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Scientific Computing and Machine Learning

Numerical methods

Machine learning models

Based on physical models Driven by data
+ Robust and generalizable + Do not require mathematical models
— Require availability of mathematical — Sensitive to data, limited extrapolation
models capabilities

Scientific machine learning
Combining the strengths and compensating the weaknesses of the individual approaches:
numerical methods improve machine learning techniques

machine learning techniques assist numerical methods
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Domain Decomposition Methods

Graphics based on results from Heinlein, Perego, Rajamanickam (2022)
Historical remarks: The alternating

Schwarz method is the earliest domain
decomposition method (DDM), which has

been invented by H. A. Schwarz and 5
published in 1870: o Iy
= Schwarz used the algorithm to establish 0 2
the existence of harmonic functions

Iy

with prescribed boundary values on
regions with non-smooth boundaries.
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FROSch — Algebraic and Parallel
Schwarz Preconditioners in Trilinos



Solvers for Partial Different Equations

Consider a diffusion model problem:
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S i
—Au(x)=f inQ=]0,1]% L7
/f/,,;;i@%‘\\\\\\

w=20 on 0.

Discretization using finite elements yields a sparse system of linear

equations
Ku=f.
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The accuracy of the finite element solution depends on the refinement
level of the mesh h: higher refinement = better accuracy.
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Direct solvers Iterative solvers

For fine meshes, solving the Iterative solvers are efficient
system using a direct solver is not for solving sparse systems,
feasible due to superlinear however, the convergence rate
complexity and memory cost. depends on the spectral

properties of K.
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Solvers for Partial Different Equations

Consider a diffusion model problem:

A N
“Aa(x)=f inQ=[0,1], ﬂ‘«\\‘\*&t\\
\

w=20 on 0.
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We solve Ku = f using the conjugate gradient (CG) method:
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Solvers for Partial Different Equations

Consider a diffusion model problem:

A N
“Aa(x)=f inQ=[0,1], ﬂ‘«\\‘\*&t\\
\

w=20 on 0.

4]
e,
i

We solve Ku = f using the conjugate gradient (CG) method:

T T T I
107! —— 16 x 16 ||
—— 32x32
Wi, v,::fx»«*\‘\“‘“
AR
< — 128 x 128 ,m,‘ng}{{\\‘\\\‘\\\\\m
LR
=7 |L | AR
| 10 Bl
)
10-13 b \ \ \ \ \ .
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iterations

= Introduce a preconditioner M~ ~ K~ to improve convergence:

M 'Ku=M"'f
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap 6 = 2h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

N
=1 _ T ger—1
Mod K= _ RIKT'RK,

where R; and RI.T are restriction and prolongation
operators corresponding to Q/, and K := R,-KR,.T.
Condition number estimate:
1
k(M3 K)<C(1+ —)
( 0S-1 ) — ( HS

with subdomain size H and overlap width 9.
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap 6 = 2h Solution of local problem

T
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap 6 = 2h Solution of local problem

Based on an overlapping domain decomposition, we
define a one-level Schwarz operator

N
Myl K=Y RTK'RK

where R; and RI.T are restriction and prolongation
operators corresponding to Q;, and K; := R;KR,.T.

Condition number estimate:
1
ML K)<cC (1 —)
"‘( 05-1 ) S T s

with subdomain size H and overlap width 9.

Lagrangian coarse space

Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads

ML K=

N
—14T T il
b PR OTK 4+ _ RIK'RK,

coarse level — global .
first level — local

where ® contains the coarse basis functions and

Koy := ¢ T K®; cf,, e.g., Toselli, Widlund (2005).

The construction of a Lagrangian coarse basis requires
a coarse triangulation.

Condition number estimate:
H
=il
K (Mog,K) < C (1 + E)

NHR PerfLab Seminar




Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner Lagrangian coarse space

Overlap 6 = 2h Solution of local problem Coarse triangulation Coarse solution

I
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Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner Lagrangian coarse space

Coarse triangulation Coarse solution

Overlap 6 = 2h Solution of local problem

200

Diffusion model problem in two dimensions, 1
H/h =100 (il —B— Mg ,,6=1h |
2 -B- Mg ,, 5 =2h n
<} —B— M52 ,, 86 =1h
;é oS __--I
© -E- Mgd,, 6 =2h 4T
5] i--
2 a
BiS

h

| | | | |
200 400 600 800 1,000
# subdomains (= # MPI ranks)
NHR PerfLab Seminar
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FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

= Object-oriented C++ domain decomposition solver framework with
MPI-based distributed memory parallelization
TRILINOS = Part of TRILINOS with the parallel linear algebra based on TPETRA
= Node-level parallelization and performance portability on CPU and GPU
architectures through Kokk0s and KOKKOSKERNELS
= Accessible through unified TRILINOS solver interface STRATIMIKOS

Methodology

= Parallel scalable multi-level Schwarz domain decomposition
preconditioners

= Algebraic construction based on the parallel distributed system matrix

= Extension-based coarse spaces

Team (active)

= Filipe Cumaru (TU Delft) = Dane Lacey (FAU)
s Sandia = Alexander Heinlein (TU Delft) = Friederike Réver (TUBAF)
TUDelft @ Egmta;ries = Kyrill Ho (UCologne) = Siva Rajamanickam (SNL)
= Axel Klawonn (UCologne) = Oliver Rheinbach (TUBAF)
= Jascha Knepper (UCologne) = Lea SaBmannshausen (UCologne)
= Stephan Kéhler (TUBAF) = Ichitaro Yamazaki (SNL)

A. Heinlein (TU Delft) NHR PerfLab Seminar




Partition of Unity

The energy-minimizing extension v; = Haq,,q,(vi,00;) solves
—No; = 0 in Q,‘,
i = viag, on 0%;.

Hence, vi = Esq,q; (1og;) = 1.

Due to linearity of the extension operator, we have

ZI_ pi = Lo, = Z,- Esq,—q; (pi) = 1g;

Null space property
Any extension-based coarse space built from a partition of unity on the domain decomposition interface
satisfies the null space property necessary for numerical scalability:

edges & vertlces ‘
CoRQ;

Algebraicity of the energy-minimizing extension

The computation of energy-minimizing extensions only requires K 7K”—1K,r
and Kjr, submatrices of the fully assembled matrix K;. V= v
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Algorithmic Framework for FROSch Preconditio

Overlapping domain decomposition

The overlapping subdomains Nonoverlapping DD
are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RIKR] 5

can easily be extracted from K.
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Algorithmic Framework for FROSch Preconditio

Overlapping domain decomposition

The overlapping subdomains Nonoverlapping DD Overlap 6 = 1h
are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RIKR] 5

can easily be extracted from K.
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Algorithmic Framework for FROSch Preconditio

Overlapping domain decomposition
The overlapping subdomains Nonoverlapping DD Overlap 6 = 1h Overlap 0 = 2h

are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RIKR] 5

can easily be extracted from K.
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Algorithmic Framework for FROSch Precondi

Overlapping domain decomposition
The overlapping subdomains Nonoverlapping DD Overlap 6 = 1h Overlap 0 = 2h

are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RKR]

can easily be extracted from K.

Coarse space

1. Interface components
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Algorithmic Framework for FROSch Preconditio

Overlapping domain decomposition
The overlapping subdomains Nonoverlapping DD Overlap 6 = 1h Overlap 0 = 2h

are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RKR]

can easily be extracted from K.

Coarse space

1. Interface components 2. Interface basis (partition of unity x null space)

ey

For scalar elliptic
problems, the null space
consists only of
constant functions.

A. Heinlein (TU Delft) NHR PerfLab Seminar
-



Algorithmic Framework for FROSch Preconditio

Overlapping domain decomposition
The overlapping subdomains Nonoverlapping DD Overlap 6 = 1h Overlap 0 = 2h

are constructed by recursively
adding layers of elements via
the sparsity pattern of K.

The corresponding matrices
K: = RKR]

can easily be extracted from K.

Coarse space

1. Interface components 2. Interface basis (partition of unity x null space) 3. Extension

ey

For scalar elliptic
problems, the null space
consists only of
constant functions.
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Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja—Smith—Widlund) RGDSW (Reduced dimension GDSW)

]
v /‘
NSRS 7 \7\ NN ”;f‘e\\
= Dohrmann, Klawonn, Widlund (2008) = Dohrmann, Widlund (2017)
= Dohrmann, Widlund (2009, 2010, 2012) = H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method) Q1 Lagrangian / piecewise bilinear

= Hou (1997), Efendiev and Hou (2009) Piecewise linear interface partition of unity functions

= Buck, lliev, and Andri (2013) and a structured domain decomposition.
= H., Klawonn, Knepper, Rheinbach (2018)
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Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja—Smith—Widlund) RGDSW (Reduced dimension GDSW)

N
//X
INNANN 7 NN
= Dohrmann, Klawonn, Widlund (2008) = Dohrmann, Widlund (2017)
= Dohrmann, Widlund (2009, 2010, 2012) = H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method) Q1 Lagrangian / piecewise bilinear

= Hou (1997), Efendiev and Hou (2009) Piecewise linear interface partition of unity functions

* Buck, lliev, and Andra (2013) and a structured domain decomposition.
= H., Klawonn, Knepper, Rheinbach (2018)
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Weak Scalability up to 64k MPI Ranks / 1.7b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)
Heinlein, Klawonn, Rheinbach, Widlund (2019).

© GDSW lterations
© RGDSW Option 1 Iterations
© RGDSW Option 2.2 lterations

80
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60
4 50
ﬁ 40 Q= o ° O—0—0—0—o
H O 000000
© 30

20
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0

100 1000 10000 100000
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© GDSWTotal © RGDSW Option 1 Total  © RGDSW Option 2.2 Total
# GDSW Setup + RGDSW Option 1 Setup 4 RGDSW Option 2.2 Setup
© GDSW Solver © RGDSW Option 1 Solver & RGDSW Option 2.2 Solver
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100 1000 10000 100000
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Weak Scalability up to 64k MPI Ranks / 1.7b Unknowns (3D Poisson; Juqueen)

GDSW vs RGDSW (reduced dimension)

Heinlein, Klawonn, Rheinbach, Widlund (2019).

A. Heinlein

GMRES Its.
5
3

8 8 8 8 8

3

© GDSW lterations
© RGDSW Option 1 Iterations
© RGDSW Option 2.2 lterations

1000 10000 100000
# Cores

© GDSWTotal © RGDSW Option 1 Total  © RGDSW Option 2.2 Total
# GDSW Setup + RGDSW Option 1 Setup 4 RGDSW Option 2.2 Setup
© GDSW Solver © RGDSW Option 1 Solver & RGDSW Option 2.2 Solver

140

105

100 1000 10000 100000
# Cores

Two-level vs three-level GDSW

Heinlein, Klawonn, Rheinbach, Rover (2019, 2020).

' Two-Level GDSW Iterations
Three-Level GDSW Iterations
80
70
60 —
, 50
3
g
O.\Q—O——O
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0
100 1000 10000 100000
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© Two-Level GDSW Total 2 Two-Level GDSW Setup
© Two-Level GDSW Solver Three-Level GDSW Total
Three-Level GDSW Setup Three-Level GDSW Solver
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Inexact Extension Solvers — Ifpack2

N
Ml A = 0A 0T A+ Z,fl R'A, 'RA

3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/6 = 10; RGDSW coarse space.

subdomain solver

direct ILU(k) symm. GauB-Seidel Chebyshev polyn.

solver k=2 k=3 | 5sweeps 10 sweeps p==©6 p=28
H/h =20 iter 26 33 30 31 28 34 31
N 14; doilrs setup time 1.89s 0.97s 1.01s 0.89s 0.91s 0.73s 0.71s
- r rank apply time 0.39s 0.27s 0.31s 0.31s 0.35s 0.30s 0.30s
PR prec. time 228s | 1.24s  1.32s 1.20s 1.26s | 1.03s 1.01s
H/h = 40 iter 30 55 46 52 41 59 51
- 10;,( d;)fs setup time 12.09s 6.14s 6.26s 5.74s 5.89s 5.55s 5.64s
- ¢ rank apply time 4.21s 1.84s 1.96s 2.66s 3.28s 2.52s 2.47s
PR prec. time || 16.30s | 7.98s  8.22s 8.40s 9.18s | 8.16s  8.1ls
H/h = 60 iter OOM 81 64 76 56 88 74
N 350_k d;)fs setup time - | 47.29s 47.87s 45.14s 45.08s | 45.44s 45.49s
- ' rank apply time - | 10.79s 9.98s 13.00s 16.16s | 11.95s 12.09s
e prec. time - | 58.08s 57.85s 58.15s 61.25s | 57.39s 57.59s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

A. Heinlein
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Inexact Extension Solvers — Ifpack2

N
Ml A = 0A 0T A+ Z,fl R'A, 'RA

3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/6 = 10; RGDSW coarse space.

subdomain solver

direct ILU(k) symm. GauB-Seidel Chebyshev polyn.

solver =32, k=3 | 5sweeps 10 sweeps p==6 p=28
H/h = 20 iter 26 33 30 31 28 34 31
0 ot setup time 1.89s | 097s  101s 0.89s 091s | 0.73s  0.71s
- r rank apply time 0.39s 0.27s 0.31s 0.31s 0.35s 0.30s 0.30s
e prec. time 228s | 124s  1.32s 1.20s 126s | 1.03s 1.01s
H/h = 40 iter 30 55 46 52 41 59 51
- 105_k d;)fs setup time 12.09s 6.14s 6.26s 5.74s 5.89s 5.55s 5.64s
- r rank apply time 4.21s 1.84s 1.96s 2.66s 3.28s 2.52s 2.47s
P prec. time 16.30s 7.98s 8.22s 8.40s 9.18s 8.16s 8.11s
H/h = 60 iter OOM 81 64 76 56 88 74
- 350_k d(’)fs setup time - | 47.29s 47.87s 45.14s 45.08s | 45.44s 45.49s
Ner rank apply time - | 10.79s 9.98s 13.00s 16.16s | 11.95s 12.09s
. prec. time - | 58.08s 57.85s 58.15s 61.25s | 57.39s 57.59s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

(TU Delft)
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Three-Dimensional Linear Elasticity — ILU Subdomain Solver

[ILU level 0 1 2 3]
setup
2 No 1.5 1.9 3.0 4.8
O | ND 1.6 2.6 4.4 7.4
KK(No) 1.4 15 1.8 24
> | KK(ND) 1.7 2.0 2.9 5.2
Q© | Fast(No) 1.5 1.6 2.1 3.2
Fast(ND) 15 1.7 2.5 4.5
speedup 1.0x 1.2x 1.4x 1.5x
solve
a No 2.55 (158) 3.60 (112) 5.28 (99) 6.85 (88)
O|ND 4.17 (227) 5.36 (134) 6.61 (105) 7.68 (88)
KK(No) [ 3.81 (158) 4.12 (112) 4.77 (99) 5.65 (88)
S| KK(ND) | 2.89 (227) 4.27 (134) 557 (105) 636 (88)
O | Fast(No) | 1.14 (173) 1.11 (141) 1.26 (134) 1.43 (126)
Fast(ND) | 1.49 (227) 1.15 (137) 1.10 (109) 1.22 (100)
speedup 2.2 3.2x 4.3x 4.8x

Computations on Summit (OLCF):
42 IBM Power9 CPU cores and 6 NVIDIA
V100 GPUs per node.

A. Heinlein

(

TU Delft)

Yamazaki, Heinlein,
Rajamanickam (2023)

ILU variants
= KOKKOSKERNELS ILU (KK)

= Iterative FASTILU (Fast); cf. Chow,
Patel (2015) and Boman, Patel,
Chow, Rajamanickam (2016)

No reordering (No) and nested dissection
(ND)

12 i
—— ILU (CPU)
—=- LU (GPU)
['| —=— FastILU (GPU)

total time

ILU level

NHR PerfLab Seminar



Results for Blood Flow Simulations

# avg. iterations

3D unsteady flow simulation within ) R
the geometry of a realistic artery Z 60
(from Balzani et al. (2012)) and £ o
kinematic viscosity v = 0.03 cm? /s k ;g g
Parabolic inflow profile at inlet e W s 1m1e 10Hf,
Time discretization: BDF-2; space | — 0002 05 08 15
discretization: P2-P1 elements e
150 10° ¢
] A i —-A- PCD:  RGDSW RGDSW
| A L —- Monolithic: GDSW* -RGDSW
~A. SIMPLEC: RGDSW-RGDSW » i --- Optimal Scaling
100 - -A- PCD:  RGDSW RGDSW =
F - Monolithic: GDSW* - RGDSW Q
k= 104 - -.
F - F A
= - R ~6079s
50 - A - [ BN
L e AT S I .. -3455s
R = | i
0 ; : . 3 I ~T Ll
345 665 970 1270 = 102 103
Reart,max # cores

Cf. Heinlein, Klawonn, Knepper, SaBmannshausen (arXiv 2025)

A. Heinlein (TU Delft)
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FROSch Preconditioners for Land Ice Simulations

| https://github.com/SNLComputation/Albany | lul <
1.0e+04

F 1000
~ 100
~ 10
modeled by a first-order-accurate Stokes approximation model, é(‘]

The velocity of the ice sheet in Antarctica and Greenland is

. ds . ds 1.0e-02
=V (&) +pgm- =0, =V (2ué&) + P8y, = 0,

with a nonlinear viscosity model (Glen’s law); cf., e.g., Blatter (1995) and Pattyn (2003).

Antarctica (velocity) Greenland (multiphysics vel. & temperature)

4 km resolution, 20 layers, 35 m dofs 1-10 km resolution, 20 layers, 69 m dofs
MPI ranks avg. its avg. setup avg. solve avg. its  avg. setup avg. solve
512 41.9 (11) 25.10s 12.29s | 41.3 (36) 18.78s 4.99s
1024 43.3 (11) 9.18s 5.85s | 53.0 (29 8.68s 4.22s
2048 41.4 (11) 4.15s 2.63s | 62.2 (86) 4.47s 4.23s
4096 41.2 (11) 1.66s 1.49s | 68.9 (40) 2.52s 2.86s
8192 40.2 (11) 1.26s 1.06s - - -
Computations performed on Cori (NERSC). Heinlein, Perego, Rajamanickam (2022)
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https://github.com/SNLComputation/Albany

Domain Decomposition for
Physics-Informed Neural Networks




Physics-Informed Neural Networks (PINNs) — Idea

In Lagaris et al. (1998), the authors solve the Boundary conditions . ..
boundary value problem

—AV,(x,0) =1 on [0,1],
\Ut(O, 0) = \Ut(l, 0) = 0,

via a collocation approach:

... can be enforced explicitly via the ansatz:
wf(xa 0) = A(X) + F(X7 NN(Xa 0))

= A satisfies the boundary conditions
= F does not contribute to the

min Y (AWi(x,6) +1)°

boundary conditions

0.2 T T T T T T 100 0.2 T T T T T T
— W(xi,0) — (AU (;,0) + 1) — V¢(x;,0) — (AW (x;,0) +1)2
1
0.1 50 0.1+
0 0 0r 0
—0.1 —50 —0.1
-1
—0.2 ‘ - —100 —0.2 . . . .

|
0 0.2

|
0.4

|
0.6

|
0.8

(AV(x;,0) +1)> >> 0

A. Heinlein (TU Delft)

|
0 0.2

|
0.4

0.6

0.8

(AW(x;,0) +1)> =0
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Physics-Informed Neural Networks (PINNs)
In the physics-informed neural network (PINN) approach ==
introduced by Raissi et al. (2019), a neural network is _
employed to discretize a partial differential equation
PRI R

Nl =/, inQ.
PINNs use a hybrid loss function:

L(0) = wdatasLdata(0) + wppeLrpe(O),

where wyata and wppe are weights and

Lawa(0) = 1 — 3" (u(5,6) — w)?
= u\ X — Uuj -
data Naata 4—i=1 " Yo Hybrid loss
1 Nppe D Small data Some data Big data
Lrpe(8) = > (M[u](xi, 0) — f(xi))"-
Nppe £—i=1
See also Dissanayake and Phan-Thien (1994); Lagaris et al. (1998).
Advantages Drawbacks
L. Lots of physics Some physics No physics
= “Meshfree” = Training cost and
= Small data robustness = Known solution values can be
= Generalization properties = Convergence not included in Lyata
= High-dimensional problems well-understood . .
= Inverse and parameterized = Difficulties with scalability = Initial and boundary conditions
problems and multi-scale problems are also included in Lyata

A. Heinlein (TU Delft) NHR PerfLab Seminar




Error Estimate & Spectral Bias

Estimate of the generalization error (Mishra and Molinaro (2022))
The generalization error (or total error) satisfies

&6 < Cppeét + CrpE cMe NT/P

quad
= 8¢ =66 (X,0) = |lu—u"|, general. error (V Sobolev space, X training data set)
= &7 training error (/” loss of the residual of the PDE)
= N number of the training points and o convergence rate of the quadrature
= Cppe and Cyuag constants depending on the PDE, quadrature, and neural network

Rule of thumb: “As long as the PINN is trained well, it also generalizes well”

4 4 4 4

2 2 2 2

0 0 0 0
-2 -2 -2 -2
-4 -4 -4 -4
-6 -6 -6 -6

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
100 iterations 1000 iterations 10000 iterations 80000 iterations

Rahaman et al., On the spectral bias of neural networks, ICML (2019)

Related works: Cao et al. (2021), Wang, et al. (2022), Hong et al. (arXiv 2022), Xu et al. (2024), ...
A. Heinlein (TU Delft) NHR PerfLab Seminar




Scaling of PINNs for a Simple ODE Problem

« = cos(wx),

w(0) = 0,

for different values of w
using PINNs with
varying network
capacities.

Scaling issues

= Large computational
domains

= Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)

A. Heinlein (TU Delft)

(a) PINN (w =1, 2 layers, 16 hidden units)

(b) PINN (w =15, 2 layers, 16 hidden units)

10 0.075
—— Exact solution —— Exact solution
—— PINN 6.050 —— PINN
05 0.025
5 o0 L 0.000
-0.025
-05 ~0.050
-10 -0.075
-6 -4 -2 [ 2 4 6 -6 -4 -2 [ 2 4 6
x x
(c) PINN (w =15, 4 layers, 64 hidden units) (d) PINN (w =15, 5 layers, 128 hidden units)
0.075 0.075 B
—— Exact solution —— Exact solution
0.050 —— PINN 0.050
0.025 0.025
0.000 5 0.000
-0.025 -0.025
-0.050 -0.050
-0.075 -0.075
-6 -4 -2 [ 2 a 6 -6 -4 -2 [ 2 4 6
x x
(e) Test loss
10°
107t
@ —— PINN (w =1, 2 layers, 16 hidden units)
-2
210 —— PINN (w =15, 2 layers, 16 hidden units)
ba} —— PINN (w =15, 4 layers, 64 hidden units)
10-3 —— PINN (w =15, 5 layers, 128 hidden units)
1074
[ 10000 20000 30000 40000 50000

Training step

(a) 321 free parameters

(d) 66433 free parameters




Scaling of PINNs for a Simple ODE Problem

Solve
' = cos(wx),
w(0) = 0,

for different values of w
using PINNs with
varying network
capacities.

Scaling issues

= Large computational
domains

= Small frequencies

Cf. Moseley, Markham, and
Nissen-Meyer (2023)
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(a) PINN (w =1, 2 layers, 16 hidden units)

(b) PINN (w =15, 2 layers, 16 hidden units)

1.0 0.075 -
—— Exact solution —— Exact solution
—— PINN 6.050 —— PINN
05 0.025
= 00 5 0.000
-0.025
-0s -0.050
_10 -0.075
-6 -4 -2 o 2 4 6 -6 -4 -2 0 2 4 6
x x
(c) PINN (w =15, 4 layers, 64 hidden units) (d) PINN (w =15, 5 layers, 128 hidden units)
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0.000 s 0.000
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X X
(e) Test loss
10°
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@ . 2 layers, 16 hidden units)
-2
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=
- .5, 4 layers, 64 hidden units)
107 Replace the global network by a coupled 5.5 toyers, 12 hidden units)
104 local networks defined on an overlapping

0 domain decomposition.

(a) 321 free parameters

(d) 66433 free parameters




Domain Decomposition Methods and Machine Learning — Literature

A non-exhaustive literature overview:

= ML for adaptive BDDC, FETI-DP, AGDSW: H., Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021,
2022); Klawonn, Lanser, Weber (2024, 2025)

= cPINNs, XPINNs: Jagtap, Kharazmi, Karniadakis (2020); Jagtap, Karniadakis (2020)

= Classical Schwarz iteration for PINNs or DeepRitz:: Li, Tang, Wu, and Liao (2019); Li, Xiang, Xu (2020);
Mercier, Gratton, Boudier (arXiv 2021); Dolean, H., Mercier, Gratton (acc. 2025); Li, Wang, Cui, Xiang, Xu (2023);
Sun, Xu, Yi (arXiv 2023, 2024); Kim, Yang (2023, 2024, 2024)

= FBPINNs, FBKANSs: Moseley, Markham, Nissen-Meyer (2023); Dolean, H., Mishra, Moseley (2024, 2024); H.,
Howard, Beecroft, Stinis (2025); Howard, Jacob, Murphy, H., Stinis (arXiv 2024)

= DD for randomized NNs: Dong, Li (2021); Dang, Wang (2024); Sun, Dong, Wang (2024); Sun, Wang (2024);
Chen, Chi, E, Yang (2022); Shang, H., Mishra, Wang (2025); Anderson, Dolean, Moseley, Pestana, (arXiv 2024); van
Beek, Dolean, Moseley (arxiv 2025)

= DD for Neural Operators and Surrogate Models: H., Howard, Beecroft, Stinis (2025); Ramezankhani, Parekh,
Deodhar, Birru (arXiv 2024); Wu, Kovachki, Liu (arXiv 2025); Pelzer, Verburg, H., Schulte (arXiv 2025); Klaes,
Klawonn, Kubicki, Lanser, Nakajima, Shimokawabe, Weber (arXiv 2025); Howard, H., Stinis (in prep.)

= DD for CNNs: Gu, Zhang, Liu, Cai (2022); Lee, Park, Lee (2022); Klawonn, Lanser, Weber (2024); Verburg, H.,
Cyr (2025)

An overview of the state-of-the-art in 2024:

\ A. Klawonn, M. Lanser, J. Weber
Machine learning, domain decomposition methods — a survey
Computational Science and Engineering. 2024
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Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNSs (Moseley, Markham, Nissen-Meyer (2023)) 1D single-frequency problem

FBPINNSs employ the network architecture PINN solution]
J \ —— Exact solution
0.050 1 ~— PINN
u(elv"'agJ) = E il wj uj (01) 0.025
. = 0.000 4
and the loss function o5
L= w1 (x: e ) ~0.050
N§ :,1 §in o, ) = ()
-6 —4 -2 0 2 4 6
1
0.5
0
Moseley, Markham, Nissen-Meyer (2023)‘
T 107" 1071
- —— FBPINN — FBPINN
wauy (04) — PINN —— PINN
1072 WW 1072 ww
510 ; 1073
107 1074
1 0 20000 40000 00 05 1.0 15 20
Training step FLOPS lel3
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Finite Basis Physics-Informed Neural Networks (FBPINNs)

FBPINNSs (Moseley, Markham, Nissen-Meyer (2023)) 1D single-frequency problem

FBPINNs employ the network architecture FEOF::NN global solution| EETEEE
J
u(6y,...,0,) = E  wjuj (6)) 0025
J=1 0.000
and the loss function o025

‘- N ZI 1 ZX; WJ”J](XI: )—f(x,)) ~0.050

1 =

0.000
05 \‘ “ 1‘
~0.025 \‘ \‘ \‘
\ \ \
~0.050 [ I |
0 | | |
Moseley, Markham, Nissen-Meyer (2023)[7 6
= =
T 10 —— FBPINN 107 ~—— FBPINN
—— PINN —— PINN
1077 10~
01072 = 10-3
10¢ 104
1 0 20000 40000 00 05 1.0 15 20
Training step FLOPS 1e13
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Multi-Level FBPINNSs

Multiscale problems ...

Muilti-level FBPINNs (ML-FBPINNs)

ML-FBPINNSs (Dolean, Heinlein, Mishra,
Moseley (2024)) are based on a hierarchy
of domain decompositions:

This yields the network architecture:
&) Wy 5t 50,0 (g0
u(6; ,...,OJ(L)) = lel Zi:l w; u; (Oj )

...appear in most areas of modern science and engineering:

7N /._?1’-\’ Oty

T‘; '
]
e S A
kA, ST

Dual-phase steel;
fig. courtesy of
J. Schroder.
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Groundwater flow; Arterial walls;
cf. Christie & Blunt cf. O’Connell et al.
(2001) (SPE10). (2008).




Multi-Level FBPINNSs

Muilti-level FBPINNs (ML-FBPINNs)

ML-FBPINNSs (Dolean, Heinlein, Mishra,
Moseley (2024)) are based on a hierarchy
of domain decompositions:

This yields the network architecture:
&) Wy 5t 50,0 (g0
u(6; ,...,BJ(L)) = lel Zi:l w; u; (Oj )

A. Heinlein (TU Delft)

Multiscale problems ...

...appear in most areas of modern science and engineering:

Groundwater flow; Arterial walls;
cf. Christie & Blunt cf. O’Connell et al.
(2001) (SPE10). (2008).

Dual-phase steel;
fig. courtesy of
J. Schroder.

Multi-frequency problem

Consider the multi-frequency Laplace problem
n

—Au=2 Z (wim)? sin (wimx) sin (wiTy) ,

i=1

with homogeneous Dirichlet boundary conditions and

wj = 2.

For increasing values of n, we obtain the solutions:

NHR PerfLab Seminar




Multi-Level FBPINNSs for a Multi-Frequency Problem — Strong Scaling

FBPINN FBPINN ©  FBPINN ®  FBPINN ®  FBPINN ®  FBPINN
[1,2] [1,2,4] [1,2,4,8] 1,2, 4,8, 16] [1,2,4,8,16,32] I[1,2, 4,8, 16, 32, 64]
(320, 320) (320, 320) (320, 320) (320, 320

(320, 320) (320, 320)

A FBPINN
[1, 8, 64]
(320, 320)

¥V FBPINN

L PINN SA-PINN

@ FourierPINN
5-256

Exact solution

5-256 5-256 [64]
(320, 320) (320, 320) (320, 320) (320, 320)

100 4 10t 4
o 10°4 1004 + *
K 8
H £ v
£ £
2 2

1072 4 10724

1073 4 10-3 4

o 5000 10000 15000 20000 25000 30000 102 0?
Training step Total time elapsed (s)
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Multi-Frequency Problem — What the FBPINN Learns

FBPINN
[1,2 4,8, 16]

(80, 80)
1.00
0.75
0.50
0.25

0.00

1.00
0.75
0.50
0.25

0.00

0.0 0.5 1.0

Cf. Dolean, Heinlein, Mishra, Moseley (2024).
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Randomized Neural Netwoks — Results for the Multi-Frequency Problem (n=2)

Methodology

= Randomized

neural
networks yield
a quadratic
problem
Normal
equations
solved with
Krylov solvers
One-level
Schwarz
preconditioning
Remove
near-linear
dependencies
via singular
value
decomposition

. HH

X MHTH

Eigenvalues

X MEHTH
o mekHH
- M

Imaginary axis
s
3

6 8
Real axis

10

12

14 16

M-1 =1

M7t = Mys

M—l

—=i
= Mgas

M—l

iter

€2

iter €2

iter

€2

iter

CG

CGS
BICG
GMRES

>2000
>2000
>2000
>2000

1.95.102
2.63-1072
1.03-1072
8.68:10—2

8 5.03.103
4 5.04.1073
8 5.08:103
13 5.07-1073

24
32
31

5.03-10—3
5.05.10—3
5.06-10—3

6 5.04.10°3
11 5.09-1073
11 5.08-1073

= Improved 4x4DD; DoF=256; N=1600; 8°c((—1,1);stop.: ||[M~1rk|| ;2 /[|M~1r°|| 2<10~>
Cf. Shang, Heinlein, Mishra, Wang (2025)
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Results for the Multi-Frequency Problem

107t 10t
8 8 ¢
=31 +
s} T o) +
% 1072 . g 1072 _¢
£ £
5 5
S s
1072 103
o 5000 10000 15000 20000 25000 30000 102
Training step Total time elapsed (s)
Multi-level FBPINNS; cf. Dolean, Heinlein, Mishra, Moseley (2024)
100 100
v QR e 6=2
10° o GMRES + 6=3
1071 o o
. . E 10 . v ﬁ 10 .
,_Su 1073 E 10-2 ov E 10-2 .
3 19-4 & &
2 10 2 2 .
& E E .
~ s 5
107 = 107 = 107 *
10°° *
1077
1074 104
0 20 40 60 80 100 100 10! 102 103 100 101 102
Iteration step Total time elapsed (s) Total time elapsed (s)
DD-PIRaNNs; cf. Shang, Heinlein, Mishra, Wang (2025)
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Advances of FROSch Preconditioners for Multiphysics and Multiscale Simulations

= Partition of unity-based coarse spaces yield robust and scalable two-/three-level
Schwarz preconditioners, with scalability up to more tha 64k ranks / 1.7b DoF.

= Inexact subdomain solvers (e.g., ILU) can significantly speed up computing times.
= Extension-based, monolithic coarse spaces stay robust for saddle-point &
multiphysics (CFD, land ice) versus block/SIMPLE variants.

Domain Decomposition-Based Neural Network Architectures

= DD-based neural network architectures scale PINNs to large domains /
high-frequency problems with weakly coupled, small subnetworks; multilevel
hierarchies are needed for multiscale problems.

= Schwarz preconditioners & SVD (leveraging DD-induced sparsity) for least squares
problems resulting from RaNNs improve conditioning and yield fast convergence.

Topical Activity E [Ei_E
- "

Group

Thank you for your attention!
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https://ems-tag-sciml.github.io/
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