
Delay Flow Mechanisms on Clusters
Ayesha Afzal, Georg Hager, Gerhard Wellein

Department of High Performance Computing, Friedrich-Alexander University Erlangen-Nürnberg, Germany

{ayesha.afzal,georg.hager,gerhard.wellein}@fau.de

ABSTRACT
Analytic runtime models of distributed-memory applications are of-

ten inaccurate because of the wide range of effects that can disturb

the regular compute-communicate cycle. Possible sources of distur-

bance are long-duration delays, fine-grained on-node system noise,

variations in network performance, network contention, and appli-

cation load imbalance. There is to date no comprehensive theory

about how delays from different sources travel through a parallel ap-

plication running on a cluster, or how collective phenomena break

the inherent symmetry of the underlying software and hardware.

This is partly because of the huge parameter space involved. In this

poster, we use synthetic microbenchmarks to highlight three effects

that are of importance in this context: propagation of long-term de-

lays, noise-assisted decay of propagating delays, and noise-induced

desynchronization of memory-bound applications. Especially the

latter leads to surprising insights about performance features of

hybrid (MPI+OpenMP) parallel applications.

KEYWORDS
delay propagation; system noise; desynchronization; clusters

1 PROBLEM AND MOTIVATION
Many parallel applications running on clusters using pure MPI or

hybrid MPI+OpenMP have an inherent periodicity, where compu-

tation phases alternate with communication phases. In a straight-

forward model, the runtime of such an application is the sum of

computation and communication times: T = Texec + Tcomm. This

model, however, assumes a regularity that is often not observed

in application traces even if application load imbalances and net-

work contention can be ruled out. In effect, the measured runtime

may be shorter or longer than the prediction 1 .
1
Observed phe-

nomenology depends on many factors, such as code characteristics

(memory bound vs. compute bound), communication characteris-

tics (periodic vs. open chain process grid, communication patterns

and protocols), and system influence (fine-grained noise, coarse-

grained one-off delays, network hardware, etc.) 2 . We summarize

the consequences of these under the term nonsynchronicity.
The vast parameter space of nonsynchronicity phenomena ne-

cessitates a restriction to simple setups in order to understand the

underlying mechanisms. In this work, we investigate three aspects:

(1) Delay flow across cluster nodes with node-scalable code. In-
jected execution delays are observed as they travel through

the parallel application under negligible system noise. We de-

rive an analytic expression for the delay propagation speed

that takes the relevant communication characteristics into

account.

(2) Noise-assisted decay of propagating delays. We show that

propagating delays can be partially or completely eliminated

1
Circled numbers refer to specific areas on the poster; see Fig. 1.

by fine-grained system noise and observe near-linear in-

crease of decay rate with average noise amplitude.

(3) Noise-induced desynchronization of memory-bound code. If
multiple MPI processes compete for memory bandwidth, the

inherent “lockstep” pattern of parallel code is unstable with

respect to system noise. This may even lead to application

speedups.

Unless indicated otherwise, experiments were conducted on

up to 18 nodes of one leaf switch of the QDR-InfiniBand cluster

“Emmy” at Erlangen Regional Computing Center (RRZE).
2
Each

node comprises two ten-core Intel “Ivy Bridge” processors. The

clock speed was fixed to the base value of 2.2 GHz.

2 BACKGROUND AND RELATEDWORK
This work was motivated by a study of idle waves by Markidis

et al. [4] and Peng et al. [5]. We extend their coverage in several

directions. Hoefler et al. [3, 2] used their LogGOPSim simulator to

investigate the influence of system noise on large-scale applications,

but it is neither aware of node-level bottlenecks nor does it take the

system topology and different kinds of noise characteristics into

account. Here we present only data taken on a real cluster, although

we intend to develop an appropriate simulator framework.

3 RESULTS
In order to categorize different influence factors appropriately, we

introduce a nomenclature that is detailed on the bottom left of the

poster: process topology (open chain vs. closed ring), direction of

communication (uni- vs. bidirectional), distance of communication

(direct neighbor, next-to-next neighbor, etc.), communication pro-

tocol (eager vs. rendezvous), communication flavor (blocking vs.

nonblocking, split-wait vs. wait-for-all), and the presence of net-

work contention are assigned labels that are used in graph captions.

3.1 Delay flow: basic flavors of delay
propagation on a silent system [1]

In this series of experiments, we inject long-duration delays into

the execution on one rank (#5) of a purely compute-bound MPI pro-

gram (executing a series of floating-point divides followed by MPI

communication in a time-stepping loop) running with one process

per node in a one-dimensional process topology. Depending on the

communication parameters, the resulting “idle wave” propagates

with different characteristics 3 . For instance, eager-mode commu-

nication in one direction (d = +1) leads to the idle wave traveling

to the end of the process chain (and wrapping around in case of a

ring topology). Switching to rendezvous protocol, a second wave

travels in the opposite direction due to the inherent dependency

created by the inter-process handshake. The speed of propagation

2
https://www.anleitungen.rrze.fau.de/hpc/emmy-cluster/

https://www.anleitungen.rrze.fau.de/hpc/emmy-cluster/


A. Afzal et al.

in ranks/s can be modeled as follows:

v
silent

=
σd

Texec + Tcomm

,

where Texec and Tcomm are execution and communication time per

step, respectively, d is the maximum distance between communi-

cating processes, and

σ =

{
2 if bi-direct., split-wait, R mode

1 else

.

3.2 Interaction and damping of propagating
delays

Delays of different duration injected on equidistant MPI ranks

(closed ring topology, eager mode) travel through the system and

partially cancel each other 5 . This effect has been known for

some time [4], but it leads to the immediate conclusion that fine-

grained noise can interact with propagating delays and slow down

the speed of their trailing edge, effectively reducing their duration.

The leading edge should be unaffected. Hence, fine-grained noise

is expected to dampen propagating idle waves. To test this, we

injected statistical, exponentially distributed noise, i.e., execution

delays with the same workload as the actual program execution,

of varying average duration (between 0% and 25% of the compute

time) and tracked the average decay rate of a propagating delay. We

found empirically that there is a near-linear relationship between

the average noise amplitude and the observed decay rate. We ran

the same analysis on a Broadwell-based Omni-Path cluster
3
and on

the LogGOPSim simulator [2] (with communication parameters set

to the values as measured on the IB cluster), and roughly the same

dependence was found.

In other words, slight execution imbalance or variations com-

ing from other sources can effectively lessen the impact of long-

duration one-off delays. There is as of now no analytical model for

the observed linear dependence [1].

Note that the decay phenomenon is not restricted to noise in

the execution phase of the program. An experiment with an MPI

code that communicates very large messages (3MB) to multiple

neighbors shows essentially the same result 4 : In this case, the

noise does not emerge from variations in execution time but from

different communication times Tcomm due to the inherent nonde-

terminism of a contended network. The effect on the propagating

delay is the same.

3.3 Noise-assisted desynchronization and
structure formation

All previous experiments and models pertained to core-scalable

code, i.e., code that does not address bandwidth bottlenecks on

the socket level. In this setting, the “natural” node-level system

noise could only induce visible effects over long time periods. If a

memory bandwidth bottleneck applies, however, system noise and

variations in communication characteristics have a much stronger

effect on applications.

We conducted experiments using a strongly memory-bound

code (STREAM triad loop), running successively more processes

per socket (PPS) and observing the propagation of a strong injected

3
https://www.anleitungen.rrze.fau.de/hpc/meggie-cluster/

delay with closed ring topology and bi-directional next-neighbor

eager mode communication with small messages 6 . As soon as

memory bandwidth saturation sets in (at ≈4 processes per socket),

the reaction of the system to an injected one-off delay changes

qualitatively:

(1) The idle wave starts to decay as it travels, and the decay rate

is stronger with more processes per socket.

(2) A desynchronization effect sets in, where cores show in-

creased idle time, alternating with phases of activity. Since,

at any given time, not all cores are active on the memory

interface, the available bandwidth per core is larger than in

the initial lock-step state.

These observations lead to the following hypothesis: If the applica-

tion code is strongly memory bound, the parallel code may shift

from a perfectly synchronized state, where pure execution and

pure communication alternate in lockstep on all processes, to a

desynchronized state where part of the processes on each socket

execute, utilizing all available memory bandwidth, while others

wait or communicate. This would lead to an automatic overlap of

communication and computation that was not originally part of

the application design.

If the communication overhead is small, the transition into this

state can take a long time unless the system is “kicked” via an

injected idle period. For larger communication overhead, the tran-

sition happens quickly and requires only the natural system noise.

To study this in a simplified setting, we ran the code on four sockets

in a hybrid setup with five threads per MPI rank and two ranks per

socket 7 . This way, one MPI rank can already saturate the mem-

ory interface of a socket on its own. After already a few time steps,

desynchronization sets in and the system stays in this state: Process

pairs sharing a socket alternate in utilizing the memory interface.

Even though overall performance is better than in the synchronized

mode, the communication and waiting time per process will usually

be longer.

The steady state has the peculiar property that the “computation

front,” i.e., the wall-clock time at which each process is at the same

simulated time step, forms a wave pattern with a fundamental

wavelength equal to the number of ranks.

This transition can only happen when more than one MPI pro-

cess shares a memory interface; using pure OpenMP loop paral-

lelism on all cores of a node does not leave room for overlap. Also,

forcing lockstep by frequent collective operations like MPI_Reduce

will not allow desynchronization to “slip” into a steady state.

4 CONCLUSION
We have shed light on the propagation properties of one-off de-

lays (“idle periods”) injected into MPI applications with a regular

compute-communicate pattern. In the absence of significant system

noise, the delay propagates with a definite speed that depends on

communication characteristics and execution time. We could also

show that noise, i.e., fine-grained variations in execution time or

communication time, leads to a decay of the idle wave, to the point

where it is entirely dissolved: Noisy systems are impervious to idle

waves.

In case of memory-bound workloads, the phenomenology be-

comes a lot more complex. Sharing of memory bandwidth across

https://www.anleitungen.rrze.fau.de/hpc/meggie-cluster/


Delay Flow Mechanisms on Clusters

Figure 1: Poster orientation map. Circled numbers mark ar-
eas that are referred to in the text of the summary.

MPI processes running within a CPU socket makes the system

unstable against small disturbances and ultimately leads to desyn-

chronization and large-scale structure formation. We demonstrated

this effect and showed that in case of significant communication

overhead, the natural system noise is sufficient to quickly trigger

the transition. With small communication overhead, it can be ac-

celerated by an injected one-off delay.

Outlook. Much of the dynamics of idle wave decay and struc-

ture formation is still not well understood. We will try to derive a

quantitative model of the dependence between idle wave decay rate

and noise level. It is also unclear whether and how the particular

statistical properties of noise impact the decay.

Furthermore, we will investigate the instability of the synchro-

nous phase of memory-bound applications and their seemingly

inevitable transition into a phase with desynchronized contended

processes.

In order to be able to study a wider parameter range, the de-

velopment of a versatile simulation tool will be pushed forward.

Such a tool should not only be flexible enough to accommodate

different noise characteristics but also comprise realistic node-level

execution and communication performance models.

Finally, although the simplistic experimental setups used so far

led to interesting insights, more complex, real-world applications

with advanced point-to-point and collective communication pat-

terns will be investigated.

ACKNOWLEDGMENTS
This work is supported by KONWIHR, the Bavarian Competence

Network for Scientific High Performance Computing in Bavaria,

under the project name “OMI4papps.” We thank Michael Meier and

Thomas Zeiser (RRZE) for excellent technical support.

REFERENCES
[1] A. Afzal, G. Hager, and G. Wellein. Propagation and decay

of injected one-off delays on clusters: A case study. CoRR,
abs/1905.10603, 2019. arXiv: 1905.10603. url: http://arxiv.org/

abs/1905.10603. Accepted for IEEE Cluster 2019.

[2] T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim – Sim-

ulating Large-Scale Applications in the LogGOPS Model. In

Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, pages 597–604, Chicago,
Illinois. ACM, June 2010. isbn: 978-1-60558-942-8.

[3] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing

the influence of system noise on large-scale applications by

simulation. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 1–11. IEEE Computer Society, 2010.

[4] S. Markidis, J. Vencels, I. B. Peng, D. Akhmetova, E. Laure, and

P. Henri. Idle waves in high-performance computing. Physical
Review E, 91(1):013306, 2015.

[5] I. B. Peng, S. Markidis, E. Laure, G. Kestor, and R. Gioiosa. Idle

period propagation in message-passing applications. In High
Performance Computing and Communications; IEEE 14th Inter-
national Conference on Smart City; IEEE 2nd International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS),
2016 IEEE 18th International Conference on, pages 937–944.
IEEE, 2016.

https://arxiv.org/abs/1905.10603
http://arxiv.org/abs/1905.10603
http://arxiv.org/abs/1905.10603

	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 Results
	3.1 Delay flow: basic flavors of delay propagation on a silent system Afzal:2019
	3.2 Interaction and damping of propagating delays
	3.3 Noise-assisted desynchronization and structure formation

	4 Conclusion
	Acknowledgments

