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Scientific Computing and Machine Learning

Numerical methods
Based on physical models

+ Robust and generalizable
– Require availability of mathematical

models

Machine learning models
Driven by data

+ Do not require mathematical models
– Sensitive to data, limited extrapolation

capabilities

Scientific machine learning
Combining the strengths and compensating the weaknesses of the individual approaches:

numerical methods improve machine learning techniques
machine learning techniques assist numerical methods
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Domain Decomposition Methods

Graphics based on results from Heinlein, Perego, Rajamanickam (2022)

Historical remarks: The alternating
Schwarz method is the earliest domain
decomposition method (DDM), which has
been invented by H. A. Schwarz and
published in 1870:

• Schwarz used the algorithm to establish
the existence of harmonic functions
with prescribed boundary values on
regions with non-smooth boundaries.
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FROSch — Algebraic and Parallel
Schwarz Preconditioners in Trilinos



Solvers for Partial Different Equations
Consider a diffusion model problem:

−∆u(x) = f in Ω = [0, 1]2,

u = 0 on ∂Ω.

Discretization using finite elements yields a sparse system of linear
equations

Ku = f .

The accuracy of the finite element solution depends on the refinement
level of the mesh h: higher refinement ⇒ better accuracy.

Direct solvers
For fine meshes, solving the
system using a direct solver is not
feasible due to superlinear
complexity and memory cost.

Iterative solvers
Iterative solvers are efficient
for solving sparse systems,
however, the convergence rate
depends on the spectral
properties of K .

⇒ Introduce a preconditioner M−1 ≈ K−1 to improve convergence:

M−1Ku = M−1f
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 2h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

M−1
OS-1K =

∑N

i=1
R⊤

i K−1
i Ri K ,

where Ri and R⊤
i are restriction and prolongation

operators corresponding to Ω′
i , and Ki := Ri KR⊤

i .
Condition number estimate:

κ
(

M−1
OS-1K

)
≤ C

(
1 + 1

Hδ

)
with subdomain size H and overlap width δ.

Lagrangian coarse space
Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

M−1
OS-2K = ΦK−1

0 Φ⊤K︸ ︷︷ ︸
coarse level – global

+
∑N

i=1
R⊤

i K−1
i Ri K︸ ︷︷ ︸

first level – local

,

where Φ contains the coarse basis functions and
K0 := Φ⊤KΦ; cf., e.g., Toselli, Widlund (2005).
The construction of a Lagrangian coarse basis requires
a coarse triangulation.
Condition number estimate:

κ
(

M−1
OS-2K

)
≤ C

(
1 + H

δ

)
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 2h Solution of local problem
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner
Overlap δ = 2h Solution of local problem

Lagrangian coarse space
Coarse triangulation Coarse solution

Diffusion model problem in two dimensions,
H/h = 100

200 400 600 800 1,000
0

200

400

# subdomains (= # MPI ranks)

#
it
er
at
io
n
s

M−1
OS-1, δ = 1h

M−1
OS-1, δ = 2h

M−1
OS-2, δ = 1h

M−1
OS-2, δ = 2h

A. Heinlein (TU Delft) NHR PerfLab Seminar 4/24



FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos
Software

• Object-oriented C++ domain decomposition solver framework with
MPI-based distributed memory parallelization

• Part of Trilinos with the parallel linear algebra based on Tpetra
• Node-level parallelization and performance portability on CPU and GPU

architectures through Kokkos and KokkosKernels
• Accessible through unified Trilinos solver interface Stratimikos

Methodology
• Parallel scalable multi-level Schwarz domain decomposition

preconditioners
• Algebraic construction based on the parallel distributed system matrix
• Extension-based coarse spaces

Team (active)
• Filipe Cumaru (TU Delft)
• Alexander Heinlein (TU Delft)
• Kyrill Ho (UCologne)
• Axel Klawonn (UCologne)
• Jascha Knepper (UCologne)
• Stephan Köhler (TUBAF)

• Dane Lacey (FAU)
• Friederike Röver (TUBAF)
• Siva Rajamanickam (SNL)
• Oliver Rheinbach (TUBAF)
• Lea Saßmannshausen (UCologne)
• Ichitaro Yamazaki (SNL)
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Partition of Unity
The energy-minimizing extension vi = H∂Ωi →Ωi (vi,∂Ωi ) solves

−∆vi = 0 in Ωi ,

vi = vi,∂Ωi on ∂Ωi .

Hence, vi = E∂Ωi →Ωi (1∂Ωi ) = 1.

Due to linearity of the extension operator, we have∑
i
φi = 1∂Ωi ⇒

∑
i
E∂Ωi →Ωi (φi ) = 1Ωi

Null space property
Any extension-based coarse space built from a partition of unity on the domain decomposition interface
satisfies the null space property necessary for numerical scalability:∑

edges
⊂∂Ωi

+
∑

vertices
⊂∂Ωi

=

Algebraicity of the energy-minimizing extension
The computation of energy-minimizing extensions only requires KII

and KIΓ, submatrices of the fully assembled matrix Ki . v =
[

−K−1
II KIΓ

IΓ

]
vΓ,
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements via
the sparsity pattern of K .

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD

Overlap δ = 1h Overlap δ = 2h
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i
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Coarse space
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For scalar elliptic
problems, the null space
consists only of
constant functions.
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Algorithmic Framework for FROSch Preconditioners

Overlapping domain decomposition
The overlapping subdomains
are constructed by recursively
adding layers of elements via
the sparsity pattern of K .

The corresponding matrices
Ki = Ri KRT

i

can easily be extracted from K .

Nonoverlapping DD Overlap δ = 1h Overlap δ = 2h

Coarse space
1. Interface components 2. Interface basis (partition of unity × null space)

For scalar elliptic
problems, the null space
consists only of
constant functions.

3. Extension

A. Heinlein (TU Delft) NHR PerfLab Seminar 7/24



Examples of FROSch Coarse Spaces
GDSW (Generalized Dryja–Smith–Widlund)

• Dohrmann, Klawonn, Widlund (2008)
• Dohrmann, Widlund (2009, 2010, 2012)

RGDSW (Reduced dimension GDSW)

• Dohrmann, Widlund (2017)
• H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method)

• Hou (1997), Efendiev and Hou (2009)
• Buck, Iliev, and Andrä (2013)
• H., Klawonn, Knepper, Rheinbach (2018)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions
and a structured domain decomposition.
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Weak Scalability up to 64 k MPI Ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

Two-level vs three-level GDSW
Heinlein, Klawonn, Rheinbach, Röver (2019, 2020).
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Inexact Extension Solvers – Ifpack2

M−1
OS-2A = ΦA−1

0 ΦT A +
∑N

i=1
RT

i A−1
i Ri A

3D Laplacian; 512 MPI ranks = 512 (= 8 × 8 × 8) subdomains; H/δ = 10; RGDSW coarse space.
subdomain solver

direct ILU(k) symm. Gauß–Seidel Chebyshev polyn.
solver k = 2 k = 3 5 sweeps 10 sweeps p = 6 p = 8

H/h = 20,
≈ 14 k dofs
per rank

iter 26 33 30 31 28 34 31
setup time 1.89 s 0.97 s 1.01 s 0.89 s 0.91 s 0.73 s 0.71 s
apply time 0.39 s 0.27 s 0.31 s 0.31 s 0.35 s 0.30 s 0.30 s
prec. time 2.28 s 1.24 s 1.32 s 1.20 s 1.26 s 1.03 s 1.01 s

H/h = 40,
≈ 105 k dofs
per rank

iter 30 55 46 52 41 59 51
setup time 12.09 s 6.14 s 6.26 s 5.74 s 5.89 s 5.55 s 5.64 s
apply time 4.21 s 1.84 s 1.96 s 2.66 s 3.28 s 2.52 s 2.47 s
prec. time 16.30 s 7.98 s 8.22 s 8.40 s 9.18 s 8.16 s 8.11 s

H/h = 60,
≈ 350 k dofs
per rank

iter OOM 81 64 76 56 88 74
setup time - 47.29 s 47.87 s 45.14 s 45.08 s 45.44 s 45.49 s
apply time - 10.79 s 9.98 s 13.00 s 16.16 s 11.95 s 12.09 s
prec. time - 58.08 s 57.85 s 58.15 s 61.25 s 57.39 s 57.59 s

Intel MKL Pardiso; ILU / symmetric Gauß–Seidel / Chebyshev polynomials from Ifpack2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
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Three-Dimensional Linear Elasticity – ILU Subdomain Solver
ILU level 0 1 2 3

setup
CP

U No 1.5 1.9 3.0 4.8
ND 1.6 2.6 4.4 7.4

GP
U

KK(No) 1.4 1.5 1.8 2.4
KK(ND) 1.7 2.0 2.9 5.2
Fast(No) 1.5 1.6 2.1 3.2
Fast(ND) 1.5 1.7 2.5 4.5

speedup 1.0× 1.2× 1.4× 1.5×

solve

CP
U No 2.55 (158) 3.60 (112) 5.28 (99) 6.85 (88)

ND 4.17 (227) 5.36 (134) 6.61 (105) 7.68 (88)

GP
U

KK(No) 3.81 (158) 4.12 (112) 4.77 (99) 5.65 (88)
KK(ND) 2.89 (227) 4.27 (134) 5.57 (105) 6.36 (88)
Fast(No) 1.14 (173) 1.11 (141) 1.26 (134) 1.43 (126)
Fast(ND) 1.49 (227) 1.15 (137) 1.10 (109) 1.22 (100)

speedup 2.2× 3.2× 4.3× 4.8×

Computations on Summit (OLCF):
42 IBM Power9 CPU cores and 6 NVIDIA
V100 GPUs per node.

Yamazaki, Heinlein,
Rajamanickam (2023)

ILU variants
• KokkosKernels ILU (KK)
• Iterative FastILU (Fast); cf. Chow,

Patel (2015) and Boman, Patel,
Chow, Rajamanickam (2016)

No reordering (No) and nested dissection
(ND)
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Results for Blood Flow Simulations
• 3D unsteady flow simulation within

the geometry of a realistic artery
(from Balzani et al. (2012)) and
kinematic viscosity ν = 0.03 cm2/s

• Parabolic inflow profile at inlet
• Time discretization: BDF-2; space

discretization: P2-P1 elements
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Cf. Heinlein, Klawonn, Knepper, Saßmannshausen (arXiv 2025)
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FROSch Preconditioners for Land Ice Simulations

https://github.com/SNLComputation/Albany

The velocity of the ice sheet in Antarctica and Greenland is
modeled by a first-order-accurate Stokes approximation model,

−∇ · (2µϵ̇1) + ρg ∂s
∂x = 0, −∇ · (2µϵ̇2) + ρg ∂s

∂y = 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).

Antarctica (velocity) Greenland (multiphysics vel. & temperature)
4 km resolution, 20 layers, 35 m dofs 1-10 km resolution, 20 layers, 69 m dofs

MPI ranks avg. its avg. setup avg. solve avg. its avg. setup avg. solve
512 41.9 (11) 25.10 s 12.29 s 41.3 (36) 18.78 s 4.99 s

1024 43.3 (11) 9.18 s 5.85 s 53.0 (29) 8.68 s 4.22 s
2048 41.4 (11) 4.15 s 2.63 s 62.2 (86) 4.47 s 4.23 s
4096 41.2 (11) 1.66 s 1.49 s 68.9 (40) 2.52 s 2.86 s
8192 40.2 (11) 1.26 s 1.06 s - - -

Computations performed on Cori (NERSC). Heinlein, Perego, Rajamanickam (2022)
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Domain Decomposition for
Physics-Informed Neural Networks



Physics-Informed Neural Networks (PINNs) – Idea
In Lagaris et al. (1998), the authors solve the
boundary value problem

−∆Ψt(x, θ) = 1 on [0, 1],
Ψt(0, θ) = Ψt(1, θ) = 0,

via a collocation approach:

min
θ

∑
xi

(∆Ψt(xi , θ) + 1)2

Boundary conditions . . .

. . . can be enforced explicitly via the ansatz:

Ψt(x, θ) = A(x) + F (x, NN(x, θ))

• A satisfies the boundary conditions
• F does not contribute to the

boundary conditions
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Physics-Informed Neural Networks (PINNs)
In the physics-informed neural network (PINN) approach
introduced by Raissi et al. (2019), a neural network is
employed to discretize a partial differential equation

N[u] = f, in Ω.

PINNs use a hybrid loss function:
L(θ) = ωdataLdata(θ) + ωPDELPDE(θ),

where ωdata and ωPDE are weights and

Ldata(θ) = 1
Ndata

∑Ndata

i=1
(u(x̂i , θ) − ui )2 ,

LPDE(θ) = 1
NPDE

∑NPDE

i=1
(N[u](xi , θ) − f(xi ))2 .

See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).

Advantages
• “Meshfree”
• Small data
• Generalization properties
• High-dimensional problems
• Inverse and parameterized

problems

Drawbacks
• Training cost and

robustness
• Convergence not

well-understood
• Difficulties with scalability

and multi-scale problems

x

t
...

...

...

...

...

...

...

...

u L

∂u
∂t ,
∂u
∂x ,
. . .

Hybrid loss
Small data Some data Big data

Lots of physics Some physics No physics

• Known solution values can be
included in Ldata

• Initial and boundary conditions
are also included in Ldata
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Error Estimate & Spectral Bias

Estimate of the generalization error (Mishra and Molinaro (2022))
The generalization error (or total error) satisfies

EG ≤ CPDEET + CPDEC1/p
quadN−α/p

• EG = EG (X , θ) := ∥u − u∗∥V general. error (V Sobolev space, X training data set)
• ET training error (lp loss of the residual of the PDE)
• N number of the training points and α convergence rate of the quadrature
• CPDE and Cquad constants depending on the PDE, quadrature, and neural network

Rule of thumb: “As long as the PINN is trained well, it also generalizes well”

100 iterations 1 000 iterations 10 000 iterations 80 000 iterations
Rahaman et al., On the spectral bias of neural networks, ICML (2019)

Related works: Cao et al. (2021), Wang, et al. (2022), Hong et al. (arXiv 2022), Xu et al. (2024), . . .
A. Heinlein (TU Delft) NHR PerfLab Seminar 16/24



Scaling of PINNs for a Simple ODE Problem
Solve

u
′ = cos (ωx) ,

u (0) = 0,

for different values of ω

using PINNs with
varying network
capacities.

Scaling issues
• Large computational

domains
• Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)

(a) 321 free parameters (d) 66 433 free parameters
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u (0) = 0,

for different values of ω

using PINNs with
varying network
capacities.

Scaling issues
• Large computational

domains
• Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)

(a) 321 free parameters (d) 66 433 free parameters

Idea
Replace the global network by a coupled
local networks defined on an overlapping
domain decomposition.
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Domain Decomposition Methods and Machine Learning – Literature

A non-exhaustive literature overview:
• ML for adaptive BDDC, FETI–DP, AGDSW: H., Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021,

2022); Klawonn, Lanser, Weber (2024, 2025)
• cPINNs, XPINNs: Jagtap, Kharazmi, Karniadakis (2020); Jagtap, Karniadakis (2020)
• Classical Schwarz iteration for PINNs or DeepRitz:: Li, Tang, Wu, and Liao (2019); Li, Xiang, Xu (2020);

Mercier, Gratton, Boudier (arXiv 2021); Dolean, H., Mercier, Gratton (acc. 2025); Li, Wang, Cui, Xiang, Xu (2023);
Sun, Xu, Yi (arXiv 2023, 2024); Kim, Yang (2023, 2024, 2024)

• FBPINNs, FBKANs: Moseley, Markham, Nissen-Meyer (2023); Dolean, H., Mishra, Moseley (2024, 2024); H.,
Howard, Beecroft, Stinis (2025); Howard, Jacob, Murphy, H., Stinis (arXiv 2024)

• DD for randomized NNs: Dong, Li (2021); Dang, Wang (2024); Sun, Dong, Wang (2024); Sun, Wang (2024);
Chen, Chi, E, Yang (2022); Shang, H., Mishra, Wang (2025); Anderson, Dolean, Moseley, Pestana, (arXiv 2024); van
Beek, Dolean, Moseley (arxiv 2025)

• DD for Neural Operators and Surrogate Models: H., Howard, Beecroft, Stinis (2025); Ramezankhani, Parekh,
Deodhar, Birru (arXiv 2024); Wu, Kovachki, Liu (arXiv 2025); Pelzer, Verburg, H., Schulte (arXiv 2025); Klaes,
Klawonn, Kubicki, Lanser, Nakajima, Shimokawabe, Weber (arXiv 2025); Howard, H., Stinis (in prep.)

• DD for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn, Lanser, Weber (2024); Verburg, H.,
Cyr (2025)

An overview of the state-of-the-art in 2024:
A. Klawonn, M. Lanser, J. Weber
Machine learning, domain decomposition methods – a survey
Computational Science and Engineering. 2024
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Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNs (Moseley, Markham, Nissen-Meyer (2023))
FBPINNs employ the network architecture

u(θ1, . . . , θJ) =
∑J

j=1
ωjuj (θj)

and the loss function

L = 1
N

∑N

i=1

(
N[

∑
xi ∈Ωj

ωj uj ](xi , θj ) − f(xi )
)2

.

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−1

0

1

u

Ω1

ω1

ω1u1 (θ1)

Ω2

ω2

ω2u2 (θ2)

Ω3

ω3

ω3u3 (θ3)

Ω4

ω4

ω4u4 (θ4)

1D single-frequency problem
PINN solution

Moseley, Markham, Nissen-Meyer (2023)
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Multi-Level FBPINNs

Multi-level FBPINNs (ML-FBPINNs)
ML-FBPINNs (Dolean, Heinlein, Mishra,
Moseley (2024)) are based on a hierarchy
of domain decompositions:

combined

==
level 1

++
level 2

++
level 3

++
level 4

++
level 5

++

This yields the network architecture:

u
(
θ

(1)
1 , . . . , θ

(L)
J(L)

)
=

∑L

l=1

∑N(l)

i=1
ω

(l)
j u(l)

j
(
θ

(l)
j

)

Multiscale problems . . .
. . . appear in most areas of modern science and engineering:

Dual-phase steel;
fig. courtesy of
J. Schröder.

Groundwater flow;
cf. Christie & Blunt
(2001) (SPE10).

Arterial walls;
cf. O’Connell et al.
(2008).

Multi-frequency problem
Consider the multi-frequency Laplace problem

−∆u = 2
∑n

i=1
(ωi π)2 sin (ωi πx) sin (ωi πy) ,

with homogeneous Dirichlet boundary conditions and
ωi = 2i .
For increasing values of n, we obtain the solutions:

n = 1 n = 3 n = 5
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Multi-Level FBPINNs for a Multi-Frequency Problem – Strong Scaling
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Multi-Frequency Problem – What the FBPINN Learns
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Cf. Dolean, Heinlein, Mishra, Moseley (2024).

A. Heinlein (TU Delft) NHR PerfLab Seminar 22/24



Randomized Neural Netwoks – Results for the Multi-Frequency Problem (n=2)

Methodology
• Randomized

neural
networks yield
a quadratic
problem

• Normal
equations
solved with
Krylov solvers

• One-level
Schwarz
preconditioning

• Remove
near-linear
dependencies
via singular
value
decomposition

⇒ Improved
convergence

M−1 = I M−1 = M−1
AS M−1 = M−1

RAS M−1 = M−1
SAS

iter eL2 iter eL2 iter eL2 iter eL2

CG >2000 1.95·10−2 8 5.03·10−3 — — — —
CGS >2000 2.63·10−2 4 5.04·10−3 24 5.03·10−3 6 5.04·10−3

BICG >2000 1.03·10−2 8 5.08·10−3 32 5.05·10−3 11 5.09·10−3

GMRES >2000 8.68·10−2 13 5.07·10−3 31 5.06·10−3 11 5.08·10−3

4×4 DD; DoF=256; N=1600; θ0∈U(−1, 1); stop.: ∥M−1rk∥L2 /∥M−1r0∥L2 ≤10−5

Cf. Shang, Heinlein, Mishra, Wang (2025)

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6
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Results for the Multi-Frequency Problem

Multi-level FBPINNs; cf. Dolean, Heinlein, Mishra, Moseley (2024)

DD-PIRaNNs; cf. Shang, Heinlein, Mishra, Wang (2025)

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6
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Summary

Advances of FROSch Preconditioners for Multiphysics and Multiscale Simulations
• Partition of unity-based coarse spaces yield robust and scalable two-/three-level

Schwarz preconditioners, with scalability up to more tha 64k ranks / 1.7b DoF.
• Inexact subdomain solvers (e.g., ILU) can significantly speed up computing times.
• Extension-based, monolithic coarse spaces stay robust for saddle-point &

multiphysics (CFD, land ice) versus block/SIMPLE variants.

Domain Decomposition-Based Neural Network Architectures
• DD-based neural network architectures scale PINNs to large domains /

high-frequency problems with weakly coupled, small subnetworks; multilevel
hierarchies are needed for multiscale problems.

• Schwarz preconditioners & SVD (leveraging DD-induced sparsity) for least squares
problems resulting from RaNNs improve conditioning and yield fast convergence.

Thank you for your attention!
Topical Activity
Group

Scientific Machine
Learning

https://ems-tag-sciml.github.io/
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