower frequency is always better after a bottleneck is encountered and clock

46

6.4. Results for different architectures

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Phinally
@8cores

emmy
@10coes

ivybridge
@10cores

haswell
@14cores

Optimal Energy [J]

Optimal EDP (*10) [Js]

f0 = 2.7 GHz

f0 =
2.3 GHz

f0 = 3 GHz

f0 =
2.2 GHz

f0 = 2.2 GHz

fopt =
2.4 GHz

fopt =
1.6 GHz

fopt =
1.5 GHz

(a) DGEMM Benchmark Code

0

200

400

600

800

1000

1200

1400

1600

1800

Phinally
@5cores

emmy
@6cores

ivybridge
@7cores

haswell
@10cores

Optimal Energy [J]

Optimal EDP [Js]

f = 1.6 GHz
f = 1.7 GHzf = 1.6 GHz

f = 1.8 GHz

f = 2 GHz

f = 1.9 GHz

f = 1.2 GHz

f = 1.2 GHz

(b) Jacobi Benchmark Code

Figure 6.9.: Desirable configurations of “phinally”, “ivyep1”, “hasep1” and “emmy” platforms for min-

imum energy consumption and minimum energy delay product (EDP) with and without

compromising performance.

slowdown is independent of linearity of the chip power in the frequency. Moreover, Haswell does

not have a memory bandwidth degradation with lower clock speed (as the others all do). This

is why both the minimum energy and the minimum EDP cases have the same frequency of 1.2

GHz for jacobi benchmark.

The comparison of all results in terms of energy delay product shows that the first three

architectures (“phinally”, “ivyep1” and “emmy”) are comparable but “hasep1” has a really

very small energy delay product (see Fig. 6.9). This smaller EDP is justified by its highest

performance due to the FMA units (doubled peak performance) in scalable region.

47

Chapter 7
Statistical Variation of Power Characteristics

An analysis has been done to obtain a statistical variation of the power characteristics for

Ivy Bridge EP chip in “emmy” production system. For this purpose, the power profiles were

analysed by using Intel RAPL counters from a large pool of characterization experiments, in

which a machine operates at a varying CPU cores, n and clock frequency, f. This enables us to

define a policy for power aware scheduling on “emmy” cluster and thereby saves energy cost of

“emmy” cluster. Detail characteristics of this “emmy” system are available in Section 3.4.

7.1. Methods and results

7.1.1. Measurement methodology

The jobs with a shell script (see Sect. 3.5.2) were submitted on every emmy cluster node through

the batch system:

1 #!/ bin /bash

2

3 # Li s t a l l a v a i l a b l e emmy nodes

4 NODES=`pbsnodes −a | grep ' ˆe ' | tail −n +17`

5

6 f o r n in $NODES ; do

7 qsub −l nodes=${n } : ppn=xx , walltime=HH : MM : SS script . sh

8 done

The list of cluster nodes can be obtained by “pbsnodes -a” (line 4). It provided the 1120

data sets (one for each socket) of the power and the energy consumption using likwid-perfctr

“ENERGY” group. Moreover, the power model parameters Wi were obtained by Levenberg-

Marquardt non-linear least square curve fitting method (discussed in Section 3.5.3). The graph-

ical representation of the distribution of data was done using a histogram.

Histogram

A statistical method is needed to elaborates the variation of the power characteristics. His-

togram [28] is a graphically summarize representation of a frequency distribution of continuous

data, where the equal-sized bins represent ranges of data, and the areas of the rectangles are

proportional to the corresponding frequencies or the number of hits for each bin. It is used to

better understand how frequently or infrequently certain values occur in the measured power

49

7. Statistical Variation of Power Characteristics

and its model parameter data. Thus, a histogram hi is a function that counts the number of

bins b for the total number of observations n to encounter the following conditions:

n =

b∑
i=1

hi (7.1)

Probability density function (pdf)

Histograms [28] give a rough sense of the density of the data, and estimation of the probability

density function of the underlying variable is required. The density estimate is drawn as a curve

rather than a set of bars. The normalized number of hits is the ratio of the bin count to the

number of observations times the bin width.

Normalized number of hits =
b

n ∗ w
(7.2)

In this section, a relative histogram was built for performing a statistical analysis of power

consumption on “emmy”. It normalized the number of hits and made the total area under

histogram equal to one by modelling probability density function. A smoother probability

density function was obtained, which reflected more precisely the distribution of the underlying

power dissipation.

Bin selection (count and width)

There is no best way for finding number of bins and bins width, since it strongly depends upon

the actual data distribution and the goals of the analysis. However, some scholars have tried to

define a finest number of bins, but these approaches normally make strong assumptions about

the shape of the distribution. Thus, the bin count can either be defined arbitrarily or via some

useful methodical rule. The bin count b can be calculated from a proposed bin width w via

ceiling function as:

b =
[max(x)−min(x)]

w
(7.3)

Square-root choice b =
√
n takes square root of the number of data points in the sample.

Scott’s normal reference rule [28] w = 3.5σ
3√n , where σ is the sample standard deviation, is

optimal as it reduces the integrated mean squared error of the density estimate for random

samples of normally distributed data. The Scott’s result is true for large sample size n.

Algorithm to create a Histogram with pdf

The following procedure was done to overlay the probability density function on the top of the

histogram:

1. Firstly, the minimum, maximum, average and standard deviation of data points related

to the power and its model parameters Wi were determined.

2. The number of bins were established via Scott’s normal reference rule for data points

related to 544 compute nodes and via square root choice for 16 accelerator nodes data.

3. Bin width w was calculated via ceiling function as b = [max(x)−min(x)]
w

50

7.1. Methods and results

4. The absolute frequency was found by using the function “frequency” for all bins.

5. The relative frequency was determined by dividing the absolute frequency of one bin by

the number of all observations times bin width w.

6. A histogram graph of the relative frequency was created and adjusted.

7. To overlay probability density function on top of histogram, the normal distributions were

calculated for points starting at -3σ and increased it all the way up to +3σ.

8. The mean, bin width w as well as +/- 3σ, +/- 2σ and +/- 1σ values were displayed on

histogram graph.

MATLAB Code

This matlab function was used to create a relative histogram using different input data and it

delivers the probability density function of the fitted distribution as an output (see Appendix

B.2).

The function “ecdf” in line 7 computes the empirical cumulative distribution function and

“ecdfhist” (line 10) returns the bar heights and the position of the bin centers for equally spaced

bins (determined via scott’s rule). It normalizes the bar heights so that the area of the histogram

is equal to 1. The “bar” function (line 11) creates a bar graph named as “hist”. Further, lines

18-20 create a grid where function need to be computed while generating linearly spaced 100

points by “linspace” function. Moreover, the function “pdf” returns the probability density

function of the probability distribution object created by fitting the normal distribution to the

data (line 23 and 24).

7.1.2. Statistical Results

A study of the variation in the power characteristics for both CPU and DRAM modules is done

with using realistic parallel applications on both compute and accelerator nodes of the “emmy”

platform.

1. Emmy’s compute Nodes

i. CPU power and model Parameters

A statistical analysis on the package power consumption of whole Ivy Bridge EP processor for

544 emmy’s compute nodes was obtained in succession with above mentioned methodology to

see how close they come to each other. The histogram plots for the CPU power dissipation and

its model parameters Wi, i = 0, 1 2, are plotted on each 10 cores socket in turn with base clock

speed f0 of 2.2 GHz for both DGEMM and Jacobi benchmark applications, respectively. The

histogram charts include outliers and show the specified bin widths calculated via Scott’s rule,

the mean data value and both positive and negative standard deviations (see Figures 7.1, 7.2).

These histograms characterize the CPU power dissipation data with a well-defined peak that

is close in value to the mean. In addition, there are “outliers” of relatively very low frequency

or density which were eliminated while performing analysis of power variation characteristics on

“emmy” platform.

The tabulated information obtained from these histograms (see Table 7.1) excludes “outliers”

and shows that the results inside the node for both socket 0 and 1 are very similar (i.e., maximum

0.02 standard deviation difference); whereas a large data variation was observed across nodes on

51

7. Statistical Variation of Power Characteristics

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

40 50 60 70

D
e

n
si

ty

CPU power [W] for Socket 0

Bin width

1.3Watts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

40 50 60 70

D
e

n
si

ty

CPU power [W] for Socket 1

Bin width

1.2Watts

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

D
e

n
si

ty

CPU Parameter W2 [W/GHz2] for Socket 0

Bin width

0.05 Watts

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

D
e

n
si

ty

CPU Parameter W2 [W/GHz2] for Socket 1

Bin width

0.05 Watts

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

D
e

n
si

ty

CPU Parameter W1 [W/GHz] for Socket 0

Bin width

0.12 Watts

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3

D
e

n
si

ty

CPU Parameter W1 [W/GHz] for Socket 1

Bin width

0.12 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

8 10 12 14 16 18 20 22 24 26 28

D
e

n
si

ty

CPU Parameter W0 [W] for Socket 0

Bin width

0.8 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

4 6 8 10 12 14 16 18 20 22 24

D
e

n
si

ty

CPU Parameter W0 [W] for Socket 1

Bin width

0.8 Watts

Figure 7.1.: The CPU power dissipation and its model parameters Wi for DGEMM benchmark on

“emmy” system

same “emmy” platform. For both scalable and saturating application, the smaller CPU power

dissipation WCPU is according to expectations along with some measurement error because of

52

7.1. Methods and results

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

40 45 50 55 60 65

D
e

n
si

ty

CPU power [W] for Socket 0

Bin width

1.1Watts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

40 45 50 55 60 65

D
e

n
si

ty

CPU power [W] for Socket 1

Bin width

1.1Watts

0

1

2

3

4

5

6

7

8

-0.4 -0.2 0 0.2 0.4

D
e

n
si

ty

CPU Parameter W2 [W/GHz2] for Socket 0

Bin width

0.03 Watts

0

1

2

3

4

5

6

7

8

-0.4 -0.2 0 0.2 0.4

D
e

n
si

ty

CPU Parameter W2 [W/GHz2] for Socket 1

Bin width

0.03 Watts

0

0.5

1

1.5

2

2.5

3

1.2 1.4 1.6 1.8 2 2.2 2.4

D
e

n
si

ty

CPU Parameter W1 [W/GHz] for Socket 0

Bin width

0.06 Watts

0

0.5

1

1.5

2

2.5

3

1.2 1.4 1.6 1.8 2 2.2 2.4

D
e

n
si

ty

CPU Parameter W1 [W/GHz] for Socket 1

Bin width

0.06 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 12 14 16 18 20 22

D
e

n
si

ty

CPU Baseline power W0 [W] for Socket 0

Bin width

0.58 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 12 14 16 18 20 22

D
e

n
si

ty

CPU Baseline power W0 [W] for Socket 1

Bin width

0.58 Watts

Figure 7.2.: The CPU power dissipation and its model parameters Wi for Jacobi benchmark on “emmy”

system

lower base frequency of the “emmy” system. In addition, the baseline power W0 = W00 +10W01

is constant on fixed 10 cores.

53

7. Statistical Variation of Power Characteristics

Table 7.1.: A statistics of CPU Power and its model Parameters Wi on “emmy” compute nodes at 2.2

GHz base frequency

Mean Standard deviation Range

S0 S1 S0 S1 S0 S1

Jacobi CPU power WCPU [W] 50.88 51.07 2.48 2.46 -1.9 – 2.1 SD -1.8 – 2.2 SD

Jacobi CPU power parameter W2 [W
GHz2

] -0.11 -0.11 0.07 0.07 -1.6 – 2.3 SD -1.6 – 2.3 SD

Jacobi CPU power parameter W1 [W
GHz] 1.83 1.84 0.15 0.16 -2.3 – 2.3 SD -2.0 – 2.5 SD

Jacobi CPU power parameter W0 [W] 16.02 15.87 1.34 1.35 -2.0 – 2.8 SD -2.0 – 2.4 SD

DGEMM CPU power WCPU [W] 53.69 53.69 2.93 2.91 -1.8 – 2.5 SD -1.8 – 2.3 SD

DGEMM CPU power parameter W2 [W
GHz2

] 0.08 0.1 0.11 0.13 -1.5 – 2.2 SD -1.4 – 2.1 SD

DGEMM CPU power parameter W1 [W
GHz] 1.82 1.79 0.26 0.28 -1.9 – 2.3 SD -1.9 – 2.0 SD

DGEMM CPU power parameter W0 [W] 14.45 14.56 1.78 1.9 -2.0 – 2.9 SD -1.5 – 1.8 SD

It was already discussed in Section 6.4.2 that “emmy” production cluster shows an excep-

tional linear power frequency trend and implies a zero quadratic factor W2 in multi-core CPU

power model because of its lower base clock speed (f0 = 2.2 GHz). In addition, it has been

observed from a pool of histogram plots that the quadratic chip power model parameter W2 has

comparatively a bit higher value for relatively hotter nodes with the large overall CPU power

dissipation. However, for other nodes, which are comparatively a bit cooler, quadratic factor W2

has values very close to zero which shows a perfect linear chip power and frequency behaviour.

For example, node 27 on rack 9 (e0927) is one of the hottest node of “emmy” cluster out of

544 compute nodes and has high value of the quadratic factor W2 parameter. Thus, in emmy

cluster, chip power model could exhibit at times a perfect linearity trend or sometimes a slight

bit quadratic behaviour depending on the temperature of specific chip.

It should be noted that all measurements for the statistical analysis were done using the

CPU’s RAPL counters. Any systematic inaccuracy in those counters, as well as manufacturing

tolerance, environmental conditions and any variation in the voltage regulator circuitry on the

motherboards may lead to the observed effects. A thorough investigation of the true reasons is

beyond the scope of this thesis; one may, e.g., move CPUs from a “hot” node to a “cold” node

and observe whether the “hotness” moves with the chips or stays with the board.

ii. DRAM power and model Parameters

The histogram charts for the DRAM power dissipation and its model parameters (WDRAM
0 , w)

are shown with indication of the mean values, standard deviations σ and bin widths w for both

scalable DGEMM and saturating Jacobi application, respectively (see Figures 7.3, 7.4).

Table 7.2.: A statistics of DRAM Power and its model Parameters on “emmy” compute nodes at 2.2

GHz base frequency

Mean Standard deviation Range

S0 S1 S0 S1 S0 S1

Jacobi DRAM power WDRAM [W] 41.99 44.41 1.32 1.47 -2.1 – 2.2 SD -1.2 – 2.0 SD

Jacobi DRAM power parameter w [Ws
GB] 0.64 0.67 0.03 0.03 -2.0 – 2.3 SD -1.7 – 2.1 SD

Jacobi DRAM power parameter wDRAM
0 [W] 16.39 17.73 1.26 1.3 -2.0 – 2.0 SD -1.9 – 2.0 SD

DGEMM DRAM power WDRAM [W] 17.93 19.34 1.28 1.21 -1.8 – 2.1 SD -2.0 – 2.0 SD

DGEMM DRAM power parameter w [Ws
GB] 1.11 1.16 0.04 0.04 -1.7 – 2.2 SD -1.9 – 2.0 SD

DGEMM DRAM power parameter wDRAM
0 [W] 10.57 11.65 1.25 1.15 -2.0 – 2.1 SD -2.0 – 2.1 SD

The information obtained from these histograms of DRAM power is tabulated in Table 7.2.

Again the DRAM power results inside the node for both S0 and S1 are very similar (i.e.,

54

7.1. Methods and results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

14 16 18 20 22 24 26 28

D
e

n
si

ty

DRAM Power [W] for Socket 0

Bin width

0.05 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

16 18 20 22 24 26 28

D
e

n
si

ty

DRAM Power [W] for Socket 1

Bin width

0.05 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

6 8 10 12 14 16 18 20

D
e

n
si

ty

Background DRAM Power W0
DRAM [W] for Socket 0

Bin width

0.55 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

6 8 10 12 14 16 18 20

D
e

n
si

ty

Background DRAM Power W0
DRAM [W] for Socket 1

Bin width

0.55 Watts

0

2

4

6

8

10

12

14

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

D
e

n
si

ty

DRAM Parameter w [Ws/GB] for Socket 0

Bin width

0.01 Watts

0

2

4

6

8

10

12

14

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

D
e

n
si

ty

DRAM Parameter w [Ws/GB] for Socket 1

Bin width

0.01 Watts

Figure 7.3.: The DRAM power and its model parameters (w and WDRAM
0) for DGEMM benchmark

on “emmy” platform

maximum 0.15 standard deviation difference) and a considerable data variation across the chip

was observed on same “emmy” platform.

The observation of results exhibit that a node with high DRAM power dissipation WDRAM

will exhibit a higher background DRAM power WDRAM
0 . For example, among all 544 emmy

compute nodes, node “e0116” dissipates highest DRAM power and has high background DRAM

power dissipation WDRAM
0 for running parallel applications.

2. Emmy’s Accelerator Nodes

The accelerator nodes on “emmy” are interesting to analyse, since these nodes have the same

amount of DRAM but faster DRAM frequency. The accelerator nodes were allocated by speci-

fying the property “ddr1866” upon job submission.

The histogram plots of both CPU and DRAM power dissipation (WCPU ,WDRAM) and their

55

7. Statistical Variation of Power Characteristics

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

36 38 40 42 44 46 48 50 52 54

D
e

n
si

ty

DRAM Power [W] for Socket 0

Bin width

0.6 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

36 38 40 42 44 46 48 50 52 54

D
e

n
si

ty

DRAM Power [W] for Socket 1

Bin width

0.6 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 12 14 16 18 20 22 24 26

D
e

n
si

ty

Background DRAM power W0
DRAM [W] for Socket 0

Bin width

0.55 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 12 14 16 18 20 22 24 26

D
e

n
si

ty

Background DRAM power W0
DRAM [W] for Socket 0

Bin width

0.55 Watts

0

2

4

6

8

10

12

14

16

18

20

0.3 0.4 0.5 0.6 0.7 0.8

D
e

n
si

ty

DRAM power parameter w [Ws/GB] for Socket 0

Bin width

0.015 Watts

0

2

4

6

8

10

12

14

16

18

20

0.3 0.4 0.5 0.6 0.7 0.8

D
e

n
si

ty

DRAM power parameter w [Ws/GB] for Socket 1

Bin width

0.01 Watts

Figure 7.4.: The DRAM power and its model parameters (w and WDRAM
0) for Jacobi benchmark on

“emmy” platform

respective model parameters (W2,W1,W0,W
DRAM
0 and w) are shown in Appendix D. As 16

accelerator nodes result in 16 data points for each sockets and the Scott’s result for bin width

selection is only true for large sample size so the Square-root choice formula was utilized for the

bin width selection of the accelerator nodes.

The tabulated data of both CPU and DRAM modules shows that again the results inside the

node are similar in contrast to the results across chip. Additionally, the CPU power dissipation

data for both the compute and the accelerator nodes are comparable with slightly larger power

for the saturating applications in the accelerator nodes.

However, a very small DRAM power dissipation was observed at accelerator nodes against

compute nodes of “emmy”. From previous experiments, it is known that the actual parameters

(slope w, base powerWDRAM
0) of DRAM power model depend on the particular type and number

of DRAM DIMMs, so we can only measure them (see Section 4.4). It is entirely possible that

56

7.2. Consequences for code execution

we could buy an emmy node with the same performance characteristics but much less DRAM

power consumption because somebody has chosen a different DIMM manufacturer (see Tables

7.3, 7.4).

Table 7.3.: A statistics of CPU Power and its model Parameters on “emmy” accelerator nodes at 2.2

GHz base frequency

Mean Standard deviation Range

S0 S1 S0 S1 S0 S1

Jacobi CPU power WCPU [W] 54.98 55.21 4.91 5.34 -0.6 – 1.7 SD -0.6 – 2.2 SD

Jacobi CPU power parameter w2 [W
GHz2

] -0.07 -0.06 0.1 0.08 -0.9 – 1.8 SD -0.8 – 1.4 SD

Jacobi CPU power parameter w1 [W
GHz] 1.98 1.95 0.2 0.18 -2.2 – 1.8 SD -1.8 – 2.8 SD

Jacobi CPU power parameter W0 [W] 14.95 15.06 2.63 2.17 -0.6 – 2.3 SD -1.0 – 2.7 SD

DGEMM CPU power WCPU [W] 53.54 53.49 12.17 13.11 -0.6 – 2.6 SD -0.6 – 2.3 SD

DGEMM CPU power parameter w2 [W
GHz2

] 0.13 0.14 0.12 0.13 -1.0 – 1.6 SD -0.9 – 2.2 SD

DGEMM CPU power parameter w1 [W
GHz] 1.43 1.44 0.59 0.59 -1.0 – 2.9 SD -0.5 – 2.0 SD

DGEMM CPU power parameter W0 [W] 15.49 15.29 3.44 3.1 -1.0 – 2.3 SD -0.1 – 2.5 SD

Table 7.4.: A statistics of DRAM Power and its model Parameters on “emmy” accelerator nodes at 2.2

GHz base frequency

Mean Standard deviation Range

S0 S1 S0 S1 S0 S1

Jacobi DRAM power WDRAM [W] 19.64 19.84 4.17 4.66 -0.7 – 2.1 SD -0.6 – 1.8 SD

Jacobi DRAM power parameter w [Ws
GB] 0.27 0.27 0.08 0.08 -0.4 – 0.2 SD -0.5 – 0.1 SD

Jacobi DRAM power parameter wDRAM
0 [W] 8.59 8.62 1.07 1.37 -0.9 – 1.8 SD -1.3 – 1.6 SD

DGEMM DRAM power WDRAM [W] 8.5 8.54 2.09 2.41 -0.9 – 2.1 SD -0.7 – 1.9 SD

DGEMM DRAM power parameter w [Ws
GB] 0.49 0.5 0.15 0.16 -0.6 – 2.9 SD -0.6 – 3.0 SD

DGEMM DRAM power parameter wDRAM
0 [W] 5.39 5.38 0.82 0.97 -0.8 – 2.9 SD -1.8 – 2.2 SD

7.2. Consequences for code execution

Even on the same “emmy” platform, a strong variation of the power dissipation parameters

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120 140 160 180

To
ta

l E
n

e
rg

y
to

 s
o

lu
ti

o
n

[J
]

performance [GF/s]

e1165 Accelerator Node

e0952 Compute Node

PPC = 1

PPC = 10

PPC = 10

PPC = 1

(a) DGEMM Benchmark Code

0

200

400

600

800

0 500 1000 1500 2000

To
ta

l E
n

e
rg

y
to

 s
o

lu
ti

o
n

 [
J]

Performance [MLUP/s]

e1067 Accelerator Node

e0952 Compute Node

PPC = 1

PPC = 6

PPC = 1

PPC = 5

(b) Jacobi Benchmark Code

Figure 7.5.: A comparison of energy consumption in terms of “Z-plot” of a average power compute node

and accelerator node at 2.2 GHz base frequency on “emmy” platform

across the chip was observed which has a significant impact on consequence for code execution.

57

7. Statistical Variation of Power Characteristics

Further, the “outliers” in statistical histogram method are the nodes with very high CPU or

DRAM power dissipation and they lead to the higher values of their respective model parame-

ters. Assuming the power readings are reliable, these “outliers” need to be avoided for running

an application on a system in most power efficient way. For example, especially for scalable

applications, 27th node of rack 9 (e0927) is one of the hottest processor of “emmy” production

cluster and is never suggested for a power efficient simulation run.

Depending upon temperature of chip, we can arrange cool nodes, hot nodes and outliers in

a sequence that every time cool node will be allotted as a first preference to achieve the goal

of power capping on “emmy” cluster. This arrangement of nodes can lead to overall less power

dissipation of “emmy” cluster, which ultimately can increase its operation runtime [29].

A comparison of energy consumption of an average temperature (neither hotter nor cooler)

regular compute and accelerator node is shown in Fig. 7.5. It illustrates that the performance

of both type of nodes is more or less identical. However, the accelerator nodes on “emmy” clus-

ters are more desirable against regular compute nodes for energy-efficient execution of parallel

applications (especially for saturating cases). This is because of much smaller DRAM power

dissipation of the accelerator nodes.

58

Chapter 8
Connection to Microscopic Power Models

Micro benchmarks with tuneable intensity were created in assembly language using “likwid-

bench” tool to achieve a very high performance or bandwidth as close to roofline model as

possible. All micro benchmarks (see Appendix C.4) were made readable only (one load) to get

the best memory bandwidth. A variation in the intensity was achieved by increasing flops to

bytes ratio on “phinally” test system at 2.7 GHz base clock speed.

A lot of researchers have defined the concept of machine balance Bm [25], [30]–[34] as a ratio

of the number of memory operations per CPU cycle to the number of floating-point operations

per CPU cycle for a particular processor. Whereas, the “computational intensity” Ic applies to

computational kernels, compares the floating-point work required with the number of memory

references. The eight cores peak performance Ppeak of Sandy Bridge EP processor in “phinally”

system is 172.8 GFlops/s which leads to a machine intensity Im of 3.9 F/B or 31.2 F/W. The

tuneable intensity benchmark achieves 171.05 GFlops/s (98.98% of system peak double-precision

performance) for highly intense code with no data transfer. Whereas, saturated memory band-

width bs of 43.6 GBytes/s was achieved for lower intensity memory bound benchmarks. Figure

8.1 shows that variable intensity benchmarks behave in accordance with the Roofline model.

Methodology

The LIKWID suite also contains a micro-benchmarking framework “likwid-bench” [9], [19] that

runs assembly language benchmarks without the uncertainties of compiler code generation. In

present work, the “likwid-bench” was built with “likwid-perfctr” counter support so it measures

only regions and not end-to-end measurements.

1 likwid−perfctr −m −g ENERGY −c N :0−7 . / likwid−bench −t my_bench −i 100 −g 1 −w ←↩
S0 : 1 GB : 8 : 1 : 2

This example runs the benchmark “my bench” for a working set size of 1 GB on all eight

physical cores of socket 0 on “phinally” system by specifying chunk size 1 and stride 2. It is

highly recommended to have a significant run-time for the actual kernel inside a program. It

is more likely that there is overhead involved in starting/stopping the counters. This overhead

[35] can be quite considerable, so the benchmark should run for a long time.

The basics of x86-64 ISA includes 16 floating point single instruction multiple data (SIMD)

registers, that is, “xmm0-xmm15” for 128 bit SSE and “ymm0-ymm15” 256 bit AVX. The de-

scription of included header for assembly code in “likwid-bench” is shown in Table 8.1. For the

59

8. Connection to Microscopic Power Models

Table 8.1.: Header of assembly code in “likwid-bench”. All parameters are the same for all intensity

benchmarks, except FLOPS.

Header Description

STREAM 1 One load stream

TYPE DOUBLE How many bytes are transferring

FLOPS 2 Number of flops per iteration

BYTES 8 Number of bytes transfer per iteration (1 LD)

LOOP 16 Number of iterations inside loop iterations

AVX vectorized assembly benchmark, Sixteen scalar iterations in the loop body are reflected by

the four wide execution and the four way unrolling. Whereas, the “LOOP 8” for the SSE instruc-

tion is justified by the two floating point instructions per cycle and the unroll by four. Moreover,

the assembly codes in “likwid-bench” always have memory addresses in square brackets with

GPR *8, which is a double precision integer register.

0

40

80

120

160

200

240

0 2 4 6 8 10 12 14 16 18 20 22 24 26

P
e

rf
o

rm
an

ce
 [

G
F/

s]

Intensity[F/B]

Performance[GF/s]

Roofline Model

. ∞

Figure 8.1.: Performance of variable intensity benchmarks with the theoretical Roofline as the upper

limit at 8 cores and 2.2 GHz of the “phinally” system

8.1. Tunable Intensity effect on CPU and DRAM Power model

8.1.1. CPU and DRAM Power versus intensity characterisation

The power consumption of recent processors depends strongly on the currently running task.

There are “hot” tasks, which lead to high power dissipation, and “cool” tasks, which cause lower

power dissipation. Hence, if the processors of a multiprocessor system are executing different

tasks, they are likely to have different temperatures.

For lower intensity/memory-bound case, lower CPU power is reflected the fact that the

processor mostly remains idle during code execution to await data while a lot of power is burnt

in the memory hierarchy resulting in large DRAM power. With an increment in intensity, the

increased work per second results in growth of CPU power while the power in memory hierarchy

do not vary because of saturated memory bandwidth. When reaching near knee of roofline

curve, both CPU and DRAM modules are fully utilized with the peak performance per core and

60

8.1. Tunable Intensity effect on CPU and DRAM Power model

80

85

90

95

100

105

110

0 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 P

o
w

e
r

[W
]

Intensity[F/B]

. ∞

(a) CPU Power-Intesity curve

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24 26

D
R

A
M

 P
o

w
e

r
[W

]

Intensity[F/B]

. ∞

(b) DRAM Power-Intesity curve

Figure 8.2.: The CPU and DRAM power versus intensity at 8 cores of the “phinally” system

saturated memory bandwidth. A CPU cannot become more hotter than this value. Afterwards,

the power in memory subsystem decreases as benchmarks decouple from the memory bound to

the compute-bound case with less data transfers.

There always exists some overlap between the core power and the data transfer power and

they are never completely separate. For example, zero intensity copy benchmark should only

include data transfer and it does not do any actual work. However, execution units are sort of

busy as they still need LD and ST units, so beyond data transfer some power is spent on LD/ST

and integer (used to count loop counters) pipelines. Thus, it can be observed that for infinite

intensity/no data-transfer case, most power is burnt in the computation units whereas for zero

intensity/no computation case, the most power is consumed by data transfer.

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 P

o
w

e
r

[W
]

Intensity [F/B]

8 Thread
7 Thread
6 Thread
5 Thread
4 Thread
3 Thread
2 Thread
1 Thread

. ∞

(a) CPU Power-Intesity curve

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24 26

D
R

A
M

 P
o

w
e

r[
W

]

Intensity [F/B]

8 Thread
7 Thread
6 Thread
5 Thread
4 Thread
3 Thread
2 Thread
1 Thread

. ∞

(b) DRAM Power-Intesity curve

Figure 8.3.: The CPU and DRAM power versus intensity with varying number of active cores on the

“phinally” system

In Fig. 8.3(a), it is interesting to note that the peak of the curve, which is close to knee of

roofline curve, shifted towards left with a decrease in the number of threads. This peak vanishes

when the number of threads is below 5, as the performance decreases and the memory bandwidth

cannot be saturated any more (in other words, the previously saturating characteristic of the

benchmark changes to a scalable characteristic).

61

8. Connection to Microscopic Power Models

DRAM power (see Fig. 8.3(b)) depends upon the bandwidth drawn from dynamic random

access memory (DRAM). Thus, for higher thread count (7 or 8), DRAM power remained same

as long as the bandwidth was saturated. When benchmarks decouple to the compute bound

case at about 5 threads, DRAM power falls off quickly with rising intensity. It is noteworthy

that there is a region of thread count (5 or 6) and intensity where the memory bandwidth is

still saturated but the DRAM power already falls off. This is due to the different memory

access characteristics when running with different numbers of threads: More threads mean more

concurrent data streams from the memory DIMMS, i.e., more active transistors in the DRAM.

This is another positive effect (in terms of energy consumption) of not using all cores if the loop

performance saturates across cores.

Figure 8.4 shows ultimately the total power which is a contribution of both CPU and dynamic

random access memory.

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 22 24 26

To
ta

l P
o

w
e

r
[W

]

Intensity [F/B]

8 Thread
7 Thread
6 Thread
5 Thread
4 Thread
3 Thread
2 Thread
1 Thread

. ∞

Figure 8.4.: The total power dissipation versus intensity with varying number of active cores on the

“phinally” system

8.1.2. CPU Power model parameters versus intensity characterisation

1. Quadratic factor W2 – intensity relation

By decoupling the benchmark from the memory bound code to the compute bound code, the

performance does not change any more so that quadratic factor of power W2 remains constant

independent of the code intensity (see Fig. 8.5). It has a kind of asymptotic behaviour by

extrapolation to highest intensity benchmark.

2. Linear factor W1 – intensity relation

Figure 8.6(a) shows that once a code decouples from the memory bound code to the compute

bound code, the power intensity behaviour will start to become more quadratic and less linear.

moreover, from power model WCPU = W0(n)+(W1f +W2f
2)n, it is obvious that the quadratic

term dominates always (even for low intensity) due to the f2 factor, and dominates even more

so when the intensity is high.

62

8.1. Tunable Intensity effect on CPU and DRAM Power model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 p

o
w

e
r

m
o

d
e

l p
ar

am
et

e
r

W
2

 [W
/G

H
z2

]

Intensity [F/B]
. ∞

Figure 8.5.: CPU power model parameter W2 versus intensity at 8 cores of the “phinally” system

3. Baseline power W0 – intensity relation

The baseline power W0 is a contribution that comes from substrate or from a part not participat-

ing into computation and consists mainly of the power dissipation caused by leakage currents.

The power model (5.1) assumes that the baseline power W0 varies with switching on/off the

different number of cores irrespective of the type of running code. For example, for phinally

architecture (W00 = 14 W, W01 = 1.2 W ; see Sect. 5.1), the baseline power W0 is 15.6 W for one

core and 24.6 W for eight cores. Figure 8.6(b) shows that the results for the baseline power W0

at single and eight cores are as predicted by the power model (5.1). However, the unexpectedly

low baseline power W0 at left side of Roofline knee for eight cores might be justified by the low

processor temperature at lower intensity.

-0.4

0.1

0.6

1.1

1.6

2.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 p

o
w

e
r

m
o

d
e

l p
ar

am
et

e
r

W
1

[W
/G

H
z]

Intensity [F/B]

. ∞

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 p

o
w

e
r

m
o

d
e

l p
ar

am
et

e
r

W
0

[W
]

Intensity [F/B]

Wo@8 Cores

Wo@ 1 Core

. ∞

Figure 8.6.: The CPU power model parameters W0 and W1 versus intensity at 8 cores of the “phinally”

system

8.1.3. DRAM Power model parameters versus intensity characterisation

By decoupling the benchmark from the memory bound to the core bound case, performance

remains maximum but data transfers start to decrease as shown in Figure 8.7. The decreasing

data transfers causes a continuous decrease in power dissipated by the dynamic random ac-

cess memory module which is reflected by rising w parameter and reducing background power

WDRAM
0 (see Fig. 8.8). This background power reduction reflects an impression that it goes

to some power saving state with decreasing memory bandwidth. We have already seen in Fig.

63

8. Connection to Microscopic Power Models

8.2(b) that the DRAM seems to dissipate more power if many different streams are used concur-

rently by multiple cores, even if the raw bandwidth is the same. It means our bandwidth-based

DRAM power model (5.4) is somehow simple since it does not take into account how many

different addresses are utilized in the RAM.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26

M
e

m
o

ry
 b

an
d

w
id

th
 [

G
B

/s
]

Intensity [F/B]

. ∞

Figure 8.7.: Memory bandwidth versus intensity at 8 cores of the “phinally” system

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16 18 20 22 24 26

D
R

A
M

 p
o

w
e

r
m

o
d

e
l p

ar
am

et
e

r
w

 [
W

s/
G

B
]

Intensity [F/B]

. ∞
0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26

D
R

A
M

 p
o

w
e

r
m

o
d

e
l p

ar
am

et
e

r
W

0
D

R
A

M
 [

W
]

Intensity [F/B]

. ∞

Figure 8.8.: The DRAM power model parameter (w and WDRAM
0) versus intensity at 8 cores of the

“phinally” system

8.2. Energy efficiency of different kind of instructions

The power consumption of recent processors depends strongly on the kind of instructions the

processor executes. It is interesting thing to look at energy efficiency of different type of floating

point instructions (e.g., AVX and SSE instructions; see Appendix C.4). An energy-efficiency

comparison of AVX and SSE instructions was performed for highest intensity benchmark (4

Flops, 0 STREAM) with a working set size of 1 GB on “phinally” system. It is observed that

the different type of instructions executed by processor strongly affect the energy consumption

of the processors. For instance, running an application with SSE instructions gives much less

performance compared to AVX (see Fig. 8.9(b)) with some power difference. This means that

the SSE instruction does same work with taking larger time and energy than AVX instruction,

and thus a lot of energy is saved by using AVX instructions. Hence, in terms of the energy

consumption, the AVX flops are less expensive compare to the SSE flops.

64

8.3. Microscopic performance, power and/or energy models

0

50

100

150

200

250

0 2 4 6 8

To
ta

l E
n

e
rg

y
[J

]

Number of threads

SSE

AVX

(a) Energy vs. core count

0

50

100

150

200

250

0 50 100 150 200

To
ta

l E
n

e
rg

y
[J

]

Performance [GF/s]

SSE

AVX
PCC =1

PCC =8

PCC =8

PCC =1

(b) Energy vs. performace (Z-plot)

Figure 8.9.: An energy-efficiency comparison of AVX and SSE instructions for highest intensity bench-

mark (4 Flops, 0 STREAM) with a working set size of 1 GB at base frequency of 2.2 GHz

on “phinally” system

8.3. Microscopic performance, power and/or energy models

Previously discussed models only consider global parameters and ignore the microscopic infor-

mation. For instance, the previous power/energy measurements are the values that the system

consumes for executing code; microscopically, code execution can be split into “real work”, i.e.,

instructions, and data transfers. The fit parameters Wi cannot differentiate between those con-

tributions, other than having different values for different computational intensities. There are

several energy contributions from data transfers. These contributions are from memory to L3

cache, L3 cache to L2 cache and L2 cache to L1 cache as shown in Figure 8.10.

Registers
One 256 bit/cy LD

+
half 256 bit/cy ST

↓ ↑ CL transfer in 4 cy

L1D

One 256 bit/cy LD or ST ↑↓ ↑ Three 64 B CL transfer in 6 cy

L2

One 256 bit/cy LD or ST ↑↓ ↑ Three 64 B CL transfer in 6 cy

L3

One 107 bit/cy LD or ST ↑↓ ↑ Three 64 B CL transfer in ca. 15 cy
@2.7 GHz

DRAM

Figure 8.10.: Memory hierarchy with data transfer for copy benchmark on single core of the “phinally”

system

The performance modelling on microscopic level was performed using “Execution Cache Mem-

65

8. Connection to Microscopic Power Models

ory (ECM)” model [10], [36]. The ECM model refines the roofline model [11] and develops a

deeper understanding of the interaction of a benchmark with the hardware by adding more

accurate description about memory hierarchy.

Simplified ECM model performance: PECM (n, f) = min((1 + ∆ν)nP0, Proof), (8.1)

with Proof = min(Pmax,
bs
Bc

). The term (1+∆ν) assumes that the single-core performance is

linear in the clock speed, which is not true if there is a non-negligible runtime contribution from

memory data transfers.

There are two main contribution for the dynamic power/energy modelling on the microscopic

level: First is the number of watts/joules per byte πbyte or εbyte which are measured in pW/B

or pJ/B, and second is the number of watts/joules per flop πflop or εflop, in pW/F or pJ/F.

Three benchmarks have been run to get the energy cost for a byte transfer (load/store) εbyte

or for computing a certain flop (addition/multiplication) εflop on different working sets from

the memory up to the registers. These benchmarks have only flops and only data transfers,

respectively. In reality, the energy measurements are in pico joules per CL, since data transfers

between caches are in packets of one cache line and a complete cache line is always used to make

full use of it. One may certainly break it down to pico joules per byte.

It was observed that when the data set comes from the L3 cache (10 MB), the DRAM power

stays constant. While the L3 power increases with adding more cores, since the L3 cache is

segmented per core and each core can use all segments that means the bandwidth increases with

increasing cores count. Furthermore, when the data fits into L2 cache (100 KB) then there is

no data transfer for L3 cache and memory. Thus, a well-controlled behaviour of data transfer

through the memory hierarchy was utilized to find the energy cost per flop (εflop) and cost

per byte transfer from MEM to L3 (εDRAM−L3
byte), L3 to L2 (εL3−L2

byte) and L2 to L1 (εL2−L1
byte).

Moreover, when adding 4 flops with same data transfer as in copy benchmark, there is enough

space in the computational pipeline and they execute in parallel and so runtime stays constant

no matter weather the flops are done or not. This makes it possible to measure πflop and εflop

directly.

Limitation and correction

This suggested model gives a very rough estimation with the energy consumption when no

activity is going on inside core. When the processor is idle and waiting for a data transfer, the

amount of joules burnt because of leakage current depend on the waiting time. Thus, the energy

consumption can split into two parts: First is the energy burnt for actual data transfers and for

computations inside core and second is the consumed energy while waiting for data transfers in

register or L1 cache.

It is a common thinking that the energy consumption of a system comes mainly because

of the data transfers. It is true if we transfer a data for a short distance so it results in

transistors switching and consumes energy. However, this impression seems not true when we

do arithmetic on a core and need data from other node. It takes such a long time so most of the

energy consumption is done while waiting data; so, the baseline energy contribution becomes

significant along with data transfer on single core. However, in the end it looks as the data

transfers are costly; whereas, in reality increased energy cost is reflected by both long waiting

time for data while performing no computation and data transfers. Note that this is the situation

with today’s architectures; it is expected that future micro-architectures will burn much more

power via the actual data transfer, which will be a major concern - but not today.

66

8.3. Microscopic performance, power and/or energy models

The concern is to measure the number of joules for a particular byte transfer and during this

transfer time the whole chip consumes baseline energy E0 which is burnt anyway even when

processor is idle and waits for the data transfer. The baseline energy E0 will be different for

benchmarks having different runtime. Thus, a correction is applied by taking out this baseline

energy and only considering the dynamic part of the energy consumption.

Table 8.2.: Single core of dynamic energy cost for one flop (tread addition and multiplication on the

same footing) and for one byte transfer(load/store) with baseline power W0 = 15.9 W on

“phinally” system

Metrics Energy cost

εflop εL1−REG
byte εL2−L1

byte εL3−L2
byte εMEM−L3

byte

Flop only 830 pJ/F 0 0 0 0

Load only 0 227 pJ/B 314 pJ/B 256 pJ/B 1880 pJ/B

Store only 0 377 pJ/B 300 pJ/B 340 pJ/B 2977 pJ/B

Validation

The energy consumption can be predicted for a variety of tasks with the multiple operations

while knowing the microscopic level parameters (i.e., the energy cost of a single flop and a

byte transfer). For validation of this hypothesis, a real benchmark like 2D jacobi was chosen

which have a lot of data transfer with few flops so the dominant energy contribution is the data

movement. A comparison of measurements with the analytically predicted energy consumption

was done by putting together the knowledge about the data transfer cost, the flop cost, the

ECM model and the layer condition in energy model. For Jacobi stencil code, three streams

are needed to transfer when the layer condition is satisfied. Whereas, when layer condition is

violated, so there are more data transfers (five streams) across expensive data paths and the

code takes longer time which results in large energy cost.

Table 8.3.: Single core energy cost for one flop and energy cost for one byte transfer with baseline power

W0 = 15.9 W on “phinally” system

Metrics Copy (AVX) Jacobi (lcL3) Jacobi (lcL2)

(9 it * 1 GB) (100 it *8k *8k) (100 it *8k *8k with blocking)

Cycles per cache line 30.73 42.8 31.13

Memory Data volume (Byte) 9.66E+9 1.54E+11 1.54E+11

E0 [pJ/B] 1414 1308 949

Calculated Total energy [J] 46 681 649

Measured Total energy [J] 45 651 638

The table 8.3 shows that how far the predicted values coincide with the measurements for both

same and different number of cache line transfers through memory hierarchy. We observed that

the single-core energy consumption of streaming kernels has a large baseline energy contribution

into total energy compare to multiple cores. However, for multi-cores, the total energy becomes

increasingly much more dominated by the dynamic power (which our power model also predicts).

67

8. Connection to Microscopic Power Models

0

20

40

60

80

100

120

140

160

180

200

220

0 1 2 3 4 5 6 7 8
B

as
e

lin
e

 E
n

e
rg

y
Eo

 [
J]

Number of thread

Figure 8.11.: The baseline energy E0 at varying number of cores for jacobi stencil on “phinally” system

8.4. Vuduc parameters to Wi parameters

This section describes the connection between the current model and the arch line model de-

scribed by Choi et al. [14]. Their approach towards cost calculation for short-running code

paths is to fix low level microscopic parameters, such as the cost per flop and the cost per byte

transfer (see Sect. 8.3). Their model computes the energy consumption of a benchmark with

known amount of data and the cost for a data transfer. Whereas, the focus of present model

(see Chapter 5) lies on predicting energy consumption of an algorithm which has large number

of flops and data transfer by fixing different Wi parameters. This estimates the power and

ultimately the energy consumption of an algorithm.

The goal of the present work is to marry these two approaches by deriving Wi parameters

from low level microscopic parameters with different cache line transfers for the cache and the

memory hierarchy. The energy cost for one flop and one byte data transfer and Wi parameters

with varying intensities are already known from previous sections 8.1 and 8.3. The baseline

power W0 is constant for single core irrespective of type of running task (see Fig. 8.6(b)). The

quadratic factor W2 is a fusion of many effects (i.e., work inside core and the data transfer) and

it varies with number of cores. For full eight cores of “phinally” system, W2 is different for both

memory-bound case (doing less work inside core and more data transfers) and compute-bound

case (doing more work inside core and less data transfers) as shown in Fig. 8.5. However, when

we visualize a single core, W2 remains more or less same for both memory-bound and compute-

bound case because of vanished Roofline peak at single core. The linear parameter W1 is the

factor that decreases with decreasing data transfers and is close to zero for highest intensity

code.

Validation

To validate this, we will derive the power model parameters Wi for highest intensity purely

core-bound code from microscopic level measurements. For simplicity we assume that W1 = 0

on “phinally” system. The only dynamic energy we burn is 830 pJ/Flop. At peak performance

21.6 GF/s, the dynamic power consumption per core is Wd = W2f
2 = 830 pJ/F * 21.6 GF/s

= 17.9 W. Thus, the quadratic factor W2 = 17.9/2.72 W/GHz2 =2.45 W/GHz2 and the power

model for highest intensity code at single core WCPU=2.45f2 W + 15.9 W is in accordance with

measurements.

68

Chapter 9
Conclusion

Power dissipation of microprocessors is becoming a critical issue. Although the power output of

a single CPU has been capped for practical reasons at around 100–150 W for some time now,

building massively parallel supercomputers becomes harder and harder due to the challenge of

getting several tens of megawatts into (and out of) a very small space. Moreover, the cost

of running large systems constitutes a significant part of the total ownership cost, at least in

countries like Germany where electrical energy comes at a rather large price. In the very near

future users of supercomputer facilities may be charged not by CPU-hours alone but by the

amount of energy they require for solving their numerical problems. Any strategy that allows

the user to reduce the power dissipation and/or energy consumption of their running program

will contribute to the overall energy efficiency of the machine.

This thesis has investigated several dimensions of the power dissipation and energy consump-

tion of modern processors on the node level when running scientific (loop-centric) workloads.

It started from the assertion that there are two basic types of code with regard to scalability

across the cores of a multicore chip: either the performance scales linearly with the number

of cores, or there is a bottleneck that leads to performance saturation. There is certainly a

large spectrum in between those corner cases, but they reflect clearly the underlying hardware

bottlenecks. This is why most benchmark studies were done with two simple codes: a large

dense matrix-matrix multiplication for the compute-bound case, and a two-dimensional Jacobi

smoother for the memory-bound case. A conjugate gradient (CG) algorithm was considered

as a near-application case. It is interesting case here since it may show neither saturating nor

scalable behavior, depending on the structure of the sparse matrix.

Using the benchmark codes, a study of the performance, power and energy consumption

characteristics of the benchmarks was done in order to connect to published results [10]. In

addition to previous work, the power dissipation of the system DRAM was also considered

and found to be highly dependent on the memory bandwidth utilization. All measurements

were based on Intel’s RAPL (Running Average Power Limit) counters on four recent Intel

Architectures: Sandy Bridge EP, Ivy Bridge EP (in the RRZE Emmy cluster) and Haswell EP.

Subsequently, the analytical power model from [10] was validated against the benchmarks.

It was found that the model needed an extension in order to incorporate the effect of varying

baseline power (W0) with increasing number of active cores. The extended model is able to

describe the power dissipation characteristics of the CPUs more accurately, but there is a residual

variation of the parameters with core count. A model for memory (DRAM) power dissipation

was set up that assumes a power draw linear in the memory bandwidth with a constant baseline

69

9. Conclusion

power. This model works well for any specific benchmark code, but it was observed that the

model parameters vary considerably with the actual memory access pattern (continuous vs. burst

mode, number of concurrent streams). Putting the CPU and memory power models together it

was possible to construct a comprehensive power dissipation and, adding a suitable performance

model, energy consumption model. The consequences for code execution when aiming at smaller

power, smaller energy to solution, or smaller energy-delay product (EDP) were investigated and

a comparison between the architectures under consideration was drawn. The Ivy Bridge CPUs

in the Emmy cluster constituted a special case in this study: due to their low base clock speed,

the power vs. frequency characteristic is dominantly linear. This leads to the conclusion that

those CPUs should always be run at their base clock speed (or even turbo mode) for scalable

workloads, no matter which target metric one wants to optimize for. On CPUs with a quadratic

behaviour, an optimal frequency can be calculated from the model that allows for minimum

energy to solution; the energy-delay product is still minimal at highest clock speed.

One aspect of power dissipation that is often neglected is the variation of power characteris-

tics across CPUs. The Emmy cluster at RRZE with its ≈1200 CPU chips constitutes a useful

platform for such an investigation. It was found that there is considerable variation in power

consumption for both benchmarks across the chips. However, chips within the same node are

consistently extremely similar. This may lead to several different conclusions: either the vari-

ation is caused by a component that is not part of the CPU but of the motherboard, or the

system integration process for the nodes leads to similar (same-lot) CPUs ending up in the same

node. The DRAM power dissipation for the compute nodes showed similar variations. The 16

“accelerated” nodes in Emmy are equipped with faster DRAM (1866 MHz instead of 1600 MHz),

so it was expected that those should have a higher DRAM power. However, the faster DRAM

dissipates much less power, which shows that there are factors influencing DRAM power beyond

clock speed, such as the manufacturing process, the actual DIMM organization, etc. Whatever

the reason for the variations in CPU and DRAM power, it is possible to leverage this effect for

saving power by intelligent job scheduling. Some work in this direction has been done at LRZ

Garching [29].

One remaining question to be addressed was the connection between “microscopic” power

dissipation parameters such as pJ/flop or pJ/byte and the “macroscopic” quantities in our

multicore power model. Along the lines of [14], the general power behaviour of the Sandy

Bridge CPU was investigated using a tunable-intensity benchmark. As expected, a peak in

power dissipation occurs at the “knee” of the Roofline curve, where arithmetic units and memory

hierarchy are both fully utilized. This characteristic is lost as soon as the number of threads is

reduced to a point where saturation is not possible any more. As for the DRAM, its power is

constant versus intensity below the Roofline knee but falls off quickly beyond it. However, even

in the saturated case there is a considerable variation with respect to the number of cores. This

leads to the conclusion that the bandwidth is not the only parameter that influences the DRAM

power; the access characteristics, specifically the number of different streams in memory, also

play a decisive role, which is why a simplistic bandwidth-based DRAM power model remains a

rough estimate.

From the intensity benchmark results and power measurements with different working set

sizes it was possible to infer the microscopic energy consumption parameters that quantify the

energy cost of doing a flop in the core or transferring a byte between memory hierarchy levels. It

turned out that for single-core execution the baseline power is the significant contribution. This

leads to the important realization that the energy-saving feature of SIMD execution (e.g., using

70

AVX instead of SSE or scalar instructions) is due to the baseline power, since any reduction in

runtime immediately causes an (almost) proportional reduction in energy. This situation changes

when multiple cores execute code, since the dynamic power becomes much more prominent in

this case.

The microscopic parameters fixed by the micro-benchmarks could be used to derive the

macroscopic parameter W2, which quantifies the power vs. clock speed characteristic. Hence, a

successful connection was made between microscopic power parameters and our phenomenolog-

ical power model.

71

Bibliography

[1] MA Suleman, MK Qureshi, and YN Patt, “Feedback-driven threading: power-efficient

and high-performance execution of multi-threadedworkloads on cmps”, ACM SIGARCH

Computer Architecture News, vol. 36, no. 1, p. 277, Mar. 2008.

[2] R Chandra, R Menon, L Dagum, D Kohr, D Maydan, and J McDonald, Parallel Program-

ming in OpenMP. 2000, p. 231.

[3] Message passing interface forum, http://www.mpi-forum.org/.

[4] Top 500list, http://www.top500.org/system/178324.

[5] Green 500list, http://www.green500.org/greenlists.

[6] J Doweck, “Inside intel core microarchitecture and smart memory access”, Access, p. 12,

[7] A Ali, “Intel 64 and ia-32 architectures optimization reference manual”, Tech. Rep. 03,

2005, pp. 1–660.

[8] T Horvath and K Skadron, “Multi-mode energy management for multi-tier server clus-

ters”, in Proceedings of the 17th international conference on Parallel architectures and

compilation techniques - PACT ’08, New York, New York, USA: ACM Press, 2008, p. 270.

[9] J Treibig, G Hager, and G Wellein, “Likwid: a lightweight performance-oriented tool suite

for x86 multicore environments”, in Proceedings of the International Conference on Parallel

Processing Workshops, IEEE, Sep. 2010, pp. 207–216. arXiv: 1004.4431.

[10] G Hager, J Treibig, J Habich, and G Wellein, “Exploring performance and power properties

of modern multicore chips via simple machine models”, CoRR, vol. abs/1208.2, pp. 1–23,

Jan. 2012. arXiv: arXiv:1208.2908v4.

[11] S Williams, A Waterman, and D Patterson, “Roofline: an insightful visual performance

model for floating-point programs and multicore architectures”, Communications of the

ACM, vol. 52, no. 4, p. 65, Apr. 2009.

[12] MA Awan and SM Petters, “Enhanced race-to-halt: a leakage-aware energy management

approach for dynamic priority systems”, in Proceedings - Euromicro Conference on Real-

Time Systems, 2011, pp. 92–101.

[13] R Ge, X Feng, and KW Cameron, “Performance-constrained distributed dvs scheduling

for scientific applications on power-aware clusters”, in Proceedings of the ACM/IEEE 2005

Supercomputing Conference, SC’05, vol. 2005, 2005.

73

http://arxiv.org/abs/1004.4431
http://arxiv.org/abs/arXiv:1208.2908v4

Bibliography

[14] JW Choi, D Bedard, R Fowler, and R Vuduc, “A roofline model of energy”, in 2013 IEEE

27th International Symposium on Parallel and Distributed Processing, IEEE, May 2013,

pp. 661–672.

[15] J Demmel, A Gearhart, B Lipshitz, and O Schwartz, “Perfect strong scaling using no ad-

ditional energy”, in Proceedings - IEEE 27th International Parallel and Distributed Pro-

cessing Symposium, IPDPS 2013, 2013, pp. 649–660.

[16] S W.keckler, W J.Dally, B Khailany, M Garland, and D Glasco, “Gpus and the future of

parallel computing”, IEEE Computer Society, pp. 7–17, 2011.

[17] Intel corp. intel xeon processor, http://www.intel.com/.

[18] R Rajwar, Going under the hood with intels next generation microarchitecture codename

haswell, 2012.

[19] Likwid performance tools, https://github.com/rrze-likwid/likwid/wiki.

[20] D W.Marquardt, “An algorithm for least-squares estimation of nonlinear parameters”,

Society for industrial and applied mathematics, vol. 11, pp. 431–441, Jun. 1963.

[21] M Lampton, “Dampingundamping strategies for the levenbergmarquardt nonlinear least-

squares method”, Computers in Physics, vol. 11, no. 1, p. 110, 1997.

[22] Matlab lma, http://de.mathworks.com/.

[23] H Stengel, J Treibig, G Hager, and G Wellein, “Quantifying performance bottlenecks of

stencil computations using the execution-cache-memory model”, CoRR, vol. abs/1410.5,

pp. 1–10, 2014. arXiv: 1410.5010.

[24] M Kreutzer, G Hager, and G Wellein, “A unified sparse matrix data format for modern

processors with wide simd units”, ArXiv preprint arXiv: . . ., vol. 36, no. 5, pp. 1–25, Jan.

2013. arXiv: 1307.6209.

[25] Wa Wulf and Sa McKee, “Hitting the memory wall”, ACM SIGARCH Computer Archi-

tecture News, vol. 23, no. 1, pp. 20–24, Mar. 1995.

[26] V Cuppu and B Jacob, “Concurrency, latency, or system overhead: which has the largest

impact on uniprocessor dram-system performance?”, Proceedings 28th Annual Interna-

tional Symposium on Computer Architecture, 2001.

[27] D Hackenberg, R Schöne, T Ilsche, D Molka, J Schuchart, and R Geyer, “An energy

efficiency feature survey of the intel haswell processor”, Proc. HPPAC 2015, 2015.

[28] DW SCOTT, “On optimal and data-based histograms”, Biometrika, vol. 66, no. 3, pp. 605–

610, 1979.

[29] A Auweter, A Bode, M Brehm, and L Brochard, “A case study of energy aware scheduling

on supermuc”, Supercomputing, pp. 394–409, 2014.

[30] HT Kung, “Memory requirements for balanced computer architectures”, ACM SIGARCH

Computer Architecture News, vol. 14, no. 2, pp. 49–54, Jun. 1986.

[31] D Callahan, J Cocke, and K Kennedy, “Estimating interlock and improving balance for

pipelined architectures”, Journal of Parallel and Distributed Computing, vol. 5, no. 4,

pp. 334–358, Aug. 1988.

[32] RW Hockney and IJ Curington, “: a parameter to characterize memory and communication

bottlenecks”, Parallel Computing, vol. 10, no. 3, pp. 277–286, May 1989.

74

http://arxiv.org/abs/1410.5010
http://arxiv.org/abs/1307.6209

Bibliography

[33] W Schönauer, Scientific Supercomputing: Architecture and Use of Shared and Distributed

Memory Parallel Computers. Self-edition, 2000.

[34] S Carr and K Kennedy, “Improving the ratio of memory operations to floating-point

operations in loops”, ACM Transactions on Programming Languages and Systems, vol.

16, no. 6, pp. 1768–1810, Nov. 1994.

[35] T Roehl, J Treibig, G Hager, and G Wellein, “Overhead analysis of performance counter

measurements”, in 2014 43rd International Conference on Parallel Processing Workshops,

IEEE, pp. 176–185.

[36] J Treibig and G Hager, “Introducing a performance model for bandwidth-limited loop

kernels”, in Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-

tificial Intelligence and Lecture Notes in Bioinformatics), vol. 6067 LNCS, 2010, pp. 615–

624. arXiv: 0905.0792.

75

http://arxiv.org/abs/0905.0792

Appendix A
List of Symbols and Abbreviations

Symbol Description

f0 Baseline clock speed

∆f Clock speed change

1 + ∆ν Normalized clock speed

fopt Optimal frequency

ns Number of cores at saturation point

kWh Kilowatts hours

P0 Serial code performance

Pmax Maximum performance

T Total execution time of a program

I Identity matrix

J Jacobian matrix

λ Damping factor

B, bs Memory bandwidth, Saturated memory bandwidth

Bm, Bc Machine balance, Code balance

Im, Ic Machine intensity, Computational Intensity

Nnnz, Nnzr Number of non-zeros, Number of non-zeros per row

W0 Baseline power dissipation

W00 Fixed part of baseline power dissipation

w01 Variable part of baseline power dissipation

w1 Linear part of dynamic power dissipation

w2 Quadratic part of dynamic power dissipation

WDRAM
0 Fixed background DRAM power

WCPU , ECPU Dynamic CPU power dissipation, CPU energy to solution

WDRAM , EDRAM DRAM power dissipation, DRAM energy to solution

WTOTAL, ETOTAL Total dynamic power dissipation, Total energy to solution

S0, S1 Socket 0, Socket 1

h Histogram

b Number of bins

w Bin width

σ Standard deviation

εbyte Energy per byte

77

εflop Energy per flop

Abbreviations Description

CPU Central Processing Unit

DRAM Dynamic Random Access Memory

MPI Message Passing Interface

ISA Instruction Set Architecture

CPI Cycles Per Instruction

IPC Instruction Per Cycle

Flops Floating point operations

PUE Power Utility Efficiency

SMT Simultaneous Multi-Threading

DVFS Dynamic Voltage Frequency Scaling

DCT Dynamic Concurrency Throttling

HPC High Performance Computing

RAPL Running Average Power Limit

TDP Thermal Design power

AVX Advanced Vector Extensions

FMA Fused Multiply Add

DP Double Precision

SP Single Precision

FP Floating Point

BIOS Basic Input/Output System

NEC Nippon Electric Company

SIMD Single Instruction Multiple Data

DDR Double Data Rate

QDR Quad Data Rate

DIMM Dual In-line Memory Module

LM Levenberg-Marquardt

GN Gauss-Newton

CG Conjugate Gradient

DGEMM Dense matrix-matrix multiplication

LUP Lattice site Updates

spMVM Sparse Matrix-Vector Multiplication

SDRAM Synchronous Dynamic Random Access Memory

DDR Double Data Rate SDRAM

EDP Energy Delay Product

ED2P Energy Delay square Product

ED3P Energy Delay cube Product

pdf Probability Density Function

SD Standard Deviation

CL Cache Line

LD/ST Load and/or Store

ECM Execution Cache Memory

Appendix B
Matlab codes

B.1. Non-linear Curve fitting Levenberg-Marquardt Algorithm

1 function [fitresult , gof] = createFit (f , w)
2 [xData , yData] = prepareCurveData (f , w) ;
3

4 % Set up fittype and options .
5 ft = fittype (' a*xˆ2+b*x+c ' , ' independent ' , 'x ' , ' dependent ' , 'y ') ;
6 opts = fitoptions (ft) ;
7 opts . Algorithm = ' Levenberg−Marquardt ' ;
8 opts . Display = 'Off ' ;
9 opts . Lower = [−Inf −Inf −Inf] ;

10 opts . StartPoint = [x y z] ;
11 opts . Upper = [Inf Inf Inf] ;
12

13 % Fit model to data .
14 [fitresult , gof] = fit (xData , yData , ft , opts) ;
15

16 % Create a figure and Plot fit with data .
17 figure ('Name ' , ' non l in ea r l e a s t−squares f i t ') ;
18 subplot (2 , 1 , 1) ;
19 h = plot (fitresult , xData , yData) ;
20 legend (h , 'w vs . f ' , ' non l in ea r l e a s t−squares f i t ') ;
21 xlabel (' f ') ;
22 ylabel ('w ') ;
23 grid on

24

25 % Plot residuals .
26 subplot (2 , 1 , 2) ;
27 h = plot (fitresult , xData , yData , ' r e s i d u a l s ') ;
28 legend (h , ' non l inea r l e a s t−squares f i t r e s i d u a l s ') ;
29 xlabel (' f ') ;
30 ylabel ('w ') ;
31 grid on

79

B.2. Histogram Plot Matlab code

1 function pd1 = createFit (x)
2 x = x (:) ;
3 clf ;
4 hold on ;
5

6 % −−− Plot histogram data

7 [CdfF , CdfX] = ecdf (x , ' Function ' , ' cd f ') ;
8 BinInfo . rule = 2 ;
9 [˜ , BinEdge] = internal . stats . histbins (x , [] , [] , BinInfo , CdfF , CdfX) ;

10 [BinHeight , BinCenter] = ecdfhist (CdfF , CdfX , ' edges ' , BinEdge) ;
11 hLine = bar (BinCenter , BinHeight , ' h i s t ') ;
12 set (hLine , ' FaceColor ' , ' none ' , 'EdgeColor ' , [0 . 3 33333 0 0 . 6 6 6 6 6 7] , . . .
13 ' LineSty l e ' , '− ' , 'LineWidth ' , 1) ;
14 xlabel ('Data ') ;
15 ylabel ('Density ')
16

17 % −−− Create grid where function will be computed

18 XLim = get (gca , 'XLim ') ;
19 XLim = XLim + [−1 1] * 0 .01 * diff (XLim) ;
20 XGrid = linspace (XLim (1) , XLim (2) ,100) ;
21

22 % −−− Create probability density function fit

23 pd = fitdist (x , ' normal ') ;
24 YPlot = pdf (pd , XGrid) ;
25 hLine = plot (XGrid , YPlot , 'Color ' , [1 0 0] , . . .
26 ' LineSty l e ' , '− ' , 'LineWidth ' , 2 , . . .
27 'Marker ' , ' none ' , 'MarkerSize ' , 6) ;
28

29 % Adjust figure

30 box on ;
31 grid on ;
32 hold off ;

Appendix C
C++/Fortran codes

C.1. Dense matrix-matrix multiplication

1 program benchmark

2 implicit none

3 integer DIM , ITER

4 integer i , j , k , it

5 real (KIND=8) , allocatable , dimension (: , :) : : A , B , C

6 real*8 wcTime , wcTimeStop , wcTimeStart

7 real*8 cpuTime , cpuTimeStop , cpuTimeStart

8 real*8 flops_wc , flops_cpu

9

10 write (* ,*) ” Matrix dimension ? # I t e r a t i o n s ?”
11 read (* ,*) DIM , ITER

12 ! matrix dimension and number of iterations

13 write (* ,*) ” Matrix dimension = ” , DIM
14 write (* ,*) ” # I t e r a t i o n s = ” , ITER
15

16 allocate (A (DIM , DIM))
17 allocate (B (DIM , DIM))
18 allocate (C (DIM , DIM))
19

20 do i = 1 , DIM

21 do j = 1 , DIM

22 A (i , j) = dble (i*j)
23 B (i , j) = dble (i−j)
24 C (i , j) = 0 . d0
25 enddo

26 enddo

27

28 ! Now MKL `s DGEMM as reference

29 call timing (wcTimeStart , cpuTimeStart) ! start clock

30 do it = 1 , ITER

31 call DGEMM ('n ' , 'n ' , DIM , DIM , DIM , 1 . d0 , A , DIM , B , DIM , 1 . 0 , C , DIM)
32 call dummy (A (DIM /2 , DIM /2))
33 enddo

34 call timing (wcTimeStop , cpuTimeStop) ! end time

35 wcTime = wcTimeStop − wcTimeStart

36 cpuTime=cpuTimeStop −cpuTimeStart
37 flops_wc = 2 . d0 * dble (ITER) * dble (DIM) * dble (DIM) * dble (DIM) / (wcTime * ←↩

1000000. d0)
38 flops_cpu = 2 . d0 * dble (ITER) * dble (DIM) * dble (DIM) * dble (DIM) / (cpuTime * ←↩

1000000. d0)
39 write (* , ' (2 (a , g20 . 1 2) , a , g20 . 1 2 , a) ') ” MKL [MFlop/ s] = ” , flops_wc , ”WCTime = ” ,←↩

wctime

40 end

81

dummy.c

1 void dummy_ (double *a , double *b , double *c)
2 {
3 }
4 void dummy (double *a , double *b , double *c)
5 {
6 }

Makefile for Intel9.1 compiler

1 BHOME =$ (PWD)
2

3 F90 = ifort

4 CC = icc

5

6 LOWOPT = −O2 −xAVX
7 COPTS =
8 FLONG = −132
9

10 HIOPT = −O2 −xAVX
11 NOLINK= −c
12 LINKF = −mkl
13

14 MM . exe : matstuff . F timing . o dummy . o
15 $ (F90) −DSTANDARD $ (FLONG) $ (HIOPT) $ (NOLINK) matstuff . F
16 $ (F90) −o MM . exe matstuff . o timing . o dummy . o $ (LINKF)
17

18 . c . o :
19 $ (CC) $ (COPTS) $ (NOLINK) $<
20

21 clean :
22 rm −f * . o * . exe

C.2. 2D Openmp jacobi stencil code

1 #inc lude <s t d i o . h>
2 #inc lude <l i kw id . h>
3 #inc lude <s t d l i b . h>
4 #inc lude <sys / time . h>
5 #inc lude <sys / types . h>
6 #inc lude <sys / r e sou r c e . h>
7

8 #i f d e f OPENMP
9 #inc lude <omp . h>

10 #end i f
11

12 #inc lude ” r e l a x l i n e . h”
13 #de f i n e min (a , b) (((a) < (b)) ? (a) : (b))
14 #de f i n e max(a , b) (((a) > (b)) ? (a) : (b))
15

16 void timing (double * wcTime , double * cpuTime) {
17 s t r u c t timeval tp ;
18 s t r u c t rusage ruse ;
19 gettimeofday(&tp , NULL) ;
20 *wcTime=(double) (tp . tv_sec + tp . tv_usec /1000000 .0) ;
21 getrusage (RUSAGE_SELF , &ruse) ;
22 *cpuTime=(double) (ruse . ru_utime . tv_sec+ruse . ru_utime . tv_usec / 1000000 .0) ;

23 }
24

25 i n t main (i n t argc , char *argv []) {
26 LIKWID_MARKER_INIT ;
27 #pragma omp p a r a l l e l {
28 LIKWID_MARKER_THREADINIT ; }
29 i f (argc != 6) {
30 printf (”Usage : P lease prov ide i s i z e and j s i z e i n c l ud ing boundary l ay e r .\n”) ;
31 printf (”Usage : %s i s i z e j s i z e i b l o c k s i z e |0 j b l o c k s i z e |0 sweeps\n” , argv [0]) ;
32 re turn −1;
33 }
34 i n t is=atoi (argv [1]) ;
35 i n t js=atoi (argv [2]) ;
36 i n t iblocksize=atoi (argv [3]) ;
37 i f (iblocksize>is) iblocksize = is ;
38 i f (iblocksize==0) iblocksize = is ;
39 i n t jblocksize=atoi (argv [4]) ;
40 i f (jblocksize>js) jblocksize = js ;
41 i f (jblocksize==0) jblocksize = js ;
42 i n t sweeps=atoi (argv [5]) ;
43

44 i n t Ni=is ;
45 i f (Ni%2==0) Ni+=1; ! odd line length f o r sse

46 i n t Nj=js ;
47 double arrayskb = Ni * Nj * 2 .0 * 8 .0 / 1000 . 0 ; ! memory usage [kB] of both ←↩

arrays

48 double min_runtime ;
49 double mlups ;
50 double wct_start , wct_end , cput_start , cput_end ;
51 const i n t grid_size = Ni * Nj ;
52 const i n t line_size = Ni ;
53 double * tmp_grid ;
54 i n t align_to = 16 ;
55 i n t ok ;
56 double * dg ;
57 ok = posix_memalign ((void **)&dg , align_to , (grid_size) * s i z e o f (double)) ;
58 i f (ok != 0) re turn −1;
59

60 ! align other layer

61 double * sg ;
62 ok = posix_memalign ((void **)&sg , align_to , (grid_size+1)* s i z e o f (double)) ;
63 i f (ok != 0) re turn −1;
64

65 double * source_grid = &sg [1] ;
66 double * destination_grid = dg ;
67 i n t a ;
68 f o r (a=0; a<grid_size ; a++){
69 destination_grid [a] = 1 . 0 ;
70 source_grid [a] = 3 . 0 ;
71 }
72 timing(&wct_start , &cput_start) ;
73 i n t l ;
74 f o r (l=0; l<sweeps ; ++l) {
75 #pragma omp parallel

76 {
77 LIKWID_MARKER_START (”J2D”) ;
78 }
79 i n t i , j ;
80 i n t iblock , jblock ;
81 i n t istart , jstart , iend , jend ;
82

83 f o r (jblock=1; jblock<Nj−1; jblock+=jblocksize) {
84 f o r (iblock=1; iblock<Ni−1; iblock+=iblocksize) {
85 jstart = jblock ;
86 jend = min (jblock+jblocksize−1, Nj−2) ;

87 #pragma omp parallel f o r schedule (s t a t i c)
88 f o r (j=jstart ; j<=jend ; ++j) {
89 istart = iblock ;
90 iend = min (iblock+iblocksize−1, Ni−2) ;
91 relax_line (istart , iend , &destination_grid [j*line_size] , &source_grid [←↩

j*line_size] , &source_grid [(j−1)*line_size] , &source_grid [(j+1)*←↩
line_size]) ;

92 } ! j

93 } ! iblocks

94 } ! jblocks

95 #pragma omp parallel{
96 LIKWID_MARKER_STOP (”J2D”) ; }
97 tmp_grid = destination_grid ; destination_grid = source_grid ; source_grid = ←↩

tmp_grid ;
98 } ! sweeps

99

100 ! prevent compiler from eliminating loop

101 i f (source_grid [22]<0) printf (”\n argh %f \n” , destination_grid [2 2]) ;
102 timing(&wct_end , &cput_end) ;
103 min_runtime = wct_end−wct_start ;
104 free (sg) ;
105 free (dg) ;
106 mlups = ((double) sweeps * (double) (Ni−2) * (double) (Nj−2)) / (double) min_runtime←↩

/ 1000000 .0 ;
107 printf (” s i z e o f b o t ha r r a y s [kB] %f runtime %f sweeps %i i s i z e %i j s i z e %i i b l o ck %i←↩

j b l o ck %i mlups %f \n” , arrayskb , min_runtime , sweeps , is , js , iblocksize , ←↩
jblocksize , mlups) ;

108 LIKWID_MARKER_CLOSE ;
109 re turn 0 ;
110 }

relax line.c

1 void relax_line (i n t istart , i n t iend , double *restrict dest_line , double *←↩
restrict source_line , double *restrict source_above , double *restrict ←↩
source_under) {

2 i n t start = istart ;
3 ! peel off one unaligned iteration i f necessary (16−byte alignment)
4 i f (((long)(&dest_line [start]) & 0x0F) != 0) {
5 dest_line [start]=(source_above [start] + source_under [start] + source_line←↩

[start−1] + source_line [start+1]) *0 . 2 5 ;
6 start++;
7 }
8 i n t i ;
9 #pragma vector aligned

10 #pragma simd

11 f o r (i=start ; i<=iend ; i++){
12 dest_line [i]=(source_above [i] + source_under [i] + source_line [i−1] + ←↩

source_line [i+1]) *0 . 2 5 ;
13 }
14 }

C.3. OpenMP-parallel Conjugate Gradient Method

1 #inc lude<s t d i o . h>
2 #inc lude<s t d l i b . h>
3 #inc lude <omp . h>
4 #inc lude ”mmio . h”
5 #inc lude <sys / time . h>

6 #inc lude <l i kw id . h>
7 i n t M , N , nz ;
8 double conj_grad (i n t colidx [] , i n t rowstr [] , double b [] , double x [] , double a [] ,←↩

double p [] , double q [] , double r [] , double *rnorm) ;
9

10 i n t main (i n t argc , char **argv) {
11 i n t i , j , k , it ;
12 i n t nthreads = 1 ;
13 double rnorm ;
14 double t ;
15 double wct_start , cput_start , wct_end , cput_end ;
16 i n t *colidx , *rowstr ;
17 double *a , *b , *x , *p , *q , *w , *r ;
18 LIKWID_MARKER_INIT ;
19

20 %********* Reading sparse matrix ***************/
21 i n t ret_code ;
22 MM_typecode matcode ;
23 FILE *f ;
24 i n t *I , *J , *temp ;
25 double *val ;
26

27 i f (argc < 2) {
28 fprintf (stderr , ”Usage : %s [martix−market−f i l ename]\n” , argv [0]) ;
29 exit (1) ;
30 }
31 e l s e {
32 i f ((f = fopen (argv [1] , ” r ”)) == NULL)
33 exit (1) ;
34 }
35

36 i f (mm_read_banner (f , &matcode) != 0) {
37 printf (”Could not p roce s s Matrix Market banner .\n”) ;
38 exit (1) ;
39 }
40

41 i f (mm_is_complex (matcode) && mm_is_matrix (matcode) && mm_is_sparse (matcode)) {
42 printf (”Sorry , t h i s app l i c a t i o n does not support ”) ;
43 printf (”Market Market type : [%s]\n” , mm_typecode_to_str (matcode)) ;
44 exit (1) ;
45 }
46

47 ! . . . find out size of sparse matrix
48 i f ((ret_code = mm_read_mtx_crd_size (f , &M , &N , &nz)) != 0)
49 exit (1) ;
50

51 ! . . . reseve memory f o r matrices

52 I = (in t *) malloc (nz * s i z e o f (i n t)) ;
53 J = (in t *) malloc (nz * s i z e o f (i n t)) ;
54 val = (double *) malloc (nz * s i z e o f (double)) ;
55 ! reading in doubles , ANSI C requires the use of the ” l ” as ”%lg ” , ”%l f ” , ”%l e ”
56 f o r (i = 0 ; i < nz ; i++){
57 fscanf (f , ”%d %d %lg \n” , &I [i] , &J [i] , &val [i]) ;
58 I [i]−−; ! . . . adjust from 1−based to 0−based
59 J [i]−−;
60 }
61 i f (f != stdin) fclose (f) ;
62

63 %************ Write out matrix ************/
64 mm_write_banner (stdout , matcode) ;
65 mm_write_mtx_crd_size (stdout , M , N , nz) ;
66 f o r (i = 0 ; i < nz ; i++)
67 fprintf (stdout , ”%d %d %20.19g\n” , I [i] + 1 , J [i] + 1 , val [i]) ;
68

69 printf (”\n\n CG Benchmark\n”) ;

70 printf (” S i z e : %d * %d\n” , M , N) ;
71 printf (” Number o f non−z e ro s : %d\n” , nz) ;
72 colidx = (in t *) malloc (nz * s i z e o f (i n t)) ;
73 rowstr = (in t *) malloc ((M + 1) * s i z e o f (i n t)) ;
74 a = (double *) malloc (nz * s i z e o f (double)) ;
75 b = (double *) malloc (N * s i z e o f (double)) ;
76 x = (double *) malloc (N * s i z e o f (double)) ;
77 p = (double *) malloc (N * s i z e o f (double)) ;
78 q = (double *) malloc (N * s i z e o f (double)) ;
79 r = (double *) malloc (N * s i z e o f (double)) ;
80 w = (double *) malloc (N * s i z e o f (double)) ;
81

82 %**************** Store matrix in CRS format ******************/
83 i n t p1 ;
84 rowstr [0] = 0 ;
85 i n t nzr = 0 ;
86 f o r (p1 = 0 ; p1 <M ; p1++){
87 f o r (i = 0 ; i < nz ; i++){
88 i f (I [i] == p1) {
89 a [nzr] = val [i] ;
90 colidx [nzr] = J [i] ;
91 nzr++;
92 }
93 }
94 rowstr [p1 + 1] = nzr ;
95 }
96

97 %****************** Printing matrix in CRS format ****************/
98 printf (”\nCRS Format\n”) ;
99 f o r (i = 0 ; i <nz ; i++){

100 printf (” c o l i d x %d \n” , colidx [i]+1) ;
101 }
102 f o r (j = 0 ; j <nz ; j++){
103 printf (” va lue %20.19g\n” , a [j]) ;
104 }
105 f o r (k = 0 ; k < M +1; k++){
106 printf (” rowstr : %d \n” , rowstr [k]+1) ;
107 }
108

109 srand (time (NULL)) ;
110 #pragma omp p a r a l l e l f o r p r i va t e (i)
111 f o r (i = 0 ; i < N ; i++) {
112 b [i] = (double) (rand () % 10) ;
113 }
114

115 %************* BenchMark ******************/
116 printf (”\nBenchmark s t a r t \n”) ;
117 #pragma omp p a r a l l e l p r i va t e (k) {
118 LIKWID_MARKER_THREADINIT ;
119 k = omp_get_num_threads () ;
120 printf (”Number o f Threads reques ted = %i \n” , k) ;
121 }
122

123 timing(&wct_start , &cput_start) ; ! . . . Start of time section

124 f o r (it = 1 ; it <= 1 ; it++) {
125 conj_grad (colidx , rowstr , b , x , a , p , q , r , &rnorm) ;
126 }
127 timing(&wct_end , &cput_end) ; ! . . . End of timed section

128 t = wct_end − wct_start ;
129 printf (” RunTime : %20.14 e\n ” , t) ;
130 printf (” \nBenchmark completed\n\n”) ;
131 LIKWID_MARKER_CLOSE ;
132 re turn 0 ;
133 }
134

135 %*********** Algorithm : Method of Conjugate Gradients *******************/
136 double conj_grad (i n t colidx [] , i n t rowstr [] , double b [] , double x [] , double a [] ,←↩

double p [] , double q [] , double r [] , double *rnorm) {
137 double d , sum , rho , rho0 , alpha , beta , s ;
138 i n t k , j ;
139 double eps = 1.0 e−10;
140 i n t cgit , cgitmax = 90000000;
141 rho = 0 . 0 ;
142 sum = 0 . 0 ;
143 #pragma omp p a r a l l e l d e f au l t (shared) p r i va t e (j , k , cg i t , alpha , beta , s) {
144 #pragma omp f o r
145 f o r (j = 0 ; j < M ; j++) {
146 q [j] = 0 . 0 ; ! . . . initionlization

147 x [j] = 0 . 0 ; ! . . . Given an initial guess x0

148 r [j] = b [j] ; ! . . . compute r0

149 p [j] = r [j] ; ! . . . set p0 = r0

150 }
151

152 ! rho : norm of r0 . To obtain norm of r : First , sum squares of r elements locally

153 #pragma omp f o r reduct ion (+: rho)
154 f o r (j = 0 ; j < N ; j++){
155 rho = rho + r [j] * r [j] ;
156 }
157

158 ! . . . first test f o r stop

159 i f (rho > eps) {
160 f o r (cgit = 1 ; cgit <= cgitmax ; cgit++){
161 #pragma omp single {
162 rho0 = rho ; ! . . . Save a temporary of rho

163 d = 0 . 0 ;
164 rho = 0 . 0 ;
165 } ! . . . end single

166

167 LIKWID_MARKER_START (”SPMVM”) ;
168 ! . . . Step1 : Compute matrix−vector multiply A . p and store it into q

169 #pragma omp f o r schedule (s t a t i c)
170 f o r (j = 0 ; j < M ; j++) {
171 s = 0 . 0 ;
172 f o r (k = rowstr [j] ; k < rowstr [j + 1] ; k++) {
173 s = s + a [k] * p [colidx [k]] ;
174 }
175 q [j] = s ;
176 }
177 LIKWID_MARKER_STOP (”SPMVM”) ;
178

179 ! . . . Step2 : Compute <pk , Apk> = <p , q>. Obtain p . q
180 LIKWID_MARKER_START (” Sca larProduct ”) ;
181 #pragma omp f o r reduction (+:d)
182 f o r (j = 0 ; j < N ; j++) {
183 d = d + p [j] * q [j] ;
184 }
185 LIKWID_MARKER_STOP (” Sca larProduct ”) ;
186

187 ! . . . Step3 : Compute alpha = <rk , rk>/<pk , Apk>= rho/<p , q>
188 alpha = rho0 / d ;
189

190 ! . . . Step4 , 5 , 6 : Compute xk + 1 = xk + akpk and rk + 1 = rkakApk and <←↩
rk + 1 , rk + 1 > Now , obtain the norm of r :

191 LIKWID_MARKER_START (” computestep456”) ;
192 #pragma omp f o r reduction (+: rho)
193 f o r (j = 0 ; j < N ; j++) {
194 x [j] = x [j] + alpha*p [j] ;
195 r [j] = r [j] − alpha*q [j] ;
196 rho = rho + r [j] * r [j] ;
197 }

198 LIKWID_MARKER_STOP (” computestep456”) ;
199

200 i f (rho < eps) {
201 break ;
202 }
203 ! . . . Step7 : Compute beta = <rk+1,rk+1>/<rk , rk> = rho / rho0

204 beta = rho / rho0 ;
205

206 ! . . . Step8 : Compute pk+1 = rk+1+bkpk

207 LIKWID_MARKER_START (” computestep8”) ;
208 #pragma omp f o r schedule (s t a t i c)
209 f o r (j = 0 ; j < N ; j++) {
210 p [j] = r [j] + beta*p [j] ;
211 }
212 LIKWID_MARKER_STOP (” computestep8”) ;
213 } ! . . . end i f
214 } ! . . . end of do cgit=1,cgitmax
215 printf (”Number o f Max I t e r a t i o n s = %i \n” , cgit−1) ;
216

217 ! . . . Compute residual norm | | r | | = | | b − A . x | |
218 LIKWID_MARKER_START (”postcompute”) ;
219 #pragma omp f o r schedu le (s t a t i c)
220 f o r (j = 0 ; j < M ; j++) {
221 s = 0 . 0 ;
222 f o r (k = rowstr [j] ; k <= rowstr [j + 1] − 1 ; k++) {
223 s = s + a [k] * x [colidx [k]] ;
224 }
225 r [j] = s ;
226 }
227 LIKWID_MARKER_STOP (”postcompute”) ;
228

229 LIKWID_MARKER_START (” lastcompute ”) ;
230 #pragma omp c r i t i c a l
231 f o r (j = 0 ; j < N ; j++) {
232 s = b [j] − r [j] ;
233 sum = sum + s*s ;}
234 LIKWID_MARKER_STOP (” lastcompute ”) ;
235 } ! . . . End parellel

236 (* rnorm) = sqrt (sum) ;
237 re turn 0 ;
238 }

C.4. Variable Intensity Benchmarks

0.5 F/B Intensity AVX Benchmark (Memory-bound case)

1 STREAMS 1
2 TYPE DOUBLE

3 FLOPS 4
4 BYTES 8
5 vmovaps ymm5 , [SCALAR]
6 vmovaps ymm6 , [SCALAR]
7 vmovaps ymm7 , [SCALAR]
8 vmovaps ymm8 , [SCALAR]
9 LOOP 16

10 vmovaps ymm1 , [STR0 + GPR1 *8]
11 vmovaps ymm2 , [STR0 + GPR1*8+32]
12 vmovaps ymm3 , [STR0 + GPR1*8+64]
13 vmovaps ymm4 , [STR0 + GPR1*8+96]
14

15 vmulpd ymm1 , ymm5 , ymm5

16 vaddpd ymm1 , ymm6 , ymm6

17 vmulpd ymm2 , ymm5 , ymm5

18 vaddpd ymm2 , ymm6 , ymm6

19 vmulpd ymm3 , ymm5 , ymm5

20 vaddpd ymm3 , ymm6 , ymm6

21 vmulpd ymm4 , ymm5 , ymm5

22 vaddpd ymm4 , ymm6 , ymm6

23 vmulpd ymm1 , ymm7 , ymm7

24 vaddpd ymm1 , ymm8 , ymm8

25 vmulpd ymm2 , ymm7 , ymm7

26 vaddpd ymm2 , ymm8 , ymm8

27 vmulpd ymm3 , ymm7 , ymm7

28 vaddpd ymm3 , ymm8 , ymm8

29 vmulpd ymm4 , ymm7 , ymm7

30 vaddpd ymm4 , ymm8 , ymm8

16 F/B Intensity AVX Benchmark (Compute-bound case)

1 STREAMS 1
2 TYPE DOUBLE

3 FLOPS 128
4 BYTES 8
5 vmovaps ymm5 , [SCALAR]
6 vmovaps ymm6 , [SCALAR]
7 vmovaps ymm7 , [SCALAR]
8 vmovaps ymm8 , [SCALAR]
9 vmovaps ymm9 , [SCALAR]

10 vmovaps ymm10 , [SCALAR]
11 vmovaps ymm11 , [SCALAR]
12 vmovaps ymm12 , [SCALAR]
13 LOOP 16
14 vmovaps ymm1 , [STR0 + GPR1 *8]
15 vmovaps ymm2 , [STR0 + GPR1*8+32]
16 vmovaps ymm3 , [STR0 + GPR1*8+64]
17 vmovaps ymm4 , [STR0 + GPR1*8+96]
18

19 vmulpd ymm1 , ymm5 , ymm5

20 vaddpd ymm1 , ymm6 , ymm6

21 vmulpd ymm2 , ymm5 , ymm5

22 vaddpd ymm2 , ymm6 , ymm6

23 vmulpd ymm3 , ymm5 , ymm5

24 vaddpd ymm3 , ymm6 , ymm6

25 vmulpd ymm4 , ymm5 , ymm5

26 vaddpd ymm4 , ymm6 , ymm6

27 vmulpd ymm1 , ymm7 , ymm7

28 vaddpd ymm1 , ymm8 , ymm8

29 vmulpd ymm2 , ymm7 , ymm7

30 vaddpd ymm2 , ymm8 , ymm8

31 vmulpd ymm3 , ymm7 , ymm7

32 vaddpd ymm3 , ymm8 , ymm8

33 vmulpd ymm4 , ymm7 , ymm7

34 vaddpd ymm4 , ymm8 , ymm8

35

36 vmulpd ymm1 , ymm9 , ymm9

37 vaddpd ymm1 , ymm10 , ymm10

38 vmulpd ymm2 , ymm9 , ymm9

39 vaddpd ymm2 , ymm10 , ymm10

40 vmulpd ymm3 , ymm9 , ymm9

41 vaddpd ymm3 , ymm10 , ymm10

42 vmulpd ymm4 , ymm9 , ymm9

43 vaddpd ymm4 , ymm10 , ymm10

44 vmulpd ymm1 , ymm11 , ymm11

45 vaddpd ymm1 , ymm12 , ymm12

46 vmulpd ymm2 , ymm11 , ymm11

47 vaddpd ymm2 , ymm12 , ymm12

48 vmulpd ymm3 , ymm11 , ymm11

49 vaddpd ymm3 , ymm12 , ymm12

50 vmulpd ymm4 , ymm11 , ymm11

51 vaddpd ymm4 , ymm12 , ymm12

52

53 .
54 .
55 .
56 .
57 .
58 .
59 .
60

61 vmulpd ymm1 , ymm9 , ymm9

62 vaddpd ymm1 , ymm10 , ymm10

63 vmulpd ymm2 , ymm9 , ymm9

64 vaddpd ymm2 , ymm10 , ymm10

65 vmulpd ymm3 , ymm9 , ymm9

66 vaddpd ymm3 , ymm10 , ymm10

67 vmulpd ymm4 , ymm9 , ymm9

68 vaddpd ymm4 , ymm10 , ymm10

69 vmulpd ymm1 , ymm11 , ymm11

70 vaddpd ymm1 , ymm12 , ymm12

71 vmulpd ymm2 , ymm11 , ymm11

72 vaddpd ymm2 , ymm12 , ymm12

73 vmulpd ymm3 , ymm11 , ymm11

74 vaddpd ymm3 , ymm12 , ymm12

75 vmulpd ymm4 , ymm11 , ymm11

76 vaddpd ymm4 , ymm12 , ymm12

Highest Intensity SSE Benchmark (Compute-bound case)

1 STREAMS 0
2 TYPE DOUBLE

3 FLOPS 4
4 BYTES 0
5 movaps FPR5 , [SCALAR]
6 movaps FPR6 , [SCALAR]
7 movaps FPR7 , [SCALAR]
8 movaps FPR8 , [SCALAR]
9 movaps FPR9 , [SCALAR]

10 LOOP 8
11

12 mulpd FPR5 , FPR5

13 addpd FPR1 , FPR6

14 mulpd FPR7 , FPR7

15 addpd FPR2 , FPR6

16 mulpd FPR8 , FPR8

17 addpd FPR3 , FPR6

18 mulpd FPR9 , FPR9

19 addpd FPR4 , FPR6

20

21 mulpd FPR5 , FPR5

22 addpd FPR1 , FPR6

23 mulpd FPR7 , FPR7

24 addpd FPR2 , FPR6

25 mulpd FPR8 , FPR8

26 addpd FPR3 , FPR6

27 mulpd FPR9 , FPR9

28 addpd FPR4 , FPR6

Appendix D
HistogramPlots

D.1. Accelerator Nodes

D.1.1. CPU Power and Model Parameters for DGEMM and Jacobi benchmarks

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

20 30 40 50 60 70 80 90

D
e

n
si

ty

CPU Power [W] for Socket 0

Bin width

8 Watts

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

20 30 40 50 60 70 80 90

D
e

n
si

ty

CPU Power [W] for Socket 1

Bin width

8 Watts

(a) DGEMM Benchmark Code

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

40 45 50 55 60 65 70 75

D
e

n
si

ty

CPU Power [W] for Socket 0

Bin width

0.38 Watts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

40 45 50 55 60 65 70 75

D
e

n
si

ty

CPU Power [W] for Socket 1

Bin width

0.38 Watts

(b) Jacobi Benchmark Code

Figure D.1.: Power dissipation by CPU for both DGEMM and Jacobi cases.

91

0

1

2

3

4

5

6

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

D
e

n
si

ty

CPU Parameter W2 [W/GHz2] for Socket 0

Bin width

0.1 Watts

0

1

2

3

4

5

6

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

D
e

n
si

ty

CPU Parameter W2 [W/GHz2] for Socket 1

Bin width

0.1 Watts

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

D
e

n
si

ty

CPU Parameter W1 [W/GHz2] for Socket 0

Bin width

0.5 Watts

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

D
e

n
si

ty

CPU Parameter W1 [W/GHz2] for Socket 1

Bin width

0.5 Watts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

5 10 15 20 25

D
e

n
si

ty

Baseline power W0 [W] for Socket 0

Bin width

3 Watts

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

5 10 15 20 25

D
e

n
si

ty

Baseline power W0 [W] for Socket 1

Bin width

3 Watts

Figure D.2.: DGEMM CPU power parameters Wi .

0

1

2

3

4

5

6

7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

D
e

n
si

ty

CPU Parameter W2 [W/GHz2] for Socket 0

Bin width

0.09 Watts

0

1

2

3

4

5

6

7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

D
e

n
si

ty

CPU Parameter W2 [W/GHz2] for Socket 0

Bin width

0.09 Watts

0

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3

D
e

n
si

ty

CPU Parameter W1 [W/GHz2] for Socket 0

Bin width

0.2 Watts

0

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3

D
e

n
si

ty

CPU Parameter W1 [W/GHz2] for Socket 1

Bin width

0.2 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

10 15 20 25

D
e

n
si

ty

CPU Baseline power W0 [W] for Socket 0

Bin width

2 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

10 15 20 25

D
e

n
si

ty

CPU Baseline power W0 [W] for Socket 1

Bin width

2 Watts

Figure D.3.: Jacobi CPU power parameters Wi .

D.1.2. DRAM Power and Model Parameters for DGEMM and Jacobi benchmarks

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

D
e

n
si

ty

DRAM Power [W] for Socket 0

Bin width

1.6 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

D
e

n
si

ty

DRAM Power [W] for Socket 1

Bin width

1.6 Watts

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

D
e

n
si

ty

Background DRAM Power W0
DRAM [Watts] for Socket 0

Bin width

0.8 Watts

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

D
e

n
si

ty

Background DRAM Power W0
DRAM [Watts] for Socket 1

Bin width

0.8 Watts

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2

D
e

n
si

ty

DRAM Parameter w [W/GHz2] for Socket 0

Bin width

0.1 Watts

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2

D
e

n
si

ty

DRAM Parameter w [W/GHz2] for Socket 1

Bin width

0.1 Watts

Figure D.4.: DGEMM DRAM power and its model parameters Wi .

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25 30 35

D
e

n
si

ty

DRAM Power [W] for Socket 0

Bin width

3 Watts

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25 30 35

D
e

n
si

ty

DRAM Power [W] for Socket 1

Bin width

3 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3 5 7 9 11 13 15

D
e

n
si

ty

Background DRAM power W0
DRAM [W] for Socket 0

Bin width

1 Watts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3 5 7 9 11 13 15

D
e

n
si

ty

Background DRAM power W0
DRAM [W] for Socket 1

Bin width

1.4 Watts

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5 0.6

D
e

n
si

ty

DRAM power parameter w [W/GHz2] for Socket 0

Bin width

0.05 Watts

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5 0.6

D
e

n
si

ty

DRAM power parameter w [W/GHz2] for Socket 1

Bin width

0.05 Watts

Figure D.5.: Jacobi DRAM power and its model parameters Wi .

	Abstract
	Introduction
	Fundamental metrics for characterising a multi-core processor
	Role of power consumption in supercomputing
	Understanding Power behaviour using analytical models
	Previous work
	Related work
	Thesis organization

	Test Systems and Tools
	``phinally'' Testsystem
	``ivyep1'' Testsystem
	``hasep1'' Testsystem
	``emmy'' Compute-Cluster
	Measurement methodology
	Module and compiler
	Batch Scripts and LIKWID Tools
	Levenberg-Marquardt Non-linear fitting algorithm

	Performance, Power and Energy Characteristics of Benchmark Codes
	Dense matrix-matrix multiplication (Core-bound case)
	2D Jacobi stencil (Memory-bound case)
	Conjugate Gradient Method
	Frequency and cores variation effect on power/energy characteristics

	An Analysis of Analytical Models and Validation
	CPU Power Model Refinement
	DRAM Power dissipation Model
	Multi-core Total System Power dissipation Model
	Multi-core Total System Energy to solution Model

	Consequences for Code execution
	Energy delay product and its generalization
	Power Capping
	Trading performance for energy
	Results for different architectures
	Comparison in terms of Performance
	Comparison in terms of Power
	Comparison in terms of Energy to solution
	Overall comparison across architectures

	Statistical Variation of Power Characteristics
	Methods and results
	Measurement methodology
	Statistical Results

	Consequences for code execution

	Connection to Microscopic Power Models
	Tunable Intensity effect on CPU and DRAM Power model
	CPU and DRAM Power versus intensity characterisation
	CPU Power model parameters versus intensity characterisation
	DRAM Power model parameters versus intensity characterisation

	Energy efficiency of different kind of instructions
	Microscopic performance, power and/or energy models
	Vuduc parameters to Wi parameters

	Conclusion
	Appendix
	List of Symbols and Abbreviations
	Matlab codes
	Non-linear Curve fitting Levenberg-Marquardt Algorithm
	Histogram Plot Matlab code

	C++/Fortran codes
	Dense matrix-matrix multiplication
	2D Openmp jacobi stencil code
	OpenMP-parallel Conjugate Gradient Method
	Variable Intensity Benchmarks

	HistogramPlots
	Accelerator Nodes
	CPU Power and Model Parameters for DGEMM and Jacobi benchmarks
	DRAM Power and Model Parameters for DGEMM and Jacobi benchmarks

