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Abstract
Many iterative numerical methods for sparse systems and
important building blocks of sparse linear algebra feature
strong data dependencies. They may be loop-carried depen-
dencies as they occur in many iterative solvers or precon-
ditioners (e.g., Gauss-Seidel, Kaczmarz) or write conflicts
as in the parallelization of building blocks such as symmet-
ric sparse matrix vector or sparse matrix transpose vector
multiplication. Scalable, hardware-efficient parallelization of
such kernels is known to be a challenge. Most of the typical
solutions suffer from low performance on modern hardware,
are highly matrix specific, or require tailored matrix storage
formats.
In this poster we show a novel method called Recursive

Algebraic Coloring (RAC), which achieves high hardware
efficiency on modern multi-core architectures and works
with simple data formats like compressed row storage (CRS).
RAC uses a recursive level-based method that aims at find-
ing optimal permutations while preserving data locality. It
is implemented and consolidated into a user-friendly library
called Recursive Algebraic Coloring Engine (RACE). A thor-
ough performance analysis shows that RACE outperforms
traditional Multicoloring methods and Intel MKL implemen-
tations with a factor of 2–2.5×. We are on par with Algebraic
Block Multicoloring (ABMC) for small matrices, while for
large matrices we gain almost a factor of 1.5–2×.
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1 Motivation
Many sparse linear algebra kernels, such as symmetric sparse
matrix-vector multiplication (SymmSpMV) or the Gauss-
Seidel iteration, are hard to parallelize due to write-after-
write or read-after-write dependencies. In this poster we
concentrate on distance-2 dependencies like in SymmSpMV.
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2 Related Work
Many solutions to the distance-2 problem have been pro-
posed, such as locking methods, thread-private target arrays
[5], special storage formats [1, 9], and matrix reordering, on
which we focus here. Multicoloring (MC) [4, 7] and Algebraic
Block Multicoloring (ABMC) [6] are two widely used solu-
tions in this area. In [3], MC was applied to the CARP-CG
algorithm. However, reordering can impact data access lo-
cality, increase the need for synchronization, and effect false
sharing, leading to low performance. Here we extend ABMC
for distance-2 kernels in order to mitigate these effects.

3 Recursive Algebraic Coloring (RAC)
method

The method aims at improving data locality, reduce syn-
chronization, and generate sufficient parallelism while still
retaining simple sparse data formats like Compressed Row
Storage (CRS).

RAC is a sequential, recursive, level-based algorithm that is
applicable to general distance-k dependencies. It is currently
limited to matrices with symmetric structure (undirected
graph), but possibly nonsymmetric entries. In the following
we describe the four steps of the algorithm, which operate
on the matrix graph.

1. Level construction. A breadth-first search (BFS) [8] is
done on the graph to improve data locality [10]. In our
experiments we substituted this stage with the slightly
more complicated Reverse Cuthill-McKee algorithm
(RCM) [2].

2. Permutation. The matrix is permuted in the order of
levels. We additionally store an array containing the
index of to the first element in each level (level_ptr).

3. Distance-k coloring. Using the levels L(i ) one can show
that L(i ) and L(i + (k + j )) are distance-k independent
for all j ≥ 1. In case of k = 2 this would mean if we
leave at least a gap of two levels between any two
groups of levels (T (a) and T (b)) they are distance-2
independent.T () is called level дroups and are formed
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by aggregating nearby levels L(). One possible config-
uration can be seen in the figure for the case of two
colors; each red level дroup is separated by at least two
levels of blue and vice-versa. Obviously there is now a
significant load imbalance because of the differently
sized level groups.

4. Load balancing. Themain idea is to resolve the distance-
k dependency as required by the algorithm at hand,
but also distribute nonzeros evenly across the desired
number of parallel threads. This is done by assigning
more levels in areas where the levels are small, but
fewer levels where they are large, observing the min-
imum requirement of two levels for maintaining the
distance-2 dependency. The algorithm tries to reduce
the variance in the number of nonzeros in the two
colors by acquiring or giving levels from or to the
corresponding level дroup.

If above steps do not lead to sufficient parallelism, recursion
is applied. A sub-graph is chosen (typically a level дroup)
based on a global load balancing algorithm, which decides
that splitting a level дroup into multiple subgroups will be
beneficial. Then the four steps above are applied on this sub-
graph. The thread that was assigned to the parent sub-graph
must spawn two or more subthreads to work on the parts.

4 RACE library
Wehave implemented the RACmethod in a library, the Recur-
sive Algebraic Coloring Engine (RACE). Using RACE implies
a pre-processing and a processing phase. In pre-processing
the user supplies the matrix, the kernel requirements (e.g.,
distance-1 or distance-2) and hardware settings (number
of threads, affinity strategy). The library generates a per-
mutation and stores the recursive coloring information in
a level_tree. It also creates a pool of pinned threads to
be used later. In the processing phase, the user provides a
sequential kernel function, which the library executes in
parallel as a callback, using the thread pool.

5 Performance
The test setup for the performancemeasurements is available
in the artifacts description. Since in normal applications pre-
processing is done only once during matrix creation phase
we compare only pure processing time. We show the perfor-
mance of SymmSpMV for a range of matrices on Intel Ivy
Bridge EP and Skylake SP, comparing RACE against ABMC,
MC, and MKL implementations. RACE is faster than the al-
ternatives (by up to 2.5×) for almost all matrices, followed
by ABMC, MKL, and MC. The advantage of RACE is espe-
cially pronounced with large matrices, where data traffic and
locality of access is pivotal. For one matrix (nlpkkt-200) we
show performance of SymmSpMV together with Roofline
limits and data traffic measurements (via LIKWID [11]).

With iterative solvers (like Kaczmarz), matrix reordering
causes a change in convergence behavior. The Kiviat graph
shows the change in iterations to convergence relative to
the serial version (lower is better). Here RACE is on par with
ABMC, followed by MC. Hence, we show for Kaczmarz the
GFlop/s rate as well as the actual inverse time to solution.
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