
Georg-Simon-Ohm Hochschule Nürnberg
Fakultät Informatik

Regionales Rechenzentrum Erlangen
High Performance Computing

Masterarbeit

Paralleles Programmieren auf hybrider Hardware:

Modelle und Anwendungen

Betreuender Hochschullehrer: Prof. Dr. Reinhard Eck
Betreuer RRZE: Dr. Georg Hager
Autor: Holger Stengel
Matrikelnummer: 2084013

Eingereicht am: 15. März 2010

Zusammenfassung

Diese Arbeit hat zum Ziel, vorherrschende Programmiermodelle auf Parallelrechnern mit
hybrider Architektur zu bewerten. Der Schwerpunkt liegt dabei auf der Kombination von
MPI mit OpenMP und deren Anwendung auf Clustern von Shared-Memory-Knoten.

Im theoretischen Teil werden zunächst anhand eines parallelen Jacobi-Lösers die prinzip-
iellen Unterschiede in der Parallelisierung mittels MPI, OpenMP und MPI+OpenMP
erläutert. Dabei wird der entscheidende Vorteil hybrider Programmierung deutlich, der
im möglichen Überlapp zwischen Kommunikation und Rechnung liegt.

Die im Hinblick auf hybrides Programmieren in vielen Publikationen vorherrschende
Sichtweise ist, dass OpenMP vorrangig dazu dient, den Einzelprozess zu beschleunigen
bzw. weitere Paralleliserungsebenen zugänglich zu machen. Diese eingeengte Sichtweise
wird dem in MPI+OpenMP liegenden Potenzial nicht gerecht. Deswegen sollen in dieser
Arbeit drei verschiedene Ansätze verglichen werden:

• “Masteronly”-Stil ohne Überlappung von Kommunikation und Rechnung; kommu-
niziert wird nur im seriellen Teil

• Überlapp von Kommunikation und Rechnung, wobei ein Thread kommuniziert; auf
die anderen wird die Rechenarbeit manuell aufgeteilt, da durch das Abspalten eines
Threads i.W. die komplette Worksharing-Funktionalität von OpenMP verloren geht

• Überlapp von Kommunikation und Rechnung unter Anwendung des neuen OpenMP
“Task” Konstrukts. Damit lassen sich die Einschränkungen des zweiten Zuganges
sehr elegant umgehen.

Anhand von Benchmarks wird die Performance der verschiedenen Zugänge verglichen,
wobei auch auf eine effiziente Implementierung der reinen MPI-Versionen Wert gelegt
wird. Als anwendungsnaher Testfall dient ein dreidimensionaler Jacobi-Löser.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Testbed . 2
1.3 Parallel approaches to the Jacobi algorithm 8

2 Jacobi parallel performance model 14
2.1 Pure MPI . 14
2.2 MPI/OpenMP hybrid . 20

3 MPI optimizations 23
3.1 Mapping of ranks to subdomains . 23
3.2 Overlap of communication and computation 31
3.3 Overlap of intra-node and cross-node communication 34
3.4 Conclusions . 38

4 MPI/OpenMP hybrid programming 40
4.1 Vector mode vs. task mode . 40
4.2 Application to the Jacobi algorithm . 44

5 Conclusion and outlook 51
5.1 Results . 51
5.2 Future work . 52

Bibliography 53

iii

1 Introduction 1

1 Introduction

1.1 Motivation

Moore’s Law [1], which has been valid for 45 years now, states that the number of tran-
sistors per chip that are required to hit the “sweet spot” of minimal manufacturing cost
would increase exponentially at a constant factor of two every 24 months. Amazingly this
tremendous growth in chip complexity has led to an almost proportional boost in com-
putational performance for microprocessor chips. This far from trivial connection caused
many application programmers to believe that single-processor performance will continue
to grow at this speed. However, problems with heat dissipation and architectural issues
stimulated a fundamental paradigm shift in the middle of the past decade: chip manu-
facturers started to offer multi-core microprocessors, which carried several computational
cores on a single die or at least in a single package. The clock speed and overall perfor-
mance of the single core begin to stagnate, and the only way to keep pace with Moore’s
Law with respect to computational performance is to utilize multiple cores by code par-
allelization. Programmers are confronted with the unpleasant fact that the responsibility
for “fast” code is being shifted from hardware to software.

Large compute resources like clusters and supercomputers were also affected by this fun-
damental turnover. Although the elementary principles and problems of parallel pro-
gramming have not changed with the introduction of multi-cores, the question arises
what the best programming model for clustered multi-core multi-socket compute nodes is
today. The combination of a shared-memory programming model like OpenMP [2] with
distributed-memory parallelization via the Message Passing Interface (MPI) [3] appears
to be a natural candidate. It is, however, far from obvious how exactly the complex
hardware hierarchy should be exploited for best performance, even if the fundamental
paradigm “hybrid MPI+OpenMP” is taken for granted. Moreover there seems to be a
general lore stating that a hybrid code can never be faster than a well-written pure MPI
program that utilizes every core as if it were not part of a multi-core chip.

This work tries to shed some light onto the discussion about pure MPI versus hybrid
MPI+OpenMP for modern clustered multi-socket multi-core HPC systems. It puts heavy
emphasis on the idea that one should compare the “best possible” MPI code with the “best
possible” hybrid code in order to arrive at a meaningful performance comparison. To
this end it analyzes important factors like intra-node versus inter-node message-passing,
the behavior of communication paths supporting multiple point-to-point connections, the
influence of shared caches on communication performance, and the impact of typical
OpenMP pitfalls. As a simple yet nontrivial benchmark case, a three-dimensional Jacobi
solver was chosen. It shows data transfer and communication patters similar to more

1 Introduction 2

advanced algorithms, but is very approachable in terms of performance analysis and
modeling.

This work is organized as follows: The first chapter gives an overview of the testing
environment. Technical specifications for the computer systems and network interconnects
are provided as well as basic parallelization methods for the Jacobi benchmark algorithm.
Chapter 2 introduces a parallel performance model for the Jacobi algorithm. Based on this
model theoretical maximum performance for several MPI and hybrid parallel approaches
is estimated. MPI optimizations relevant for hybrid computer systems are covered by
the third chapter. Optimizations include appropriate subdomain placement and analysis
of potential overlap effects. Finally, MPI/OpenMP hybrid programming techniques and
their application to the Jacobi algorithm are evaluated.

1.2 Testbed

1.2.1 Benchmark systems

This section gives an overview of the computer systems used for benchmarking. They are
located at RRZE1 and NERSC2. The following descriptions have been adapted from the
respective websites.

Woodcrest

The Woodcrest cluster at RRZE (termed “Woody”) is intended for distributed-memory
(MPI) or hybrid parallel programs with medium to high communication requirements.
It consists of 217 compute nodes, each with two Xeon 5160 “Woodcrest” chips (4 cores)
running at 3.0 GHz with 4 MB Shared Level 2 Cache per dual core and 8 GB of RAM.
Nodes are connected with a double data rate (DDR) InfiniBand network with a theoretical
bandwidth of 10 GBit/s per link and direction. For details regarding interconnect see
section 1.2.2. The machine is described in detail in [4].

Tinyblue

RRZE’s Tinyblue cluster [5] is intended for distributed-memory (MPI) or hybrid parallel
programs with medium to high communication requirements. It consists of 84 compute
nodes, each with two Xeon 5550 “Nehalem” chips (8 cores) running at 2.66 GHz with 8 MB
Shared Cache per chip, 12 GB of RAM. Benchmarks show that at least three processes
or threads are required to fully utilize memory bandwidth on one socket. Nodes are
connected by a quad data rate (QDR) InfiniBand network with a theoretical bandwidth
of 40 GBit/s per link and direction. MPI point-to-point bandwidth measured with Intel’s
IMB benchmark suite (see section 1.2.2) is 3.2 GB/s at a latency of 1.6 µs.

1http://www.rrze.uni-erlangen.de/
2http://www.nersc.gov/

1 Introduction 3

Townsend

The Townsend cluster [6] at RRZE consists of 66 compute nodes, each with one Xeon 3070
Dual Core chip running at 2.67 GHz and 4 GB of RAM. Intel’s “Port Townsend” main-
board which is deployed in this machine is the reason for its name. Nodes are connected
with DDR InfiniBand network, but the also available Gigabit Ethernet network turned
out to be the only reliable Gigabit Ethernet implementation among the available bench-
mark systems. Gigabit Ethernet was used for benchmarking communication-intensive
code (introduced in chapter 2).

Cray XT4

The NERSC Cray XT4 system [7] is ranked number 15 on the current list3 of the 500
most powerful computers in the world. Each of its 9,572 nodes has a 2.3 GHz single
socket quad-core AMD Opteron processor (“Budapest”) and 8 GB of memory (2 GB of
memory per core). Nodes are connected via HyperTransport to a three-dimensional torus
network. This interconnect offers MPI point-to-point bandwidth of 1.6 GB/s and latency
of 7 µs.

1.2.2 Communication characteristics

The PingPong and PingPing benchmarks included in Intel’s MPI Benchmark collection
(IMB) are a convenient way to investigate a system’s inter-process communication be-
havior. They return duration and network bandwidth for MPI communications with
configurable amounts of payload. PingPong covers one consecutive send and receive,
whereas PingPing’s communication pattern is made up of two simultaneous sends of both
parties. A short introduction to those benchmarks is given below, for details see the IMB
User Guide [8].

Subject of investigation are communication partners located

cross-node (CN) on different nodes,

cross-socket (CS) on different sockets of the same node, and

intra-socket (IS) on different cores of the same socket.

The latter two are also referred to by the more generic term intra-node (IN).

PingPong

As the name implies, the IMB PingPong benchmark measures round-trip time for a mes-
sage between two processes. The second process will not send an answer (Pong) until

1 Introduction 4

MPI_Send()

MPI_Recv()

MPI_Send()

MPI_Recv()

Process 1 Process 2

t_r

t_m

Barrier

Barrier

num

num
Figure 1.1: IMB Ping-
Pong communication pat-
tern. Reported time (tr) is
half the measured round-
trip time (tm). Time and
bandwidth are reported for
various buffer sizes (num).

it has completely received the message (Ping) from the first process (see figure 1.1 for
illustration).

Time measurement ends after the first process has received the message. The benchmark
reports half the measured round-trip time. This value is used to derive the unidirec-
tional bandwidth for the communication path, which can be regarded as the maximum
bandwidth obtainable for an application.

Bandwidth values plotted over message size show shapes that are characteristic for Ping-
Pong and PingPing benchmarks for almost any type of network (figures 1.2 to 1.6).

For small message lengths communication time is dominated by latency. With growing
message size these overhead effects become less influential and obtained bandwidth grows
continuously. At a message size of about one megabyte, bandwidth reaches a maximum for
our test system (two Tinyblue nodes connected with InfiniBand network) and stagnates.
This is the maximum obtainable bandwidth for the communication path.

So far only a single process pair utilized the communication path. With the multi-mode
versions of PingPong and PingPing several pairs communicate simultaneously. This gives
information about bandwidth scalability for a connection. The QDR (quad data rate)
InfiniBand network offers sustained bandwidth of about 3 GB/s for a single pair (fig-
ure 1.2). A second pair can lead to a slight improvement, but further pairs do not lead to

3http://www.top500.org/list/2009/11/100

1 Introduction 5

10
0

10
2

10
4

10
6

10
8

Message length [bytes]

0

1000

2000

3000

4000

5000

B
an

d
w

id
th

 [
M

B
y

te
s/

s]

1 pair

2 pairs

4 pairs

IMB PingPong tinyblue

cross-node

Figure 1.2: Bandwidth versus message length for the IMB PingPong
benchmark. One, two or four PingPong pairs communicate simultane-
ously between two nodes of the Tinyblue cluster.

10
0

10
2

10
4

10
6

10
8

Message length [bytes]

0

2000

4000

6000

8000

B
an

d
w

id
th

 [
M

B
y

te
s/

s]

1 pair cross-socket

2 pairs cross-socket

1 pair intra-socket

2 pairs intra-socket

IMB PingPong tinyblue

intra-node

Figure 1.3: IMB PingPong for both intra-node scenarios on Tinyblue.

1 Introduction 6

additional bandwidth. Note that the performance boost for multi-mode measurements at
medium sized messages is a benchmark effect and does not represent actual bandwidth
growth. It can be shown ([9]) that this effect is caused by an overlap of send and receive
operations, possible for certain message sizes.

Intra-node PingPong measurements with one process pair show characteristics and band-
widths similar to cross-node on the test system (figure 1.3). The QuickPath interconnect
present at Xeon 5550 “Nehalem” processors offers sound scalability for multi-mode Ping-
Pong. Vanilla cross-socket measurements might yield unrealistically high bandwidths.
This is caused by a reuse of communication buffer for all repetitions performed for a
message size [10]. Instead of actually transferring the buffer it is reused from cache as
memory location does not change. Buffer reuse can be prevented with the -off_cache

option to IMB. As a shared cache is actually existing for processes communicating within
the cores of one socket, buffer reuse can be considered as native behavior and therefore
do not have to be bypassed for intra-socket measurements.

Contrary to the widespread belief that intra-node communication comes at no cost, these
results show that, although latency is much smaller between cores on the same node,
asymptotic bandwidth is comparable to what can be achieved with state-of-the-art cluster
interconnects, especially for a single point-to-point connection.

PingPing

With IMB PingPong being a tool for measuring unidirectional bandwidth, PingPing is in-
tended to fathom bidirectional or full-duplex bandwidth between two processes. Therefore
both processes issue an MPI send operation with identically sized buffers simultaneously
(see figure 1.4).

The timespan from emitting the message to receiving the counterpart is measured and uti-
lized for bandwidth calculation. Analog to multi-mode PingPong a multi-mode version of
PingPing exists. Here multiple process pairs communicate simultaneously over one path.
This pattern of concurrent transfers mimics halo exchange communication in typical sten-
cil codes. In general, multiple synchronous transfers to and from neighboring subdomains
proceed using a single network interface. Determined benchmark values are thus suitable
as input for Jacobi performance models (chapter 2). Cross-node measurements offer quite
similar properties to PingPong for the test system. In particular, sustained bandwidth for
large messages is almost identical (figure 1.5). This indicates that the InfiniBand network
is capable of real full-duplex transfer. Again, the multi-mode benchmark yields a slight
step-up in performance.

Intra-node PingPing measurements show that for the QuickPath network full-duplex com-
munication implies a performance impact. Compared to according PingPong values band-
width is halved (figure 1.3). Hence, the considerations for comparing cross-node and
intra-node communication performance are even more relevant here than for the Ping-
Pong case.

1 Introduction 7

Process 1 Process 2

Barrier

MPI_Isend() MPI_Isend()

MPI_Recv() MPI_Recv()

num num

MPI_Wait() MPI_Wait()

Barrier

t_m
Figure 1.4: IMB Ping-
Ping communication pat-
tern. Duration of two
simultaneous send opera-
tions in opposing direc-
tions is measured (tm).
Time and bandwidth are
reported for various buffer
sizes (num).

10
0

10
2

10
4

10
6

10
8

Message length [bytes]

0

1000

2000

3000

4000

B
an

d
w

id
th

 [
M

B
y

te
s/

s]

1 pair

2 pairs

4 pairs

IMB PingPing tinyblue

cross-node

Figure 1.5: IMB PingPing between two nodes of the Tinyblue cluster.

1 Introduction 8

10
0

10
2

10
4

10
6

10
8

Message length [bytes]

0

1000

2000

3000

4000

5000

6000

7000

B
an

d
w

id
th

 [
M

B
y

te
s/

s]

1 pair cross-socket

2 pairs cross-socket

1 pair intra-socket

2 pairs intra-socket

IMB PingPing tinyblue

intra-node

Figure 1.6: IMB PingPing for both intra-node scenarios on Tinyblue.

1.3 Parallel approaches to the Jacobi algorithm

In scientific computing, stencil-based computations are a widespread class of applications.
They are utilized as iterative solvers for partial differential equations (PDE) in numerical
analysis and simulation. We will now examine the Jacobi method, a simple yet instructive
algorithm prototypical for the class of solvers using stencil computations. The following
code fragment shows a typical six point Jacobi kernel for a 3D grid.

for (int n = 0; n < iterations; ++n)

{

for (int z = 1; z < dim_z; ++z)

{

for (int y = 1; y < dim_y; ++y)

{

for (int x = 1; x < dim_x; ++x)

{

t1[z][y][x] = (t0[z-1][y][x] + t0[z][y-1][x] + t0[z][y][x-1] +

t0[z+1][y][x] + t0[z][y+1][x] + t0[z][y][x+1]) / 6;

}

}

} // switch grids

}

1 Introduction 9

t 0

t 1

Figure 1.7: Stencil update for one cell in a 2D grid [11]. Neighbor
elements from the current grid (t0) are aggregated to update a cell in
the grid representing the following time step (t1).

This code implements a relaxation algorithm that is, e.g., capable of solving boundary
value problems like the Laplace equation ∆T = 0. Since we are interested in the perfor-
mance properties alone, convergence issues (and the proper criteria for detecting it) are
ignored, and a fixed number of iterations is performed.

The central data structures are two arrays of equal size. They represent the state of
the simulated surface at the current (t1) and previous (t0) time step. During one sweep
(iteration over the entire grid) every lattice point of the current grid is updated with
the average value of its adjacent neighbors in the old grid. This is illustrated for two
dimensions in figure 1.7.

After each sweep the grids are exchanged, so that the former destination grid becomes
the source grid for the upcoming iteration.

When updating boundary cells that have neighbors “outside” the grid, two strategies can
be applied. The straightforward approach is to provide static (also called open) boundary
values. For some applications it is reasonable to implement periodic boundary conditions.
Here, the cell at the opposing position in the grid is used as neighbor, resulting in pipe-
or even torus-shaped topologies.

1 Introduction 10

Spatial blocking

The Jacobi solver implementation used for benchmarking incorporates spatial blocking, a
technique to improve data locality. With growing domain size data elements of logically
neighboring cells drift apart in memory. It is thus getting unlikely that data needed for
a stencil update can be retrieved from cache. Probability for expensive memory access
rises on the other hand, hence performance unnecessarily depends on problem size. To
circumvent this, sweeps are no longer performed over the whole domain like depicted in the
code sample above, but over partitions of the domain [12]. Those partitions, usually called
blocks, are spatial areas with adjustable size. Optimal block dimensions are given if two
layers of the block fit into cache. This ensures maximum re-use of data from local cache,
since only a single element has to be fetched from memory per stencil update. It is usually
reasonable to choose a relatively large block size in the dimension that correlates with
“memory direction” in order to take advantage of automatic prefetching mechanisms.

Parallelizing the Jacobi algorithm for shared and distributed memory computers is the
subject of the following sections.

1.3.1 OpenMP parallel

Shared-memory parallel programming for science and engineering is currently dominated
by OpenMP [2]. Given a serial code, parallel regions can be defined by simply inserting
OpenMP directives, and major code restructuring is usually not required. Instructions
within a parallel region will be executed by every thread of the currently active thread
team.

An OpenMP parallel Jacobi solver can be derived form the example code in the previous
section by simply inserting an OpenMP parallel loop construct [13] like the following prior
to one of the loops. (Note that compilers without OpenMP support simply ignore those
directives or emit a warning.)

#pragma omp parallel for schedule(static)

This causes the following loop to be executed in parallel, i.e. iterations are spread across
the thread team. Which loop iterations actually are assigned to which thread, depends on
the schedule clause of the OpenMP parallel loop construct. A plain static schedule, for
example, divides the iteration space into n approximately equally sized chunks (n being
the number of threads. See figure 1.8).

This distribution in combination with parallelizing the outermost loop (z direction) en-
hances data locality and therefore improves cache reuse. As a positive side-effect, the
resulting large work-packages minimize overhead incurred by startup, synchronization
and administrating threads.

Especially on ccNUMA systems, where memory is logically shared but physically dis-
tributed, data locality can yield a decent performance gain. Besides the arrangements

1 Introduction 11

thread 0

thread 1

thread 2

thread 3

x

y

z

Figure 1.8: Distribution of iterations to OpenMP threads for a paral-
lelization of the outermost loop (z direction) and static schedule. The
overall number of iterations (i.e. the number of elements in this direc-
tion) is split up into equal chunks for the threads.

mentioned above, subsidiary techniques like pinning threads to cores and parallel initial-
ization (page placement) should be taken into account [11].

1.3.2 MPI parallel

Writing a parallel Jacobi solver for a distributed memory system using MPI [3] holds
far more effort than the OpenMP approach from the previous section. Since work no
longer is done by a team of threads that share one address space but by normal processes,
synchronization and communication among the latter has to be done explicitly.

It begins with the check for convergence after each sweep, which can not be omitted
for productive applications relying on numerical correctness. The maximum deviation
between values from the current and the previous time step can be easily calculated by each
process for its local domain, but for a global maximum a reduction (i.e. synchronization
of all processes) is required.

The second challenge arising when turning from shared-memory to distributed memory
programming incorporates handling boundary areas. It is no longer sufficient to just
segment the computational domain logically by splitting a loop, but it rather has to be
physically divided and spread to the private memory of each process. After this procedure
(coined domain decomposition), each worker performs a sweep on its local patch. To
update cells at domain boundaries, values of neighboring patches are required. However,
access to those boundary cells does not work automatically like in the shared-memory
scenario above. Instead, up-to-date boundary values have to be transferred (i.e. using

1 Introduction 12

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

R

R

R

R

R

S

S

S

S

S

R

R

R

R

R

S

S

S

S

S

CopyRecvBuf()CopySendBuf()

MPI_Send() MPI_Wait()

MPI_Irecv()/

Figure 1.9: Halo communication for the Jacobi solver (illustrated in two
dimensions here) along one of the coordinate directions. Hatched cells
are ghost layers, and cells labeled “R” (“S”) belong to the intermediate
receive (send) buffer. The latter is being reused for all other directions.
Note that halos are always provided for the grid that gets read (not
written) in the upcoming sweep. Fixed boundary cells are omitted for
clarity. [11]

message passing via MPI) between all participating processes before each sweep. Data
structures containing boundary values of neighboring processes are usually called halo or
ghost layers. Halo exchange is illustrated in figure 1.9

Which ranks have to exchange halo data depends on the grid’s underlying topology and
the mapping of physical coordinates to ranks. Management of this administrative data
can be either implemented manually by the developer or be left to MPI’s virtual topology
support functions. See chapter 3 for further discussion of this topic.

Since communication is a frequent performance bottleneck for MPI parallel applications,
several techniques exist to reduce halo traffic. Communication effort directly corresponds
to the surface of a subdomain. A basic approach is therefore to minimize subdomain faces
by a thorough domain decomposition. Figure 1.10 shows the influence of domain decom-
position on subdomain faces. According to this, quadratic (or cubic, for 3-dimensional
domains) subdomains are ideal, as they exhibit the least surface for a given volume. MPI
offers support functions that implement this partitioning (introduced in section 3.1).

1 Introduction 13

Figure 1.10: Two possible decompositions of one domain into two sub-
domains of equal volume. The right version requires more communica-
tion due to a larger surface (dashed line) between the neighbors. Com-
munication volume is 16 elements for the right decomposition, and only
12 elements for that on the left.

2 Jacobi parallel performance model 14

2 Jacobi parallel performance model

In order to check performance measurements for plausibility and to estimate possible
benefits of further code improvements it makes sense to calculate the expected maximum
performance for a given environment by setting up a performance model. A performance
model tries to predict performance behavior either qualitatively or quantitatively using a
set of parameters. Those parameters can be measured values but are often estimated by
some other model in turn. Typical parameters are low-level properties of the hardware
at hand, like bandwidths, latencies, or derived quantities like single-node performance for
some elementary operation.

This section describes bandwidth-based performance models for pure MPI and hybrid
Jacobi solvers. After determining the necessary input values, performance for various
scenarios will be predicted. Actual performance measurements are presented in subsequent
chapters.

The measurements in this chapter were performed on the Townsend cluster using Gigabit
Ethernet. This network is slow compared to the InfiniBand network, which is also available
in the benchmark machine (DDR InfiniBand offers more than ten times higher sustained
bandwidth at only about 10 % of the latency). Of course InfiniBand would be preferred for
productive applications. In order to emphasize the influence of communication, however,
it is sensible to use Gigabit Ethernet. One should also keep in mind that Gigabit Ethernet
is a very popular interconnect in cluster environments: As of November 2009, more than
50 % of all Top500 systems are equipped with Gigabit Ethernet as the primary network
[14].

2.1 Pure MPI

The workflow of an MPI parallel Jacobi solver mainly consists of two steps: sweeping
the subdomain and exchanging halo with neighbors. Usually they are executed in a
consecutive manner. Therefore durations of both add up to the time required for one
Jacobi time step. Given the number of participating nodes N and a node’s subdomain
size in one direction L, a weak scaling performance model can be set up to

P (N) =
NL3

tsweep + tcomm

(2.1)

2 Jacobi parallel performance model 15

We restrict to weak scaling (workload grows with node count) for this introduction, but
a strong scaling model (overall workload is constant for all node counts) is just as well
possible.

Since all processes simultaneously sweep a subdomain of equal size (weak scaling), tsweep

is constant for all numbers of nodes, whereas overall communication effort depends on the
number of nodes or neighbors. Problem size grows with the number of processors, leaving
single thread performance constant. On the other hand, communication plays a larger
role with growing N , since more messages must be transmitted through the network and
the maximum number of neighbors per subdomain increases. Note that on a fully non-
blocking network the communication overhead is dominated by the process that works on
the subdomain with the largest surface; see below for more details.

In the following sections values for tsweep and tcomm are derived and applied to the model.
With this instrument theoretical maximum performance is predicted for several paral-
lelization approaches.

2.1.1 Computation

Based on the common definition of performance P = work
time

, tsweep can be derived from
Psweep using the following equation:

tsweep =
L3

Psweep

(2.2)

According to [11], Psweep can be calculated by

Psweep = min

(

Pmax,
bS

Bc

)

, (2.3)

where bS, the STREAM bandwidth, is the maximum memory bandwidth retrievable by an
application. This value can be determined by the STREAM benchmark [15]. Bc, the code
balance, describes the code’s relation of memory accesses to floating point operations and
can be used to estimate an upper bound for performance. One site update of a 3D Jacobi
solver requires five additions, one multiplication, six loads (seven, if RFO is required) and
one store. RFO is the transfer of a cache line into the cache after a write miss. It is
required because the cache can only communicate with memory in packets of the cache
line size. Assuming that nontemporal stores1 are utilized (i.e. no RFO) and that only
one element has to be loaded from memory, code balance is 1/3 W/F. Given a reasonable
block size (see section 1.3) all but one element reside in cache as they were used before.

In many situations it is not necessary to tinker with the STREAM benchmark and code
balance in order to formally derive Psweep. It is usually sufficient to determine it with
single-node Jacobi benchmark runs. This is particularly true in a situation where focus
does not lie on computational but on communication effort. Tests with a mature Jacobi

1Only available in x86 processor architectures

2 Jacobi parallel performance model 16

10
0

10
2

10
4

10
6

10
8

Message length [bytes]

0

50

100

150

B
an

d
w

id
th

 [
M

B
y
te

s/
s]

1 pair cross-node (Gigabit Ethernet)

2 pairs cross-node (Gigabit Ethernet)

Figure 2.1: IMB PingPing (cross-node) using Gigabit Ethernet on
Townsend. Reported bandwidths apply for one direction. Multi-mode
values are accumulated over both pairs.

benchmark code on the Townsend cluster yield Psweep values of 177 MLUPs/s (1 core) to
198 MLUPs/s (2 cores), leading to, e.g., tsweep of 9.76 ms and 8.73 ms for a domain with
1203 elements.

2.1.2 Communication

Network communication is made up of two phases, setup and transfer. The duration of
the latter is determined by the network’s achievable bandwidth bnetwork and the commu-
nication volume V , whereas the former is represented by latency (tl). Both tl and bnetwork

can be measured with the IMB PingPing benchmark introduced in section 1.2.2. The
benchmark consists of one or more (multi-mode) process pairs communicating simulta-
neously. Multi-mode PingPing has similar communication characteristics to Jacobi halo
exchange. Measurements also show how network bandwidth scales for multiple commu-
nication partners.

According to figure 2.1 bandwidth reaches its maximum at about 85 MB/s per direction. A
single communication pair is not able to utilize the network to full capacity, and additional
pairs can gain a slight bandwidth rise to 90 MB/s. With a subdomain size of 1203 elements
per direction, buffer size for one halo transfer is 1202

∗ 8 Byte = 112.5 kB. As figure 2.1
shows, full bandwidth can be assumed for this communication volume.

Along with bandwidth PingPing also reports communication time. In order to estimate
network latency, PingPing measurements with small message sizes are examined, as com-
munication overhead is dominant there.

2 Jacobi parallel performance model 17

10
0

10
1

10
2

10
3

Message length [bytes]

0

10

20

30

40

50

60

70

80

90

100

T
im

e
[m

ic
ro

se
co

n
d

s]

1 pair cross-node

2 pairs cross-node

Figure 2.2: Communication time versus message size for IMB Ping-
Ping (cross-node) using Gigabit Ethernet on Townsend. Communica-
tion time equals network latency for small message sizes. Communica-
tion time is shown for single mode (blue square) and both multi-mode
pairs (orange cross).

Figure 2.2 shows a constant duration of 50µs for buffer sizes up to 64 kB. This implies
a dominance of communication overhead over actual transfer time. Reported values can
thus be regarded as latency.

Each multi-mode PingPing pair reports latency values equal to single-mode latency (50µs).
This indicates that overall latency scales linearly with the number of communication pairs
and hence latencies do not overlap for small messages. Measurements with message sizes
in the scale of halo volumes (about 100 kB in our tests) show, however, that latencies do
overlap to a certain degree. Therefore only a fraction of the latency penalty has to be
taken into account for each communication.

2.1.3 Model

Now that all necessary technical parameters are available, the final step towards a per-
formance model is to bring them into due proportion. As a start we look at a scenario
where a single process runs on each node. For N participating nodes, overall domain
size must be in a shape that domain decomposition yields N equal cubic subdomains.
Subdomains are cubic to ease calculation of communication volume in each direction.
Domain decomposition determines which processes have adjoining subdomains and have
to exchange halo information after each sweep. Note that open boundary conditions were
used, so halo exchange is not necessary at domain boundaries. Since all nodes work in

2 Jacobi parallel performance model 18

nodes nodes per dim. domain size max. CN CN communications
X / Y / Z neighbors 1ppn 2ppn

1 1 / 1 / 1 120 / 120 / 120 0 0 0
2 2 / 1 / 1 240 / 120 / 120 1 1 2
3 3 / 1 / 1 360 / 120 / 120 2 1 2
4 2 / 2 / 1 240 / 240 / 120 2 2 3
6 3 / 2 / 1 360 / 240 / 120 3 2 3
8 2 / 2 / 2 240 / 240 / 240 3 3 5
12 3 / 2 / 2 360 / 240 / 240 4 3 5
16 4 / 2 / 2 480 / 240 / 240 4 3 5
24 3 / 4 / 2 360 / 480 / 240 5 3 5
27 3 / 3 / 3 360 / 360 / 360 6 3 5
32 4 / 4 / 2 480 / 480 / 240 5 3 5

Table 2.1: This table shows for each number of nodes the result of the domain decom-
position and the required overall domain size required to yield subdomains of equal size
(1203) for each node. The last three columns contain the maximum number of possible
neighbors for one node and the resulting number of cross-node communications required
for halo exchange for the case that only one (1ppn) or both (2ppn) cores per node are
utilized. Note that each rank sends to neighbors in positive and negative direction of one
dimension simultaneously. Therefore the number of communications is not equal to the
number of neighbors. See text for details.

parallel and the communication network is non-blocking, performance is limited by the
node with the highest communication demand, i.e. with the largest number of neighbors.
Table 2.1 shows the maximum number of neighbors a node can have resulting from a
typical domain decomposition.

Data volume exchanged with one neighbor is determined by halo size and halo width.

• Halo size is the number of elements at the particular subdomain face multiplied by
the size of one element.

• Halo width specifies the thickness of the halo layer. It is usually 1, but if e.g. more
than one sweep is performed before a halo exchange, it has to be higher [16].

We have seen before that latencies of multiple simultaneous communications overlap.
Since the benchmark code issues communication operations in positive and negative di-
rection of each dimension (e.g. up and down) simultaneously, only one latency has to be
taken into account per dimension. The following equation incorporates previous results.
It allows performance estimations for N nodes running one process each.

P1ppn(N) =
N ∗ L3

tsweep1ppn + 8Byte∗L2
∗maxneighbors

bgbit
+ ncomm ∗ lgbit

(2.4)

2 Jacobi parallel performance model 19

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Nodes

0

1000

2000

3000

4000

P
er

fo
rm

an
ce

 [
M

L
U

P
s/

s]

model (MPI 1ppn)

experiment (MPI 1ppn)

Figure 2.3: MPI parallel 3D Jacobi solver with spatial blocking on 1
to 32 nodes of the Townsend Cluster using 1 core per node and Giga-
bit Ethernet interconnect. Domain size for each node is 1203 double

elements (weak scaling).

In figure 2.3 predicted performance is compared to measurements gathered in a weak
scaling study with 1 to 32 nodes of the Townsend cluster. A single process computes
a subdomain of 1203 double elements on each node. Halo size is therefore constant for
all directions and node counts. Communication volume solely depends on the number of
neighbors. Values from model and experiment are almost identical for small node numbers.
A small gap can be observed starting at eight nodes, as measurements do not exactly
reach predicted performance. This difference might have its source in the additional
communication direction required from eight nodes on. However, the characteristic shape,
e.g. the ditch at 27 nodes due to higher communication volume, is reproduced by the
model.

So far, only one of the two available cores per node were used by benchmarks. In order to
fully exploit computational resources it is obvious to use all cores. This can be achieved
without any source code modifications by just running the MPI parallel solver with the
double number of processes. Provided that MPI processes are thoroughly distributed to
nodes, a node accommodates two processes, each running on one core and processing one
half of the subdomain. The additional core on each node does not lead to a duplication
of computational performance due to limited memory bandwidth, but to a step-up of
about 20 % (from 177 MLUPs/s to 198 MLUPs/s). However, intra-node fragmentation
of the subdomain causes a change in communication profile. The domain decomposition
algorithm ensures identical subdomain sizes per node, no matter if one or two processes
are active on the node. Therefore faces to neighbors and with that communication volume
remains equal. But actual halo transfer is split up to two processes for two of the three

2 Jacobi parallel performance model 20

node A node B

rank 3

rank 2rank 0

rank 1

Figure 2.4: Halo exchange between two nodes running two MPI pro-
cesses each. A node’s subdomain is further subdivided when using two
ranks instead of one. Communication volume is constant, but the num-
ber of latencies increases as two communications are required for halo
exchange in two of the three dimensions.

dimensions (see figure 2.4). This implies a larger number of communications and thus
latencies to be taken into account (see table 2.1). Equation 2.4 applies for the this
situation, parameters ncomm and tsweep have to be adjusted. Note that buffer size for
“split” halo communication is still large enough (120 ∗ 60 ∗ 8 Byte = 56 kB) to gain full
network bandwidth.

Figure 2.5 summarizes performance predictions for this and the following parallelization
strategies.

2.2 MPI/OpenMP hybrid

In this section we refine the basic performance models developed in the previous sec-
tions, in order to predict performance for Jacobi solvers parallelized using both MPI
and OpenMP. This approach is called MPI/OpenMP programming (introduced in chap-
ter 4).

General specifications from the previous section (e.g. the test system and domain sizes)
apply. In each of the following sections a hybrid programming scenario is briefly described.
Based on measured data from the previous section computational and communication
effort are estimated. Performance predictions are summarized in figure 2.5.

Vector mode hybrid

A single process per node spawns two OpenMP threads for computation. After each
sweep, halo communication is done in a serial region. Since a node’s subdomain is not

2 Jacobi parallel performance model 21

split up for two processes, communication equals an MPI implementation with one process
per node. Therefore equation 2.4 applies.

Assuming that OpenMP overhead does not affect performance for the given subdomain
size, an estimate for tsweep with two threads can be derived from the previously measured
performance value for two MPI processes on one node (198 MLUPs/s).

Task mode hybrid (manual)

A single process per node spawns two OpenMP threads, one dedicated to halo computa-
tion and communication, the other dedicated to computation of bulk blocks. Communi-
cation and computation are assigned to threads manually by thread ID. This introduces
a major difference to the solutions considered so far: Communication and computation
are no longer alternating but are executed simultaneously. Explicit overlap requires fun-
damental modification to our basic performance model (equation 2.1), where overall ex-
ecution time is the sum of communication and computation time. Due to concurrent
execution, execution time is the maximum of both durations. A basic performance model
for task mode hybrid applications can thus be set up:

Ptaskmode(N) =
NL3

max(tsweep, tcomm)
(2.5)

As one of the two threads is dedicated to communication, only a single thread is available
for computation. Consequently, measured single MPI process performance (177 MLUP-
s/s) is the appropriate input value for deriving tsweep.

Again, the communication pattern equals that of the MPI solver with one process per
node. Communication time can thus be calculated according to equation 2.4.

Task mode hybrid (OpenMP tasks)

Manual work scheduling has one obvious drawback. Static dedication of one thread to
communication might lead to load imbalance, especially in the single node case, where no
communication is required. This can be solved with the following modification: The bulk
thread creates an OpenMP task from each loop iteration. After finishing communication,
the halo thread joins task processing. Scheduling of computational work to threads is
load dependent.

Estimation of tsweep is a little more involved than for the previous situations. Looking at
the single node case, where no communication is required, both threads compute and per-
formance roughly equals single node MPI performance with two processes. However, an
interdependence between communication effort and computing performance exists. With
growing communication effort, the communicating thread will take less computational

2 Jacobi parallel performance model 22

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Nodes

0

1000

2000

3000

4000

5000

6000

7000

P
er

fo
rm

an
ce

 [
M

L
U

P
s/

s]

MPI
hybrid vector mode

hybrid task mode (manual)

hybrid task mode (OpenMP tasks)

Figure 2.5: Prediction of maximum performance for various paralleliza-
tion approaches of a 3D Jacobi solver, based on simple models developed
in this chapter. Parameters reflect a weak scaling study with 1 to 32
nodes of the Townsend cluster using Gigabit Ethernet and a subdomain
size of 1203 elements per dimension.

work and thus computational performance will converge towards single process MPI per-
formance. In order to render the theoretical maximum and to restrain from manual task
mode, the 2 process MPI value is used for the projections pictured in figure 2.5.

Performance predictions show a distinct predominance of the task mode hybrid approach.
Explicit overlap of communication and computation pays off even in the manual task
mode case where only one core per node is used for computation. Perfect scaling from 1
to 32 nodes indicates that communication time is of no influence, i.e. tsweep is larger than
tcomm for all numbers of nodes. However, for 27 nodes, where one node has the maximum
number of 6 neighbors, tsweep and tcomm are quite similar (8.7 vs 7.8 ms). It is most likely
that communication gains influence in a less optimistic environment.

Vector mode hybrid and pure MPI performance are almost identical, with a slight advance
for the former. The only difference in the underlying models is the number of accounted
latencies, which differs in 1 or 2. In spite of transfer times from 1 to 8 ms, latencies of
50 µs are irrelevant.

Benchmark tests show that predicted performance can not be claimed in a realistic situa-
tion (see chapter 4). However, the qualitative hierarchy among methods is reproduced.

3 MPI optimizations 23

3 MPI optimizations

It is necessary to fully utilize the possibilities of pure MPI programming in order to gain
insight into the real benefits of its hybrid challenger. Therefore a number of techniques
are introduced or evaluated here to optimize MPI communication.

3.1 Mapping of ranks to subdomains

An MPI parallel program generally starts a process on every available core in order to
fully utilize the computing power of a machine. However, in some situations it may also be
advisable to make use of only a fraction of the cores of each node. For multi-core systems,
the number of processes p to start is the product of node count and the number of cores per
node. Thus the computing domain must be decomposed into p subdomains. Intra-node
partitioning will intensify in the future, as the number of cores per node is growing. Which
subdomains are computed by which processor is determined by a two-level mapping (see
figure 3.1 for an illustration). MPI processes, identified by their rank, are assigned to
physical processors. This can be made deterministic by pinning libraries like PLPA [19],
which bind processes or threads to CPUs, and the specific startup procedures implemented
in the MPI library used. Mapping of subdomains to ranks on the other hand can be left
to MPI’s library function MPI_Cart_create(). It is defined as follows [11]:

MPI_Comm comm_cart;

int ndims, reorder;

int* dims, periods;

int MPI_Cart_create(MPI_Comm comm_old, // input communicator

int ndims, // number of dimensions

int *dims, // number of ranks in each dim.

int *periods, // periodicity per dimension

int reorder, // true = allow rank reordering

MPI_Comm *comm_cart); // Cartesian communicator

The function creates a communicator that contains topology information applicable to
a Cartesian grid. This includes proximity relationships among ranks, the number of di-
mensions and, of course, a map between ranks and coordinates addressing subdomains.
Coordinates merely describe a logical decomposition (“topology”) of the domain. Calcu-
lation of actual subdomain addresses, i.e. offsets along the coordinate directions, is left
to the programmer.

3 MPI optimizations 24

subdomains

processors

ranks0 321

0 1

2 3

5

7

9

11

4 5 6 7 10 1198

4 5 6 70 1 2 3 10 1198

Figure 3.1: Illustration of the two-level mapping of subdomains to
processors. For the given number of 12 processors, the domain is de-
composed into 2∗2∗3 subdomains (X ∗Y ∗Z). Subdomain coordinates
are assigned to MPI ranks, which are pinned to processor cores in turn.

3 MPI optimizations 25

The input parameter dims determines the number of processes in each dimension and
therewith the number of cuts through the domain. Given the number of processes and
the number of dimensions, several decompositions may be possible. It is often sensible
to cut the domain into an equal number of slices along each dimension. For this task
the “convenience function” MPI_Dims_create() can be used. It is parametrized by the
number of nodes and dimensions and returns the number of processes per dimension.
Output can be influenced by specifying the number of processes for some dimensions in
advance, which might be necessary to trim the shape of the topology. See the following
definition for reference [11]:

int nprocs, ndims;

int* dims;

int MPI_Dims_create(int nprocs, // number of processes in grid

int ndims, // number of Cartesian dimensions

int* dims); // in: /=0 # procs. fixed in this dir.

// ==0 calculate # nodes

// out: number of processes in each dir.

Whether the placement of ranks given by the input communicator may be altered
by MPI_Cart_create() for the new communicator can be specified via the parameter
reorder.

The following code example uses MPI_Cart_create() and MPI_Dims_create() to inves-
tigate how ranks are mapped to partitions of a 3-dimensional domain by the MPI library.
This is of interest as it gets important, especially with growing numbers of cores per
node, to correctly arrange subdomains across MPI ranks in order to minimize cross-node
in favor of intra-node communication.

int main(int argc, char *argv[])

{

int dims[3]={0,0,0}, periods[3]={0,0,0}, ndims=3;

int reorder=1, nprocs, rank;

MPI_Comm commCart3D;

int nb[6], coords[3];

int hostnamelen;

char hostname[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc,&argv);

MPI_Comm_size (MPI_COMM_WORLD, &nprocs); // get number of processes

MPI_Dims_create (nprocs, ndims, dims);

MPI_Cart_create (MPI_COMM_WORLD, ndims, dims,

periods, reorder, &commCart3D);

MPI_Get_processor_name(hostname,&hostnamelen);

MPI_Comm_rank(commCart3D, &rank);

MPI_Cart_coords(commCart3D, rank, 3, coords); // get coordinates

3 MPI optimizations 26

Figure 3.2: Distribution of subdomains to multi-core nodes for cur-
rent MPI_Cart_create() implementations (left) and a communication
aware approach (right). The number of cross-node communications for
this 8 core per node example add up to 8∗4+2 = 34 (left) and 8∗3 = 24
(right), resulting in 30 % less communication.

MPI_Cart_shift(commCart3D, 0, 1, &nb[0], &nb[1]); // upper / lower

MPI_Cart_shift(commCart3D, 1, 1, &nb[2], &nb[3]); // left / right

MPI_Cart_shift(commCart3D, 2, 1, &nb[4], &nb[5]); // front / back

// neighbor

// output

MPI_Finalize();

}

By running this program, a thorough insight into the absolute and relative location of
ranks within the domain can be gained. Experiments with several MPI libraries show
however, that they are not as aware of the hardware environment as they could be.

In many MPI implementations, MPI_Cart_create() assigns ranks to consecutive subdo-
mains beginning with the fastest running dimension (z in our case). One node with n

cores therefore works on a “stick” consisting of n subdomains (see left of figure 3.2). The
aggregated surface of a node and therefore the amount of cross-node halo communication
depends on the arrangement of subdomains. The goal should be to create cubic domains
for each node, as a cube has a smaller surface than a stick at a given volume (see right of
figure 3.2).

Figure 3.3 shows that the importance of optimizing subdomain surface grows as the num-
ber of cores per node increases.

With MPI_Cart_create() not delivering optimal results it is due to the application de-
veloper to establish an adequate mapping. This however implies to dispense with this
and other convenience functions delivered with MPI. The following section describes an
approach to a topology-aware distribution of ranks to subdomains.

3 MPI optimizations 27

2 8 14 20 26 32 38 44 50 56 62
cores per node

1

1.5

2

2.5

3

3.5

4

m
ax

 s
u
rf

ac
e

/
m

in
 s

u
rf

ac
e

(C
N

)

single subdomains (round-robin)

stick (default MPI_Cart_create())

Aggregated cross-node communication volume
(cubic subdomains)

Figure 3.3: Aggregated cross-node communication volume for cubic
subdomains. Penalty for standard MPI (stick) compared to optimal
(cubic) distribution of subdomains to nodes (red squares). The black
graph (circles) compares optimal and worst case distribution, where
all neighbors of subdomains are located on different nodes (round robin
distribution) resulting in cross-node transfer for any next-neighbor com-
munication in the process topology.

3 MPI optimizations 28

3.1.1 Topology-aware mapping

The starting point is a 3-dimensional computing domain and a set of multi-core nodes.
To simplify matters we assume that the total number of processors is suitable to spawn
a 3-dimensional process grid, i.e. it can be factorized into three integer numbers larger
than 1. It is furthermore presumed that ranks are bound to cores. A function like
MPI_Dims_create() was utilized to determine the number of processes per coordinate
direction (dims) and all ranks are part of the current communicator. For illustrating the
concept we restrict the number of cores per node to 8, the smallest value with a perceptible
benefit from correct subdomain placement and also the number of cores present in on
node of our test system. In order to reduce cross-node communication the surface of
the subdomains assigned to the cores of a node has to be minimized. Instead of the
“stick” of subdomains created by MPI_Cart_create() a more “cubic” shape has to be
mapped to a node. For a node with 8 cores a cube with 2 subdomains per direction is
ideal (see figure 3.2). Similar to dims (the array containing the number of subdomains
per direction from the domain decomposition), an array nodeDims is established to hold
the number of ranks per direction for a node. Note that nodeDims can be created with
MPI_Dims_create() as well as dims, since the task is in both cases to equally distribute
a number of processes across a number of dimensions. Equal distribution is desirable
only for cubic domains that are to be partitioned into cubic subdomains, which can be
presumed for common situations.

The following function generates a map between subdomains and ranks in consideration
of intra-node structure represented by nodeDims. Therefore a blocked loop nest describes
how ranks have to be placed in the grid one by one. In the style of MPI_Cart_create(),
the function takes return parameters (rankCoord and coordRank). They contain maps
of ranks to subdomain coordinates for bidirectional lookup. Input parameters are dims

(which implies the number of ranks) and nodeDims. The number of dimensions (ndims,
as used in MPI_Cart_create()) is restricted to three due to the structure of the loop, but
note that a 2D mapping can be generated by predefining the number of elements in one
dimension to 1.

struct coord

{

int c0;

int c1;

int c2;

};

#define cidx(c0,c1,c2,d1,d2) ((c2)+((c1)+(c0)*(d1))*(d2))

void subdomainMap(int* dims, // in: ranks per dimension (global)

int* nodeDims, // in: ranks per dimension (per node)

coord* rankCoord, // out: get coordinates to given rank

int* coordRank) // out: get rank to given coordinates

{

3 MPI optimizations 29

int rank=0;

// iterate over nodes in process grid

for(int nc0 = 0; nc0 < dims[0]; nc0 += nodeDims[0]){

for(int nc1 = 0; nc1 < dims[1]; nc1 += nodeDims[1]){

for(int nc2 = 0; nc2 < dims[2]; nc2 += nodeDims[2]){

// distribution of ranks within node

for(int c0 = nc0; c0 < min(nc0 + nodeDims[0], dims[0]); c0++){

for(int c1 = nc1; c1 < min(nc1 + nodeDims[1], dims[1]); c1++){

for(int c2 = nc2; c2 < min(nc2 + nodeDims[2], dims[2]); c2++){

// rankCoord to retrieve coordinates for a rank

coord co = {c0,c1,c2};

rankCoord[rank] = co;

// coordRank to retrieve a rank for coordinates

int cindex = cidx(c0,c1,c2,dims[1],dims[2]);

coordRank[cindex] = rank;

rank++;

}

}

}

}

}

}

return;

}

When using this method instead of MPI_Cart_create(), some of the convenience func-
tions provided by MPI are no longer sufficient. Two of those functions, MPI_Cart_coords
and MPI_Cart_rank, can be replaced by simple access to one of the maps created by
subdomainMap(). For halo exchange in MPI parallel stencil codes it is essential for each
rank to know its neighbors. Therefore the following method acts as a substitute for
MPI_Cart_shift() by applying the maps created above. It is parametrized by the ini-
tiators rank and a list containing a coordinate offset for each direction. These offsets are
positive or negative integer numbers that are added to the current coordinates. A check
for the sanity of coordinates or dimensions and boundary handling is omitted for brevity.
To fully substitute the functionality of MPI_Cart_create(), this function would be suit-
able to implement periodicity of the grid. Explicitly handing over parameter dims to
neighborRank is necessary for determining a rank from coordinates. In a production en-
vironment this value and both maps will of course be encapsulated by more sophisticated
data structures like an object or, corresponding to MPI’s implementation, a communica-
tor.

int neighborRank(int myRank, // initiator’s rank

int* coordinateOffsets, // neighbor’s distance

3 MPI optimizations 30

// per dimension

int* dims) // ranks per dimension

{

// determine coordinates of current rank

coord myCoord = rankCoord[myRank];

// determine coordinates of neighbor rank

coord nbCoord;

nbCoord.c0 = myCoord.c0 + coordinateOffsets[0];

nbCoord.c1 = myCoord.c1 + coordinateOffsets[1];

nbCoord.c2 = myCoord.c2 + coordinateOffsets[2];

// determine neighbor’s rank

int cindex = cidx(nbCoord.c0, nbCoord.c1,

nbCoord.c2, dims[1], dims[2]);

int nbRank = coordRank[cindex];

return nbRank;

}

Benchmark The benefit of topology-aware mapping of subdomains and ranks can be
demonstrated with a strong scaling study of the Jacobi solver benchmark (see figure 3.4),
if the comparatively slow Gigabit Ethernet network is used. For the InfiniBand network,
however, differences in communication overhead on this scale are of no consequence.

A 3-dimensional MPI parallel Jacobi solver was used to investigate the influence of sub-
domain mapping. Topologies generated by MPI_Cart_create() and subdomainMap()

were compared. Domain size started at 50 and was increased to 1200 elements per direc-
tion. Substantially larger domains would exceed available memory. Performance reaches
a plateau at a domain size of about 500 elements per direction and does not rise signifi-
cantly for larger domains. For smaller domains (and with that smaller subdomain faces)
performance is limited by communication overhead.

On four nodes of the Tinyblue system with 8 cores per node, performance could be
improved for about 50 %. This conforms to the corresponding theoretical benefit value
from figure 3.3.

Some vendors offer mechanisms to the user for monitoring and manipulating distribution
of MPI ranks on the nodes [20].

A OpenMP/MPI hybrid approach (as introduced in chapter 4) could be an alternative
solution to the somewhat “pedestrian-style” subdomain mapping.

3 MPI optimizations 31

0 500 1000 1500
Domain length per dimension (block size 20x20x100)

0

1000

2000

3000

4000

5000

6000

7000

P
er

fo
rm

an
ce

 [
M

L
U

P
s/

s]

ARM IB
STD IB
ARM GB
STD GB

3D Jacobi MPI - Optimized mapping of ranks to subdomains (ARM)
32 processes on 8 woody (o) or 4 tinyblue (x) nodes

Figure 3.4: 3D Jacobi with 32 processes (4 Tinyblue nodes with 8
cores each). Mapping of ranks to subdomains done by MPI (STD)
and manually (ARM - advanced rank mapping) on InfiniBand (IB) and
Gigabit (GB) networks.

3.2 Overlap of communication and computation

MPI features, among others, the non-blocking communication functions MPI_Isend()

and MPI_Irecv(). Unlike their blocking counterparts, which return not before buffers
can be used/overwritten safely (not: have been transferred), calls to those functions re-
turn immediately. The initiator can proceed while communication may take place in
background. This behavior avoids deadlocks in some situations and allows the MPI li-
brary to reschedule outstanding communications. It is commonly assumed that it can be
utilized to overlap computation and communication without the effort of OpenMP/MPI
hybrid programming (section 4.2.2). This is, however, by no means default behavior as
experiments show. To which degree concurrency can be achieved depends on the MPI
implementation.

The following code fragment shows how the overlapping capabilities of a system can be
probed. One process issues a non-blocking MPI_Irecv() followed by a call to a work-
ing routine, which is either a simple loop with purely computational load or a memory
bandwidth bound streaming code. The other process acts as communication partner and
executes a blocking MPI_Send(). It turned out that the somewhat unintuitive arrange-
ment of MPI calls in the code - receive before send - runs slightly faster on all used
systems, especially Cray XT4, and therefore is preferred. For XT4 this is plausible as it is
explicitly optimized for message preposting [20]. Finally, the call to MPI_Wait() ensures

3 MPI optimizations 32

that MPI communication completed, i.e. the buffer has actually been transferred. So
time measurement ends after both, computation and communication, have finished. The
benchmark executes this code for a range of work amounts and a fixed communication
buffer size.

Listing 3.1: Computation/communication overlap benchmark

MPI_Barrier(MPI_COMM_WORLD);

if(rank==0)

{

stime = MPI_Wtime();

MPI_Irecv(buf,bufsize,MPI_DOUBLE,1,0,MPI_COMM_WORLD,request);

delayTime = do_work(amount); // stream or div

MPI_Wait(request,status);

etime = MPI_Wtime();

cout << "X= " << delayTime << " Y= " << etime-stime << endl;

}

else

{

MPI_Send(buf,bufsize,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

}

MPI_Barrier(MPI_COMM_WORLD);

A formal overlap of communication and computation occurs, if the measured overall time
is lower than the sum of both executed separately. An easy graphical interpretation of
figure 3.5 is therefore that values resulting from an overlapping measurement are below a
machine specific limit. This limit is a straight with a gradient of 1 and an offset of pure
communication time. MPI point-to-point bandwidth (determined with IMB benchmarks,
see section 1.2.2) can be used to calculate the offset. It perfectly matches measured
values. The following table gives an overview to measured point-to-point bandwidths and
resulting transfer times.

Machine Interconnect MPI Bandwidth Transfer Time (80 MB)
Woody DDR InfiniBand 1.5 GB/s 0.053 sec
XT4 SeaStar2 1.6 GB/s 0.050 sec
Tinyblue QDR InfiniBand 3.0 GB/s 0.027 sec

Now it becomes obvious which MPI libraries offer actual non-blocking communication.
First of all it is Cray’s MPI library (based on MPICH-2 [21]) used in the XT4 system (blue
line) that showed overlapping behavior for all scenarios tested. Overall time is constant
until the time for computation exceeds communication time, resulting in a characteristic
kink at x = y = 0.05s. From here, overall time grows directly with computation time.
Prior to that point computation did not account to overall time, it could be overlapped
completely by communication.

For OpenMPI (version 1.4) [22] on Tinyblue (violet line), only the non-blocking send is
performed asynchronously, whereas there is no overlap for non-blocking receive. With an

3 MPI optimizations 33

0 0.02 0.04 0.06 0.08 0.1
time for computation [s]

0

0.02

0.04

0.06

0.08

0.1

o
v

er
al

l
ti

m
e

(c
o

m
p

u
ta

ti
o

n
 +

 c
o

m
m

u
n

ic
at

io
n

)
[s

]

Cray XT4 MPT 3.5.0

Tinyblue Intel MPI 3.2.2

Tinyblue MVAPICH2 1.4

Tinyblue OpenMPI 1.4 Irecv

Tinyblue OpenMPI 1.4 Isend stream

Tinyblue OpenMPI 1.4 Isend div

Overlap of computation and non-blocking MPI communication (isend/irecv)
CN buffer 80MB; work (stream) process spawns 4 OpenMP threads

Figure 3.5: Overall execution time versus computational time for the
computation/communication overlap benchmark as shown in listing 3.1.
Buffer size for non-blocking MPI communication is 80 MB. Computa-
tion is either a compute-bound division (div) or memory-bound array
streaming, both with workload varying in a sensible interval. In order
to fully exhaust memory bus 4 threads are started for streaming.

3 MPI optimizations 34

interconnect twice as fast as the Cray network the break is certainly much earlier for this
curve, but at the analog position. When changing computation from a simple division
to streaming an array from memory a slight difference turns up (turquoise line). Due to
increasing size of the streaming array and therewith pressure on the memory subsystem,
duration of the MPI communication rises weakly.

For Intel MPI (version 3.2.2) [24] and MVAPICH2 (version 1.4) [23] overlap of commu-
nication and computation could not be found. The kink-less graph for this measurement
reflects this. Overall time is directly related to computational effort. Measurement data
for the Woodcrest cluster is analog to Tinyblue and thus omitted in the figure for clarity.

The advantage of actual non-blocking communication is depicted in the figure: Despite
only half network bandwidth compared to Tinyblue, XT4 shows similar values for overall
time when computation time exceeded communication time. If overlapped communication
can be employed in a real algorithm, one may get away with a slow network and still reach
performance levels similar to what can be achieved with a much faster network and no
overlap.

3.3 Overlap of intra-node and cross-node

communication

In this section we examine, under which circumstances intra-node (IN) and cross-node
(CN) MPI communications can overlap. This kind of concurrency would be beneficial e.g.
for pure MPI stencil codes on multi-core systems, since halo exchanges between (CS and
CN) neighbors are less expensive if they overlap. Note that intra-node communication is
implemented solely as cross-socket (CS) communication throughout this chapter, without
loss of generality. The following code snippet shows the benchmark used.

Listing 3.2: CS/CN communication overlap benchmark

MPI_Barrier(MPI_COMM_WORLD);

output_rank = CN_recv_rank;

start = MPI_Wtime();

// cross-socket

if(rank == CS_recv_rank)

{

MPI_Recv(buf1,bufsize,MPI_DOUBLE,CS_send_rank,0,MPI_COMM_WORLD,status);

}

else if(rank == CS_send_rank)

{

MPI_Send(buf1,bufsize,MPI_DOUBLE,CS_recv_rank,0,MPI_COMM_WORLD);

}

// cross-node

3 MPI optimizations 35

else if(rank == CN_recv_rank)

{

stime = MPI_Wtime();

MPI_Recv(buf2,var_buf,MPI_DOUBLE,CN_send_rank,

0,MPI_COMM_WORLD,status+1);

etime = MPI_Wtime();

CN_time = etime-stime;

}

else if(rank == CN_send_rank)

{

MPI_Send(buf2,var_buf,MPI_DOUBLE,CN_recv_rank,0,MPI_COMM_WORLD);

}

MPI_Barrier(MPI_COMM_WORLD);

end = MPI_Wtime();

if(rank == output_rank)

cout << "X= " << CN_time << " Y= " << end-start << endl;

Non-blocking MPI calls are used to transfer one buffer between two sockets of the same
node and another buffer between two different nodes. The size of the CS buffer is static,
whereas CN buffer size is varied in order to obtain an easy graphical interpretation of
the benchmark results (see figure 3.6). The overall number of MPI processes started
equals the number of physical cores available on the two nodes, but only four ranks are
actually involved in benchmarking, the remaining ranks wait at a global barrier. This
allows convenient selection of communication partners within the code. Standard rank
placement and process pinning are used, so the location of a process can be determined
by its rank number.

In figure 3.6, the sum of cross-node and intra-node communication time is plotted over
cross-node buffer size. As cross-node communication underlies various influences, not
duration but actual buffer size is the metric used for the x-axis. This ensures a compre-
hensible and well-defined presentation results. Cross-node buffer grows from 80 kilobyte
to several hundred megabytes, intra-node buffer is of constant size. Again, changes in the
slope of a curve provides information whether overlap is at hand.

Similar to the results from the previous section, the MPI library on the Cray XT4 system
exhibits overlap of intra-node and cross-node communication (black line), albeit not that
explicitly as in the previous section. The reason for this somewhat partial overlap is yet
to be investigated.

Intel MPI was tested on Woody and Tinyblue with analog results. Overlap of cross-
socket and cross-node communication is possible with Intel MPI for the scenario depicted
above. However, one prerequisite has to be fulfilled. Rank 0 must not be involved in
cross-socket communication, participation in cross-node communication is uncritical how-
ever. There is a possible relation to a phenomenon observed during multi-mode PingPing
tests: One PingPing pair communicated cross-socket and the other cross-node. Whenever

3 MPI optimizations 36

0 50 M 100 M 150 M 200 M
CN buffer [bytes]

0

0.05

0.1

0.15

0.2

to
ta

l
ti

m
e

(C
N

 +
 C

S
 c

o
m

m
u
n
ic

at
io

n
)

[s
]

Cray XT4

Woody CS 0

Woody 1S

Woody 1S CN eager

Woody 2S

Figure 3.6: Overall execution time versus cross-node buffer size for
the CS/CN communication overlap benchmark as shown in listing 3.2.
Buffer size for cross-socket communication is 80 MB. Overlap occurs
for all probed situations on the Cray system. For the Woodcrest cluster
overlap depends on the number of communicating ranks, i.e. one sender
(1S) or two separate senders (2S). No overlap could be observed with
rank 0 participating in cross-socket communication.

3 MPI optimizations 37

both, rank 0 and 1, ran on the master node and therefore communicated cross-socket, a
noticeable latency growth for each pair was discovered. Whatever the reason, the disad-
vantageous issue with rank 0 forms a severe restriction that can not generally be bypassed
for real applications.

Previous measurements where performed using four processes, 2 senders and 2 receivers.
As a subdomain has both, intra- and cross-node neighbors for common MPI parallel
stencil codes, a scenario where a single process communicates with two partners deserves
study. Therefore the benchmark code from above has to be adapted. Send operations
are replaced by the non-blocking counterpart (including a MPI_Waitall() statement) and
concentrated for a single rank.

MPI_Barrier(MPI_COMM_WORLD);

output_rank = CN_recv_rank;

start = MPI_Wtime();

// cross-socket receive

if(rank == CS_recv_rank)

{

MPI_Recv(buf1,bufsize,MPI_DOUBLE,CS_send_rank,0,MPI_COMM_WORLD,status);

}

// send

else if(rank == send_rank)

{

MPI_Isend(buf1,bufsize,MPI_DOUBLE,CS_recv_rank,0,MPI_COMM_WORLD,req);

MPI_Isend(buf2,var_buf,MPI_DOUBLE,CN_recv_rank,0,MPI_COMM_WORLD,req+1);

MPI_Waitall(2,req,status);

}

// cross-node receive

else if(rank == CN_recv_rank)

{

stime = MPI_Wtime();

MPI_Recv(buf2,var_buf,MPI_DOUBLE,CN_send_rank,

0,MPI_COMM_WORLD,status+1);

etime = MPI_Wtime();

CN_time = etime-stime;

}

MPI_Barrier(MPI_COMM_WORLD);

end = MPI_Wtime();

if(rank == output_rank)

cout << "X= " << var_buf*8 << " Y= " << end-start << endl;

3 MPI optimizations 38

This code showed the same results as the 2:2 variant for the Cray system. The situation
is more complex on Woody, however. Besides the circumstances concerning rank 0 which
remain present, further conditions for overlapping communications emerged. It turned
out that the message transfer protocol in use is of relevance.

Intel’s MPI implementation (just as most other MPI libraries) supports two point-to-point
protocols, eager and rendezvous. In eager mode “data is transferred to the receiver before
a matching receive is posted” ([17] section 3.8, page 69). Therefore the receiver has to
prepare an eager buffer at MPI initialization in order to support possible eager trans-
fers. This makes eager communication fast but fairly memory intensive for large buffers.
Rendezvous mode on the other hand implies preliminary negotiation of parameters (e.g.
buffer size) between communication partners, and asynchronous end-to-end communica-
tion of data. With this synchronization overhead rendezvous mode is predestined for the
transfer of larger buffers. The default point for eager/rendezvous crossover is at a buffer
size of 256 kB [25].

Intel MPI provides a set of environment variables to configure the crossover point for
various communication paths, e.g.

• I_MPI_EAGER_THRESHOLD

• I_MPI_INTRANODE_EAGER_THRESHOLD.

The first variable influences all communication paths, unless overwritten by a more specific
like the latter.

These communication protocols have to be adjusted properly in order to achieve over-
lapping MPI communications with a single sender process. Overlap could be established
solely for the situation where cross-node communication is in eager mode and cross-socket
communication is in rendezvous mode for all buffer sizes. The latter is the default for
these experiments, as a cross-socket buffer of 80 MB was used. But the requirement to
transfer cross-node messages of up to several hundred megabytes in eager mode is any-
thing but memory-efficient, since eager buffers in this scale have to be held for every
participating process. Falling back to the default of 256 kB as maximum message size
transferred in eager mode is not sufficient for real world applications. For the Jacobi
solver benchmark this would restrict the size of one subdomain face to about 180 double

elements per direction, leading to a maximum subdomain size of 45 MB.

3.4 Conclusions

A number measures have to be taken into account when optimizing pure MPI code for
multi-core systems. Depending on the environment and the MPI implementation man-
ual intervention might be inevitable. For instance, topology aware mapping of subdo-
mains to nodes could not be determined for any of the MPI libraries probed. However,
this issue can be corrected by replacing mechanisms for coordinate administration (e.g.
MPI_Cart_create()).

3 MPI optimizations 39

Among all systems used for benchmarking, except for MVAPICH2 and the Cray MPI
library non-blocking communication does not overlap with computation. This is contra-
dictory to anticipated and common understanding, and a remedy can not be provided,
except in the form of task mode hybrid programming (see section 4.2.2).

Finally, concurrent inter- and intra-node communication with Intel MPI is possible for lim-
ited situations. Constraints include avoiding rank 0 for cross-socket communication and
forcing cross-node communication to use eager transportation mode. Again, cross-node
and intra-node communication overlap for all probed situations on the Cray system.

4 MPI/OpenMP hybrid programming 40

4 MPI/OpenMP hybrid
programming

The following chapter provides an insight into MPI/OpenMP hybrid programming. This
is an approach towards developing applications tailored to modern clusters made up of
shared-memory nodes connected with a high speed network (see figure 4.1). In order
to fully utilize potentials of these hybrid machines, well-established techniques for both,
distributed and shared memory computing (i.e. MPI and OpenMP), are combined.

Hybrid programming can be further subdivided according to the communication pattern
implemented. Vector mode hybrid applications use MPI communication solely in serial
regions, whereas this restriction is abolished for task mode hybrid codes. The first two
sections give a theoretical background which is applied to a Jacobi solver benchmark
afterwards.

4.1 Vector mode vs. task mode

4.1.1 Vector mode

The most straightforward approach towards hybrid programming is to start one MPI
process per node which in turn starts a number of OpenMP threads. The number of
threads is usually determined by the number of cores present within the node. OpenMP
parallel regions are used for computation, whereas cross-node MPI communication is
limited to serial regions. The resulting alternation of parallel and serial regions “resembles
parallel programming on distributed-memory parallel vector machines” [28], explaining
the denotation vector mode.

4.1.2 Task mode

Task mode retains the basic hybrid principle of MPI processes spawning OpenMP threads,
but MPI communication is no longer restricted to serial regions. With every thread being
able to communicate, sub-teams of threads can be defined and assigned to particular tasks
like computation or communication. Unlike pure MPI implementations this permits an
explicit overlap of communication and computation. Functional decomposition of threads
introduces an MPI-like programming style. Workloads and loop boundaries have to be
determined manually for each thread, as OpenMP work sharing directives would apply to

4 MPI/OpenMP hybrid programming 41

NI NI NI NI

Communication network

MI

P P

Memory

L1D L1D

L2 L2

P P

MI

Memory

L1D L1D

L2 L2

MI

P P

Memory

L1D L1D

L2 L2

P P

MI

Memory

L1D L1D

L2 L2

MI

P P

Memory

L1D L1D

L2 L2

P P

MI

Memory

L1D L1D

L2 L2

MI

P P

Memory

L1D L1D

L2 L2

P P

MI

Memory

L1D L1D

L2 L2

Figure 4.1: Typical hybrid cluster [11]. A high-speed network con-
nects multi-socket nodes with multi-core processors. In this example
each dual-core processor has its own physical memory, which is logi-
cally shared within the node (ccNUMA).

the entire thread team and are therefore not applicable within sub-teams. This could be
bypassed with a nested parallel region, e.g. for all computing threads. Although nested
parallelism conforms to the OpenMP standard and might work in specific environments,
it is by no means portable and should therefore be avoided.

An elegant and more general solution is provided by OpenMP tasking (do not mix up task
mode hybrid and OpenMP tasking). Instead of distributing e.g. loop iterations among
threads as done with an OpenMP loop construct, a OpenMP task is created for the work
done in each loop iteration. In OpenMP tasking terminology a task is a “specific instance
of executable code and its data environment” [13]. After a task is created, it can be
executed by any thread of the current parallel team. If no thread is available the task is
queued until a thread reaches a scheduling point, e.g. a barrier or a taskwait region.

See the following code fragment for an example.

#pragma omp parallel

{

int threadID = omp_get_thread_num();

if(threadID == 0)

{

for(int i = 0; i < count; ++i)

{

#pragma omp task

do_work(i);

}

}

if(threadID == 1 || threadID == 2)

4 MPI/OpenMP hybrid programming 42

{

communicate(threadID);

}

} // implicit barrier

Here count tasks are created, each with a different input parameter. Note that task
creation is performed by a single thread. Two threads (IDs 1 and 2) are dedicated to
communication. How to decompose the thread team to functions (here: computation
and communication) depends on application specific workload. A single communication
thread was sufficient throughout all tests. In above example threads with IDs larger than
2 wait in the implicit barrier for tasks to be scheduled. Upon completion the threads of
the communication sub-team join the pool of working tasks. Given a reasonable number
of tasks, this alleviates the risk for load imbalance.

Since a mapping of tasks to executing threads is not defined due to dynamic task schedul-
ing, NUMA aware data placement is not possible. It can therefore pay off to put some
effort in manually assigning tasks to locality domains (LDs) of the NUMA system. The
necessary steps are summarized below.

• The data set a task operates on has to be tagged with an ID representing the locality
domain it resides in.

• For each locality domain a queue structure has to be defined and populated with
the according data sets.

• A thread has to be able to determine the locality domain it is running in by its
thread ID. This can be achieved by pinning threads to cores.

• Threads processing tasks dequeue data sets from the queue assigned to their locality
domain until it is empty. Unless other queues are as well empty, processing non-local
tasks (task stealing) might be sensible.

The topic is covered in detail by a paper on locality queues [18].

4.1.3 MPI thread compatibility

A fundamental prerequisite for hybrid programming as described in the previous sections
is that the MPI library in use offers the required level of thread support. The current
MPI standard (MPI version 2.2) [17] describes the following four levels.

• MPI_THREAD_SINGLE: Only one thread will execute.

• MPI_THREAD_FUNNELED: The process may be multi-threaded, but only the main
thread will make MPI calls.

• MPI_THREAD_SERIALIZED: The process may be multi-threaded, and multiple threads
may make MPI calls, but only one at a time: MPI calls are not made concurrently
from two distinct threads.

• MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with no restrictions.

4 MPI/OpenMP hybrid programming 43

MPI functions MPI_Init_thread() and MPI_Query_thread() provide information about
the multithreading capabilities of the running MPI library by returning one of the above
levels.

In order to run a vector mode hybrid code, an MPI library that provides at least level
MPI_THREAD_FUNNELED is sufficient, as communication is done in serial regions by the main
thread only. Full threading support (MPI_THREAD_MULTIPLE) is necessary for task mode
hybrid codes like the last example. Both threads of the communication sub-team must
be able to use MPI functions simultaneously. As MPI communication functions address
their counterpart solely by its rank, additional tagging of messages is required to identify
the associated thread within the node. This is due to the application developer.

4.1.4 Benefits and drawbacks of MPI/OpenMP hybrid
programming

This section gives a brief summary of possible benefits and drawbacks of hybrid program-
ming compared to pure MPI programming on clusters of shared-memory nodes.

Benefits

Where a typical MPI application would start one process per available core, its hybrid
correspondent would use one per node with the following positive effects. Less fragmenta-
tion of the domain is the result for the hybrid case, leading to a smaller number of larger
subdomains. One direct advantage is the consolidation of communication. This is true
for the case where a non-hybrid application transfers buffers so small that communication
is bound to latency. With larger domain faces a hybrid code “rides the PingPong curve”,
i.e. bandwidth grows as the influence of communication overhead shrinks.

A further advantage is that intra-node communication becomes unnecessary in favor of
shared memory access. As shown by the PingPong and PingPing tests in section 1.2.2,
intra-node communication is by no means infinitely fast or free of cost. Moreover, overlap
of intra-node and cross-node communication can not be safely depended on (see sec-
tion 3.3).

The last advantage of coarser domain decomposition is that the mapping of ranks to
subdomains is trivial, as only a single subdomain resides on a node.

Maybe the largest positive impact of hybrid programming is the possibility of an explicit
overlap of communication and computation. It is no longer necessary to interrupt compu-
tation to synchronize with neighbors if communication and computation can be executed
concurrently. Dedicating threads to communication is getting less influential with growing
numbers of cores per node. This load imbalance can moreover be totally cleared by using
techniques like OpenMP tasking.

4 MPI/OpenMP hybrid programming 44

Drawbacks

One obvious disadvantage of hybrid programming is coding complexity. No major mod-
ifications of existing MPI code might be required when introducing OpenMP parallel
regions, but in the case of task mode hybrid programming without using OpenMP tasks,
work has to be scheduled to threads manually, since OpenMP work-sharing directives are
not applicable. If OpenMP tasks are in use, however, NUMA-aware memory placement
causes additional administration effort due to a non-deterministic processing pattern.

A technical downside of OpenMP is the overhead resulting from thread startup. Negative
influence is only perceptible for relatively small workloads. Another technical obstacle
might be an MPI library with insufficient thread compatibility. However, Intel MPI
showed no lack of thread support during our tests. In addition, the number of MPI
implementations offering full thread support (MPI_THREAD_MULTIPLE) is growing [26].

4.2 Application to the Jacobi algorithm

4.2.1 Vector mode

Given an MPI parallel Jacobi solver and an MPI library with sufficient threading support,
creating a vector mode hybrid code is a straightforward undertaking. In a nutshell, the
loop nest iterating over the sub-domain of each process has to be parallelized with an
OpenMP work-sharing construct. The number of threads participating in the parallel
region can be specified via the environment variable OMP_NUM_THREADS or the library
function omp_set_num_threads(). (For a brief introduction to OpenMP programming
see section 1.3.1.) The following example code shows the OpenMP parallel kernel of a 3D
Jacobi solver. Note that the loop nest does not iterate over single grid cells but groups of
cells called blocks. (See section 1.3 for a short introduction to spatial blocking.) As one
block is scheduled to a single core, optimal block dimensions assure maximum re-use of
data from local cache.

#pragma omp parallel for schedule(static, 1)

for (int bi = 0; bi < numberOfLines; ++bi)

{

for (int bj = 0; bj < numberOfColumns; ++bj)

{

for (int bk = 0; bk < numberOfDepths; ++bk)

{

ComputeBlock(grids[0]->Blocks()[bi][bj][bk]);

}

}

}

4 MPI/OpenMP hybrid programming 45

In combination with a static OpenMP schedule, above loop construct can be adapted for
parallel page placement required on ccNUMA systems.

4.2.2 Task mode

Manual scheduling

In order to overlap communication and computation phases of a Jacobi solver, both tasks
are assigned to thread groups within the current team. It turned out for the benchmark
scenario that it is sufficient to dedicate a single thread to communication, as additional
threads would step up load imbalance. A further improvement in terms of load balance
and concurrency can be achieved by causing the communicating thread to update the very
boundary cells it is supposed to send. The remaining threads, identified by their thread
ID, update the bulk area of the domain. Scheduling blocks to threads has to be done
manually, as a nested parallel region is ineligible (see previous section). The following
code chunk shows an example for manual scheduling, which is executed by all but the
communication thread. Boundary checks are omitted for brevity.

#pragma omp parallel

{

int threadNum = omp_get_thread_num();

int workers = omp_get_num_threads() - 1;

if (threadNum < workers)

{

// resChunks is used for balanced distribution

int resChunks = numberOfLines % workers;

int chunkSize = numberOfLines / workers;

int firstLine = 0;

int lastLine = numberOfLines - 1;

if (threadNum < resChunks)

{

++chunkSize;

firstLine = (threadNum) * chunkSize;

lastLine = (threadNum + 1) * chunkSize - 1;

}

else

{

firstLine = (threadNum) * chunkSize + resChunks;

lastLine = (threadNum + 1) * chunkSize + resChunks - 1;

}

for (int bi = firstLine; bi <= lastLine; ++bi)

{

for (int bj = 0; bj < numberOfColumns; ++bj)

{

for (int bk = 0; bk < numberOfDepths; ++bk)

4 MPI/OpenMP hybrid programming 46

{

ComputeBlock(grids[0]->Blocks()[bi][bj][bk]);

}

}

}

}

else // calculate and communicate halo

}

Due to the reduced number of worker threads it can be advantageous to re-adjust block
sizes in order to make overall block count an integral multiple of worker thread count.
Again, this static scheduling construct can be re-used for NUMA-aware page placement.

OpenMP task scheduling

Manual distribution of work chunks to threads as described in the previous section is quite
inflexible and bears the risk of load imbalance. In spite of larger overhead per iteration
compared to a worksharing for loop, a task loop is the choice for situations that can not
be expressed efficiently using a parallel for construct.

The following code fragment shows how OpenMP tasking can be applied to the Jacobi
kernel from the previous examples.

#pragma omp parallel

{

int threadnum = omp_get_thread_num();

int workers = omp_get_num_threads() - 1;

if (threadnum < workers)

{

if (threadnum==0) // only a single thread creates tasks

{

for (int bi = 0; bi < numberOfLines; ++bi)

{

for (int bj = 0; bj < numberOfColumns; ++bj)

{

for (int bk = 0; bk < numberOfDepths; ++bk)

{

#pragma omp task

ComputeBlock(grids[0]->Blocks()[bi][bj][bk]);

}

}

}

}

}

4 MPI/OpenMP hybrid programming 47

else // calculate and communicate halo, join task processing afterwards

}

Task creation is done by a single thread. The most basic form of a task could be a single
stencil update, but due to task start overhead a task should update a whole block of
stencils. Spatial blocking is therefore essential for OpenMP tasking.

As assignment of tasks to threads is not predictable, placing memory pages to cores in
a round-robin fashion is reasonable. However, the implementation of NUMA-aware task
queuing [18] should be considered for the reasons mentioned above.

If all threads start at the same time, they all might communicate first (to update their
halo creating high amounts of traffic on the network) and compute afterwards (leaving
the network unused). This model offers the possibility to skew communication and com-
putation phases of the threads against each other which might lead to a more balanced
and therefore efficient usage of resources.

Performance

In this section we investigate whether the theoretical benefits of MPI/OpenMP hybrid pro-
gramming can be verified with real world applications. One typical application is sparse
matrix-vector multiplication (MVM). Due to its algorithmic complexity it is not appropri-
ate as an introductory example in this context. For an in-depth study of MPI/OpenMP
hybrid programming based on MVM we refer to [27]. To keep matters simple we stick to
the Jacobi solver benchmark used throughout this work. However, this requires particular
precautions.

As the dominance of communication over computation is not distinct enough for this
type of application, optimizations regarding communication effort do not lead to signifi-
cant performance improvements on modern high speed interconnects like InfiniBand. Of
course, the ratio of communication to computation can be influenced by the size of the
subdomains. But very small domains, which would emphasize communication against
computation, bear the risk of inefficient computation due to OpenMP overhead. In or-
der to actually demonstrate the influence of hybrid programming on the basis of a plain
benchmark code, we throttle network speed by using Gigabit Ethernet instead of Infini-
Band.

Figure 4.2 shows for the Townsend cluster that DDR InfiniBand offers a sustained Ping-
Ping bandwidth of 1 GB/s and Gigabit Ethernet 90 MB/s. This factor of 10 is sufficient
to establish a sensible ratio of communication to computation.

We opted for the Townsend cluster as a benchmark system, as it features the most steady
Gigabit network among reasonable machine options. As Gigabit Ethernet is basically
intended to serve as a management network in those systems, design and configuration
turned out to be not appropriate for high throughput scenarios. Another advantage of
this machine is its simple node topology. With only 2 cores per node, optimal mapping

4 MPI/OpenMP hybrid programming 48

10
0

10
2

10
4

10
6

10
8

Message length [bytes]

0

500

1000

B
an

d
w

id
th

 [
M

B
y

te
s/

s]

1 pair CN (Gigabit Ethernet)

2 pairs CN (Gigabit Ethernet)

1 pair CN (InfiniBand)

2 paris CN (Infiniband)

Figure 4.2: IMB PingPing on the RRZE Townsend Cluster. Double
data rate (DDR) InfiniBand is compared to Gigabit Ethernet intercon-
nect using 1 or 2 (multi-mode) PingPing pairs. Sustained bandwidth is
1 GB/s for InfiniBand and 90 MB/s for Gigabit Ethernet.

of ranks to subdomains is given for vanilla MPI codes using MPI_Cart_create() (see
figure 3.3). Measures as described in section 3.1 are therefore not necessary.

Four implementations of a Jacobi solver with spatial blocking are investigated in a weak
scaling study on 1 to 32 nodes. Subdomain size for one node is 120 double elements in
each of the three dimensions. Benchmarks include the following versions:

1. MPI: Pure MPI implementation with two processes per node.

2. hybrid vector mode: A single process per node spawns two OpenMP threads for
computation. After each sweep, halo communication is done in a serial region.

3. hybrid task mode (manual): A single process per node spawns two OpenMP
threads, one dedicated to halo computation and communication, the other dedi-
cated to computation of bulk blocks. Tasks are therefore scheduled manually by
thread ID.

4. hybrid task mode (OpenMP tasks): Like the previous version, with the following
modification: The bulk thread creates an OpenMP task from each loop iteration.
After finishing communication, the halo thread joins task processing. Scheduling of
computational work to threads is load dependent.

Looking at single node performance (left of figure 4.3), the penalty for statically split-
ting off one thread for communication in the manual task mode case becomes apparent.
Performance trade-off is not 50 %, as one might suspect seeing utilization of only one of

4 MPI/OpenMP hybrid programming 49

198

341

457

194

350

454

176

335

501

196

364

546

1 2 3
Nodes

0

50

100

150

200

250

300

350

400

450

500

550

600

P
er

fo
rm

an
ce

 [
M

L
U

P
s/

s]

MPI
hybrid vector mode

hybrid task mode (manual)

hybrid task mode (OpenMP tasks)

Figure 4.3: 3D Jacobi with spatial blocking on 1 to 3 nodes of the
Townsend Cluster (2 cores per node) and Gigabit Ethernet interconnect.
Domain size for each node is 1203 double elements (weak scaling). A
pure MPI solver with two processes per node is compared to three hybrid
implementations with one process starting two threads per node. The
manual task mode version dedicates one thread to halo computation
and communication, and one to bulk computation. Computation of
bulk blocks is scheduled to threads with OpenMP tasking in the second
task mode case.

two cores available, but mere 10 %. This is due to the fact that memory bandwidth is
almost charged to capacity from a single core in this system. Further concurrent streams
as used in the three other versions gain only little additional bandwidth. When com-
munication becomes involved, the effect alleviates (see middle of figure 4.3), and finally
vanishes (right). Furthermore, explicit overlap of communication and computation (as for
the hybrid case) starts to pay off.

The gap between task mode hybrid and both other versions keeps on widening during
transition to larger node counts (see figure 4.4), resulting in up to 75 % higher performance
compared to the pure MPI implementation. Overlap of communication and computation
is the reason, no matter if OpenMP tasking or manual thread scheduling is utilized. The
similarity of both task mode measurements for more than three nodes has its source in the
machine’s configuration with two cores per node. For two and three nodes, communication
effort is quite small, allowing the communicator thread to compute bulk tasks as well,
but in the static scheduling scenario it is idle after communicating. With growing overall
communication volume, the task mode variant using OpenMP tasking roughly equals
“manual” task mode in work distribution and performance.

4 MPI/OpenMP hybrid programming 50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Nodes

0

1000

2000

3000

4000

5000

P
er

fo
rm

an
ce

 [
M

L
U

P
s/

s]

MPI
hybrid vector mode

hybrid task mode (manual)

hybrid task mode (OpenMP tasks)

Figure 4.4: 3D Jacobi with spatial blocking on up to 32 nodes of the
Townsend Cluster (2 cores per node) and Gigabit Ethernet interconnect.
Caption of figure 4.3 applies.

Apart from the noticeable performance impact achieved from explicitly overlapping com-
munication and computation, improvements can as well be observed for the vector mode
hybrid approach. A general benefit of 15 to 20 % compared to pure MPI is apparent
for more than 3 nodes. It can be attributed to the lack of explicit intra-node communi-
cation in the hybrid case, due to utilization of shared memory. As seen in section 3.3,
cross-socket and cross-node MPI communication do not overlap in usual situations. This
extends communication time and therefore reduces overall performance. However, for 8
and 27 nodes vector mode is only 5 resp. 10 % better than pure MPI.

In both cases the communication pattern changes significantly compared to the next
smaller node count. Eight is the smallest number of nodes where a typical domain decom-
position yields more than one subdomain in each direction. This leads to communication
in each of the three instead of merely two dimensions.

The maximum count of six possible neighbors is given for a subdomain located in the
center of a domain decomposed into at least three elements per dimension. This is the
case for 27 nodes, explaining the almost stagnating performance at this point. The graph
for the pure MPI solver does not show corresponding alterations. A possible explanation
for this is a different decomposition, as the number of subdomains has to be scaled up by
the number of cores per node, which in turn affects the communication pattern.

5 Conclusion and outlook 51

5 Conclusion and outlook

5.1 Results

This thesis has analyzed four possible programming models for hybrid “commodity” hard-
ware, i.e. clustered multi-socket multi-core compute nodes:

• Pure MPI

• Hybrid vector mode, where MPI communication occurs only outside OpenMP-
parallel regions

• Hybrid task mode with manual work distribution, where communication can be over-
lapped with computation but most of the convenient OpenMP worksharing func-
tionality is lost

• Hybrid task mode with OpenMP tasking, where the new (as of OpenMP 3.0) task-
ing constructs enable better utilization of resources, dynamic load balancing, and
natural work sharing.

First, using results from low-level bandwidth and latency benchmarks, performance mod-
els for the three-dimensional Jacobi solver were developed. These models enabled a qual-
itative analysis of the expected gains of hybrid parallelization versus pure MPI. Since it
does not make sense to compare a mediocre MPI implementation with highly optimized
hybrid codes, an attempt was made to arrive at a “perfect” pure MPI Jacobi code. Along
the way some typical myths about MPI programming were dispelled:

• Mapping of MPI ranks to subdomains is suboptimal with current MPI implemen-
tations. Not even the number of running processes per compute node is taken
into consideration by the topology functions, leading to cross-node communication
volumes that are larger than they would have to be. This could be corrected by
substituting some MPI functionality with an optimized algorithm that performs a
rank-subdomain mapping which minimizes cross-node traffic.

• Truly asynchronous MPI communication using non-blocking point-to-point func-
tions is only available in very few MPI libraries. The common case is to handle
non-blocking communication only when the program is inside the library.

• Overlap between intra-node and cross-node point-to-point communication is only
possible under rare circumstances, which can usually not be established in stencil
codes.

5 Conclusion and outlook 52

Especially the first two observations lead to the assumption that there may be large
benefits from hybrid parallelization.

Turning to hybrid implementations of the 3D Jacobi solver, vector mode and task mode
implementations were compared. It was shown that task mode, due to its capability
of overlapping computation with communication even without direct MPI support, can
significantly outperform vector mode and also pure MPI on slow networks. The addi-
tional gain from using OpenMP tasking constructs depends crucially on the bandwidth
saturation properties of the processors under consideration.

5.2 Future work

The results presented in this thesis could be applied and extended in a variety of ways.
First, a more thorough coverage of recent MPI implementations should give a coherent
and timely overview on the capabilities of MPI libraries to overlap communication with
computation and several communication processes with each other. While this thesis
concentrated mainly on the Intel compiler, other popular compilers like, e.g., the GCC
should be benchmarked with regard to performance of tasking constructs and general
OpenMP overhead, which may impede hybrid performance.

Second, the hybrid task mode paradigm could be applied to other, more realistic stencil
codes like the lattice Boltzmann algorithm (LBM) in order to show its advantages for real
applications. Beyond fluid dynamics applications, sparse eigenvalue solvers could also be
a worthwhile optimization target; although it was shown already in 2003 [27] that hybrid
task mode is beneficial for this kind of algorithm, a new evaluation with regard to modern
multi-core systems seems in order.

Finally, the implications of OpenMP tasking constructs when running parallel programs
on ccNUMA hardware are far from fully understood. Along the lines of the basic analysis
in Ref. [18], a NUMA-optimized hybrid task mode code could be developed that shows
better performance on the ccNUMA compute nodes that are common in all commodity
clusters today.

Bibliography 53

Bibliography

[1] G. E. Moore: Cramming more components onto integrated circuits. Electronics
38(8), (1965) 114-117.

[2] http://www.openmp.org

[3] http://www.mpi-forum.org

[4] http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/hpc/

systeme/woodcrest-cluster.shtml

[5] http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/hpc/

systeme/tinyblue-cluster.shtml

[6] http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/hpc/

systeme/ia32-cluster.shtml

[7] http://www.nersc.gov/nusers/systems/franklin/about.php

[8] Intel Corporation: Intel MPI Benchmarks: User Guide and Methodology Description.
Version 3.2, August 2008.
Intel Corporation Document Number: 320714-001

[9] Georg Hager: IMB multi-mode Ping-Pong demystified? Retrieved October 11, 2009.
http://www.blogs.uni-erlangen.de/hager/stories/1119/

[10] G. Hager, H. Stengel, T. Zeiser, G. Wellein: RZBENCH: Performance evaluation of
current HPC architectures using low-level and application benchmarks. In: S. Wagner
et al. (Eds.), High Performance Computing in Science and Engineering, Garching/
Munich 2007. Transactions of the Third Joint HLRB and KONWIHR Status and
Result Workshop, Dec 3-4, 2007, LRZ Garching, Springer, ISBN 978-3-540-69181-5
(2009) 485-501.
http://arxiv.org/abs/0712.3389

[11] G. Hager, G. Wellein: Introduction to High Performance Computing for Scientists
and Engineers (Chapman & Hall / CRC Computational Science), 2010.

[12] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, K. Yelick: Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures. In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing (Austin, Texas, November 15 - 21, 2008). Conference on High
Performance Networking and Computing. IEEE Press, Piscataway, NJ, 1-12.

[13] OpenMP Application Program Interface. Version 3.0, May 2008.
http://www.openmp.org/mp-documents/spec30.pdf

[14] http://www.top500.org/connfam/6

Bibliography 54

[15] J. D. McCalpin: Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Computer Society Technical Committee on Computer Ar-
chitecture (TCCA) Newsletter, (1995) 19–25.

[16] M. Wittmann, G. Hager and G. Wellein: Multicore-aware parallel temporal blocking
of stencil codes for shared and distributed memory. Workshop on Large-Scale Parallel
Processing (LSPP), IPDPS 2010, April 23rd, 2010, Atlanta, GA.
http://arxiv.org/abs/0912.4506

[17] MPI: A Message-Passing Interface Standard. Version 2.2 (September 4, 2009).
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

[18] M. Wittmann, G. Hager: A Proof of Concept for Optimizing Task Parallelism by
Locality Queues. (2009).
http://arxiv.org/abs/0902.1884

[19] http://www.open-mpi.org/software/plpa/

[20] http://www.nersc.gov/nusers/systems/franklin/programming/

[21] http://http://www.mcs.anl.gov/research/projects/mpich2/

[22] http://www.open-mpi.org/

[23] http://mvapich.cse.ohio-state.edu/

[24] http://software.intel.com/en-us/intel-mpi-library/

[25] Intel Corporation: Intel MPI Library for Linux* OS Reference Manual. Version 3.2,
Update 1, April 2009.
http://software.intel.com/file/15429

[26] R. Thakur, W. Gropp: Test Suite for Evaluating Performance of MPI Implementa-
tions That Support MPI_THREAD_MULTIPLE. Proc. of the 14th European
PVM/MPI Users’ Group Meeting (Euro PVM/MPI 2007), September 2007, pp. 46-
55.
http://www.mcs.anl.gov/~thakur/papers/thread-tests.pdf

[27] R. Rabenseifner, G. Wellein: Communication and Optimization Aspects of Parallel
Programming Models on Hybrid Architectures. International Journal of High Perfor-
mance Computing Applications 17(1), (2003) 49-62.

[28] G. Hager, G. Jost, R. Rabenseifner: Communication characteristics and hybrid
MPI/OpenMP parallel programming on clusters of multi-core SMP nodes. Proceed-
ings of CUG09, May 4-7 2009, Atlanta, GA.
http://www.cug.org/7-archives/previous_conferences/CUG2009/

bestpaper/9B-Rabenseifner/rabenseifner-paper.pdf

Erklärung

Ich erkläre, dass ich die Arbeit selbständig verfasst, noch nicht anderweitig für Prü-
fungszwecke vorgelegt, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
sowie wörtliche und sinngemäße Zitate als solche gekennzeichnet habe.

Nürnberg, 15. März 2010

