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Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push
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Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push

But do you know about?
* staging area
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Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push

But do you know about?
* staging area
* history
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Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push

But do you know about?
* staging area
* history
* reflog
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Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push

But do you know about?

* staging area

* history

« reflog Don’t worry, this won’t be a “just theory” lesson :-)|
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Introduction

Have you seen those “errors” before?
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Introduction

Have you seen those “errors” before?

git status
78badff

nothing to commit, working tree clean
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Introduction

Have you seen those “errors” before?

MLCNas, nrz104h@testfrontl git pull
Updating e45c56c0f8..66ee941fea
error: Your local changes to the following files would be overwritten by merge:

nothin

README . md
Please commit your changes or stash them before you merge.
Aborting

—
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Introduction

Have you seen those “errors” before?

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee941fea

thi : : :
r—":‘hlﬂer'rw::r-: Your local changes to the following files would be overwritten by merge:

git merge feature-a

Auto-merging main.c
CONFLICT (content): Merge conflict in main.c
Automatic merge failed; fix conflicts and then commit the result.
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Introduction

Have you seen those “errors” before?
1LCN98 nrz104h@test frontl git pull

Updating e45c56c0f8..66ee941fea

error: Your local changes to the following files would be overwritten by merge:
nichael@michael -HP ait merae feature-a

Auto-memichael@michael -HP glit push origin master

CONFLI(To github.com:1ipatix/deleteme.git

nothin

Ao master -> master (non-fast-forward)
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Introduction

Have you seen those “errors” before?

michaef - Gah@inichaelanichael-Hp
Updating "Smote:

remote:
error: YO remote:

git pull
18, done.
100% (18/18), done.

100% (11/11), done. herge.
Total 18 (delta 2), reused 16 (delta 0), pack-reused 0 (from 0)
Auto-nu*Tif ae Unpacking objects: 100% (18/18), 1.41 KiB | 481.00 KiB/s, done.
CONFLI(To g1t

wFrom github.com:ipatix/deleteme
* [new branch]
Automart

Enumerating objects:

nothin Counting objects:

Compressing objects:
nichael@michz

4¢ remote:

master -> origin/master
here is no tracking information for the current branchp

Please specify which branch you want to rebase against.
See git-pull(l) for details.

git pull <remote> <branch>

If you wish to set tracking information for this branch you can do so with:

git branch --set-upstream-to=origin/<branch> master

Git advanced usage
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Introduction

“solid fundamentals — advanced user”

Git

advanced usage 2026-02-03

71738
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Git history

First things first:
* What it is not: The history of the tool Git itself
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Git history

First things first:
* What it is not: The history of the tool Git itself
* What it is: The history of commits of a Git repository
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Git history

First things first:
* What it is not: The history of the tool Git itself
* What it is: The history of commits of a Git repository

Why is history relevant?
* We use it to look back in time.
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Git history

First things first:
* What it is not: The history of the tool Git itself
* What it is: The history of commits of a Git repository

Why is history relevant?
* We use it to look back in time.
— It should be easy to look back in time
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Git history

First things first:
* What it is not: The history of the tool Git itself
* What it is: The history of commits of a Git repository

Why is history relevant?

* We use it to look back in time.
— It should be easy to look back in time

* Because it is non-linear (directed acyclic graph)
— complications during merge/rebase
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Git history (with merge)

02d0b j—> 182d0 j—> d7dd8 i

-
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Git history (with merge)

02d0b '—> 182d0 '—> d7dd8 '

3
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Git history (with merge)

\
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Git history (with merge)

git merge feature-a
(on main)

02d0b }*

TR s O _
i \ sl

182d0 |
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Git history (with merge)

git merge feature-a
(on main)

02d0b }*

///7//'//7/7/"/}//'//'//7///4% main

182d0 |
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Git history (with merge)

Reproduce step 1:
* mkdir myrepo && cd myrepo # Create directory
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Git history (with merge)

Reproduce step 1:
* mkdir myrepo && cd myrepo # Create directory
e git init # Init Git repository
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Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory

e git init # Init Git repository

* echo “hello” > file.txt # Create file.txt with some content
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Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory
e git init # Init Git repository
* echo “hello” > file.txt # Create file.txt with some content

e git add file.txt && git commit # Create commit #1 (02dOb)
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Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory
e git init # Init Git repository
* echo “hello” > file.txt # Create file.txt with some content

e git add file.txt && git commit # Create commit #1 (02dOb)
e echo “there” >> file.txt # Add some content to file.txt
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Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory

e git init # Init Git repository

* echo “hello” > file.txt # Create file.txt with some content
e git add file.txt && git commit # Create commit #1 (02dOb)

e echo “there” >> file.txt # Add some content to file.txt

e git add file.txt && git commit # Create commit #2 (182d0)
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Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory

e git init # Init Git repository

* echo “hello” > file.txt # Create file.txt with some content
e git add file.txt && git commit # Create commit #1 (02dOb)

e echo “there” >> file.txt # Add some content to file.txt

e git add file.txt && git commit # Create commit #2 (182d0)
e echo “NHR” >> file.txt # Add more content to file.txt
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Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo #
e git init #
* echo “hello” > file.txt #
e git add file.txt && git commit #
 echo “there” >> file.txt #
e git add file.txt && git commit #
« echo “NHR” >> file.txt #
* @it add file.txt && git commit #

Create directory

Init Git repository

Create file.txt with some content
Create commit #1 (02dOb)

Add some content to file.txt
Create commit #2 (182d0)

Add more content to file.txt
Create commit #3 (d7dd8)
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Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo #
e git init #
* echo “hello” > file.txt 7
e git add file.txt && git commit #
e echo “there” >> file.txt 7
e git add file.txt && git commit #
« echo “NHR” >> file.txt #
e git add file.txt && git commit #

Create directory

Init Git repository

Create file.txt with some content
Create commit #1 (02d0Ob)

Add some content to file.txt
Create commit #2 (182d0)

Add more content to file.txt
Create commit #3 (d7dd8)

Commit hashes will differ for you!

Git advanced usage
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Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
# Add a remote called origin
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Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
# Add a remote called origin
* git push --set-upstream-to origin main
# Push the current branch remote origin and mark it as upstream
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Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
# Add a remote called origin
* git push --set-upstream-to origin main
# Push the current branch remote origin and mark it as upstream

Reproduce step 3:

e (@it switch 182d0 # Switch to a previous commit
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Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
# Add a remote called origin
* git push --set-upstream-to origin main
# Push the current branch remote origin and mark it as upstream

Reproduce step 3:
e (@it switch 182d0 # Switch to a previous commit

e @it switch --create feature-a # (Create branch feature-a and
# switch to it

Git advanced usage 2026-02-03 12/38



Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
# Add a remote called origin
* git push --set-upstream-to origin main
# Push the current branch remote origin and mark it as upstream

Reproduce step 3:
e (@it switch 182d0 # Switch to a previous commit

e @it switch --create feature-a # (Create branch feature-a and
# switch to it

e echo “FAU” > file2.txt # Create file2.txt
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Git history (with merge)

Reproduce step 2:

git remote add origin “git@github.com:myuser/myrepo.git”

# Add a remote called origin

git push --set-upstream-to origin main

# Push the current branch remote origin and mark it as upstream

Reproduce step 3:
git switch 182d0 # Switch to a previous commit

git switch --create feature-a # Create branch feature-a and
# switch to it

echo “FAU” > file2.txt # Create file2.txt
git add file2.txt && git commit # Create commit #4 (17017)
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Git history (with merge)

Reproduce step 4.
* git switch main # Switch back to main branch
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Git history (with merge)

Reproduce step 4.
* git switch main # Switch back to main branch
e (git merge feature-a # Merge changes from feature-a into main
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Git history (with merge)

Reproduce step 4.
* git switch main # Switch back to main branch
e (git merge feature-a # Merge changes from feature-a into main

Reproduce step 5:
« git push # Push new state of main branch to origin
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Git history (with rebase)

02d0b '—> 182d0 '—> d7dd8 '

main '
HEAD '
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Git history (with rebase)

02d0b i* 182d0 i\* d7dd8 '

HEAD '
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Git history (with rebase)

d7dd8

02d0b | > 182d0 | —i
17017 i

 origin/HEAD | main

feature-a j HEAD i
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Git history (with rebase)

git commit
02d0b }* 182d0 }*» ;

v . —_— |
i P . il

feature-a i HEAD j

A¢é%%%%2%%%éé
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Git history (with rebase)

git merge --ff-only feature-a

(on main)

02d0b i* 182d0 i*»
/’

///7/)/7/'//"/}//'//'//7///‘% main

feature-a ' HEAD '
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Git history (with rebase)

git merge --ff-only feature-a

(on main)

02d0b i* 182d0 i*»

feature-a ' HEAD '
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Git history (with rebase)

Reproduce step 4.

* git rebase main # Rewrite history so that feature-a’s commits are
ontop of main
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Git history (with rebase)

Reproduce step 4.

* git rebase main # Rewrite history so that feature-a’s commits are
ontop of main

Reproduce step 5:

« @it switch main # Switch to main
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Git history (with rebase)

Reproduce step 4.

* git rebase main # Rewrite history so that feature-a’s commits are
ontop of main

Reproduce step 5:
« @it switch main # Switch to main

« @it merge --ff-only feature-a # Merge feature-a into main, but do
# not create an explicit merge commit
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Git history (with rebase)

Reproduce step 4.

* git rebase main # Rewrite history so that feature-a’s commits are
ontop of main

Reproduce step 5:
« @it switch main # Switch to main

« @it merge --ff-only feature-a # Merge feature-a into main, but do
# not create an explicit merge commit

Reproduce step 6:

* same as “merge” example

Git advanced usage 2026-02-03 15/38



Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
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Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.
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Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.

* Avoids “opqaue” merge commits (“does this merge commit produce
functional code?”)
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Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.

* Avoids “opgaue” merge commits (“does this merge commit produce
functional code?”)

* — clean and linear “easy to read” history
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Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.

* Avoids “opgaue” merge commits (“does this merge commit produce
functional code?”)

* — clean and linear “easy to read” history

Why not rebase?
* One conflict may have to be resolved more than once (— more work).
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Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.

* Avoids “opgaue” merge commits (“does this merge commit produce
functional code?”)

* — clean and linear “easy to read” history

Why not rebase?
* One conflict may have to be resolved more than once (— more work).

* Other people are working on your branch (— do not delete someone’s
base commit).
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Git history (merge vs. rebase)

Example: history comparison cc-backend and likwid
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Git history (pull)

So what does git pull actually do?
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Git history (pull)

So what does git pull actually do?
* git fetch

* git merge origin/mybranch (remote and branch determined via
“tracking”)
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Git history (pull)

So what does git pull actually do?
* git fetch

* git merge origin/mybranch (remote and branch determined via
“tracking”)

It can also rebase (with git config --global pull.rebase true):
* git fetch
* git rebase origin/mybranch
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Git history (pull)

So what does git pull actually do?
* git fetch

* git merge origin/mybranch (remote and branch determined via
“tracking”)

It can also rebase (with git config --global pull.rebase true):
* git fetch
* git rebase origin/mybranch

| highly suggest to use git pull with rebase enabled
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Useful commands - tig

Merge pull reque|commit 69202fa7297f057k d19e307692dd

= igi 1
H Use transform overload for two ra
n eraC Ive y Merge pull request #209 from be

Avoid checking for TBB backend

. Merge pull request #211 from
browse h IStO y Removed DoConcurrent flags.
Make DoConcurrentStream.F90 c
Merge pull request #213 fro fixing typo
removing trailing whitespac
removing trailing whitespac | 2
renaming array_init annotatf| 1 file changed, 1 insertion(+), 1 deletion(-)
label annotations by functi
2025-602-19 15:37 -0800 august-knox fixing typo

Use __all to See ?f:i:g i;;ga annotations

relabeling annotations in.
relabeling annotations
a ranC eS moving annotations double dt_min, double dt max, double dt_avg) {
separating cases to reuse r ricout
adding instantiation std::left << std::setw(12) << function
updating typing
changing return var names
moving return statements std::left << std::setw(12) std::setprecision(5) << dt_min
moving cali flush std::left << std::setw(12) std::setprecision(5) << dt_max
testing refactor std::left << std::setw(12) std::setprecision(5) << dt_avg
Include missing run rules
Merge pull request #188 fro
support_large_arrays
Merge pull request #186 from go
Whitespace
Missing std:: and whitespace
Fix typo gigibytes to gibibytes
Fix white space
Add comment about Dot answer
Implement support for choosing
Update src/main.cpp
Update src/main.cpp
Update src/Unit.h
Update src/Unit.h
Update src/Unit.h
Update src/cuda/CUDAStream.cu
Fix OpenMP model.cmake flags
Cleanup
Update
[main] 69202fa7297f057b60abd19e307692ddafaa8249 - commit 13 of 1121 [diff] 69202fa7297fe57k 119e307692dd 249 - line 1 of 25
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Useful commands - tig

Merge pull reque|commit 69202fa7297f057k d19e307692dd
H Use transform overload for two ra
n era Ctlve y Merge pull request #209 from be
Avoid checking for TBB backend
. Merge pull request #211 from
browse h IStO y Removed DoConcurrent flags.
Make DoConcurrentStream.F90 c
Merge pull request #213 fro fixing typo
removing trailing whitespac
removing trailing whitespac | 2
renaming array_init annotatf| 1 file changed, 1 insertion(+), 1 deletion(-)
label annotations by functi
2025-602-19 15:37 -0800 august-knox fixing typo

Use __all to See ?f:i:g i:;ga annotations

relabeling annotations
relabeling annotations
a ranC eS moving annotations double dt_min, double dt max, double dt_avg) {
separating cases to reuse r g
adding instantiation << std::setw(12) << function
updating typing
changing return var names
moving return statements << std::setw(12) std::setprecision(5) << dt_min
moving cali flush 88 << std::setw(12) std::setprecision(5) << dt_max
testing refactor << std::setw(12) std::setprecision(5) << dt_avg
Include missing run rules
Merge pull request #188 fro
support_large_arrays
Merge pull request #186 from go
Whitespace
Missing std:: and whitespace

Ll --graph --decorate -

Update STe/imaLit.cpp
Update src/Unit.h
Update src/Unit.h
Update src/Unit.h
Update src/cuda/CUDAStream.cu
Fix OpenMP model.cmake flags
Cleanup
Update
[main] 69202fa7297f057b60abd19e307692ddafaa8249 - commit 13 of 1121 3%| [diff] 69202fa7297f057L 119e307692dd 249 - line 1 of 25
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Git history (interactive rebase)

Rebase can do much more than reordering commits:
* Edit/fix commits

* Delete commits

* Insert new commits

* Merge/split commits
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Git history (interactive rebase)

Rebase can do much more than reordering commits:
* Edit/fix commits

* Delete commits

* Insert new commits

* Merge/split commits

— git rebase -i 0d8fdfl: Edit history down to (excluding) commit 0d7fdf1
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Git history (interactive rebase)

Rebase can do much more than reordering commits:
* Edit/fix commits

* Delete commits

* Insert new commits

* Merge/split commits

— git rebase -i 0d8fdfl: Edit history down to (excluding) commit 0d7fdf1
— git rebase -i HEAD~8: Edit history of previous 8 commits
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Git history (interactive rebase)

Rebase can do much more than reordering commits:
* Edit/fix commits

* Delete commit
* Insert new co
* Merge/split co

c07e433b
f7fa60ab
82fad7ce
b1a81528
37d61907
5f8bbcd8
2e196ee?2
fbf01lbb3

rocmo
rocmo
rocmo
g ‘*I memory

f metric cannot be
~ last/full coun

rocmon
rocmon:
rocmo

rocmo

O I

rocmo

1
2
4
5
6
7
8
9

—_—> i =
git rebase fce4598b. . fbfo1lbb3 fced598b

— git rebase -
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Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
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Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
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Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort
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Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
* Reflogs contain previous commits (even “deleted” commits).
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Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
* Reflogs contain previous commits (even “deleted” commits).
* git reflog
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Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
* Reflogs contain previous commits (even “deleted” commits).

* git reflog

* git reset --hard 84d72f1
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Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
* Reflogs contain previous commits (even “deleted” commits).

* git reflog

* git reset --hard 84d72f1

* Caution: “deleted” commits expire eventually
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Git history (“clean” commits)

Tips:
* “l forgot something”: You can update (without creating a new one) the
last commit via: git commit --amend.
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Git history (“clean” commits)
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Git history (“clean” commits)

Tips:
* “l forgot something”: You can update (without creating a new one) the
last commit via: git commit --amend.
* Abort committing by leaving the commit message blank or clearing it.

* Use verbose git commit. Either via -v or git config --global
commit.verbose true.
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Git history (“clean” commits)

Tips:
* “l forgot something”: You can update (without creating a new one) the
last commit via: git commit --amend.
* Abort committing by leaving the commit message blank or clearing it.

* Use verbose git commit. Either via -v or git config --global
commit.verbose true.

* My opinion: Avoid git commit -m “...". Review your commits via verbose
commit.
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Git history (“clean” commits)

Tips:
F) 3 The paragraph after the first line gives you opportunity to explain your
1 - : : . . .
] I forgot Somethl 4 commit in more detail. Why did you change thlngs

5

last commit via: f;

Abort committingjs

g
Use verbose git [

commit.verbose {Er )

My opinion: Avoigs
commit. =

18 dlff q1t a/myfile hfmvfllp
19 ind 56cf9..5427306 100644
20 --- axmyflle

21 +++ hxmyfllﬁ

22 +1 3 @

23 Hello people

24 +

25 +Nobody there.
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Git history (conclusion)

Don’t be afraid of rewriting/rebasing history!

Git
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Git history (conclusion)

Don’t be afraid of rewriting/rebasing history!

Unless it is already public!
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Git staging area

‘I want to commit. | have to type git add file.txt and git commit™:
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‘I want to commit. | have to type git add file.txt and git commit™:
* Yes, but why? Not all version control systems have it (e.g. SVN)
* Before we commit we can carefully choose what to commit!
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Git staging area

‘I want to commit. | have to type git add file.txt and git commit”:
* Yes, but why? Not all version control systems have it (e.g. SVN)
* Before we commit we can carefully choose what to commit!

chael@michael -HP git status
On branch master
Changes to be committed:

(use "git restore --staged <file=...

to unstage)

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

Untracked files:
(use "git add <file=>..." to include in what will be committed)
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Git staging area

‘I want to commit. | have to type git add file.txt and git commit”:
* Yes, but why? Not all version control systems have it (e.g. SVN)

* Before we commit we can carefully choose what to commit!

michael -HP git status
chael-HP git status

(Changes to be committed:
(use "git restore --staged <file>..." to unstage)

Cha

(Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
Unt
(

Untracked files:
(use "git add <file>..." to include in what will be committed)
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Git staging area

Untracked

Unmodified

Modified

Image inspired by Pro Git chapter 2.2
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Git staging area

Untracked

Unmodified Modified

git add myfile.txt

Image inspired by Pro Git chapter 2.2
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Git staging area

Untracked

Unmodified Modified

git add myfile.txt

>

edit myfile.txt _ __ git add myfile.txt_

Image inspired by Pro Git chapter 2.2
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Git staging area

Untracked

Unmodified Modified

git add myfile.txt

>

edit myfile.txt _ __ git add myfile.txt_

git commit

Image inspired by Pro Git chapter 2.2
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Git staging area

Untracked Unmodified Modified

git add myfile.txt

>

edit myfile.txt git add myfile.txt

>

git commit

-
git commit (after: git rm --cached)

Image inspired by Pro Git chapter 2.2
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Git staging area

Untracked

Unmodified Mod

git add myfile.txt

>

edit myfile.txt

git co

>

qit ca

git add myfile.txt>

< git reset

mmit

-
mmit (after: git rm --ca

ched)

Image inspired by Pro Git chapter 2.2
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Git staging area

Untracked Unmodified Modified
git add myfile.txt >
edit myfile.txt _ __ git add myfile.txt_
- git reset
-< git reset --hard
- git commit
- git commit (after: git rm --cached)

Image inspired by Pro Git chapter 2.2
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Git staging area

Untracked Unmodified Modified Staged
git add myfile.txt >
edit myfile.txt _ __ git add myfile.txt_
- git reset
-< git reset --hard
git reset --soft HEAD~1 >
- git commit
- git commit (after: git rm --cached)

Image inspired by Pro Git chapter 2.2
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Git staging area

“But | only want to commit funcA in main.c, not my debug statements™:
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Git staging area

“But | only want to commit funcA in main.c, not my debug statements™:
— git add -p main.c
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Git staging area

git add -p main.c

“But | only want to commit funcAl I ARy, SRR
index cc388fa..cl2b2bc 100644

— git add -p main.c D iR

+++ b/main.c

#include <stdio.h>

int funcA(int x) {

}

int main(void) {
TR =R

= funch{x);
printf(”a: \d\n”, x);
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Git staging area

michael@michael -HP git add -p main.c

“‘But | only want to commit funCACR SRR FASEYL EF UYL EE TN
— git add -p main.c

index cc388fa..cl2b2bc 100644
--- a/main.c
+++ b/main.c

#include <stdio.h>

#include <stdio.h>

int funcA(int x) {

}

int main(void) {
InE =3
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Git staging area

haal
ac

L@michael -HP git add -p main.c

“‘But | only want to commit funCACR SRR FASEYL EF UYL EE TN
— git add -p main.c

Mmoo
mic

index cc388fa..cl2b2bc 100644
--- a/main.c
+++ b/main.c

#include <stdio.h>

}

int main(void) {
TRE X — -

x = TuncA(x);
printf("a: \d\n", x);
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git stash

unrzl104h@testfrontl git pull
Updating e45c56c0f8..66ee941fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.

Aborting

—

Current branch: main

\
\
\
\

unco\mmitted,
modified files
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git stash

unrzl104h@testfrontl git pull
Updating e45c56c0f8..66ee941fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.

Aborting

—

Current branch: main

\
\
\
\
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git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.

Aborting

—

Current branch: main

orginmain g e

unco\mmitted,
modified files
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git stash

unrzl@4h@testfrontl

git pull
Updating e45c56c0f8..66ee94]1fea

error: Your local changes to the following files would be overwritten by merge:

README . md

Please commit your changes or stash them before you merge.
Aborting

—

Current branch: main

unco\mmitted,
modified files
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git stash
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error: Your local changes to the following files would be overwritten by merge:

README . md
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Aborting

—
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\
\
\
\
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modified files
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git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.

Aborting

—

.
Current branch: main
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git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.
Aborting

—

.
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git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
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—

.
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git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.
Aborting

—

.
Current branch: main
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git stash

unrz104h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.
Aborting

—

.
Current branch: main
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git stash

unrzl@4h@testfrontl

git pull
Updating e45c56c0f8..66ee94]1fea

error: Your local changes to the following files would be overwritten by merge:

README . md

Please commit your changes or stash them before you merge.
Aborting

—

.
Current branch: main
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Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:
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Git remotes
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Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:
* mkdir likwid && cd likwid
* git 1init
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Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:

* mkdir likwid && cd likwid

* git 1init

* git remote add origin
‘https://github.com/RRZE-HPC/likwid’
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Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:

* mkdir likwid && cd likwid

* git 1init

* git remote add origin
‘https://github.com/RRZE-HPC/likwid’

* git switch --track origin/master
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Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:

* mkdir likwid && cd likwid

* git 1init

* git remote add origin
‘https://github.com/RRZE-HPC/likwid’

* git switch --track origin/master

— origin is Git's default name for a remote
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Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:

* mkdir likwid && cd likwid

* git 1init

* git remote add origin
‘https://github.com/RRZE-HPC/likwid’

* git switch --track origin/master

— origin is Git's default name for a remote
— master is the default branch of LIKWID
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Git remotes

Interact with repositories outside yours:
* Way of interacting with GitHub / GitLab
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Git remotes

Interact with repositories outside yours:
* Way of interacting with GitHub / GitLab
* “Fancy platforms” are not mandatory. Remote can also be:

— A folder on a machine reachable via standard SSH
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Git remotes

Interact with repositories outside yours:
* Way of interacting with GitHub / GitLab
* “Fancy platforms” are not mandatory. Remote can also be:

— A folder on a machine reachable via standard SSH

— Addifferent folder on your local machine
* You can have as many remotes as you like (e.g. mirrors, backups, etc.)
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Git remotes

Example: Copy main branch from Github repository to GitLab:
* git clone ‘git@github.com:myuser/myproject.git’
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Git remotes

Example: Copy main branch from Github repository to GitLab:
* git clone ‘git@github.com:myuser/myproject.git’
* cd myproject
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Git remotes

Example: Copy main branch from Github repository to GitLab:

* git clone ‘git@github.com:myuser/myproject.git’

* cd myproject

» git remote add gitlab ‘git@gitlab.com:myuser/myproject.git’
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Git remotes

Example: Copy main branch from Github repository to GitLab:

* git clone ‘git@github.com:myuser/myproject.git’

* cd myproject

» git remote add gitlab ‘git@gitlab.com:myuser/myproject.git’
* git push gitlab main

Git advanced usage 2026-02-03 33/38



Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:
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Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:
* Branch “tracking” assigns a local branch to a remote
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* You can change it any time: git branch -u neworigin
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Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:
* Branch “tracking” assigns a local branch to a remote
* git clone automatically tracks the remote’s default branch
(origin/HEAD)
E.g. main automatically tracks origin/main
* You can change it any time: git branch -u neworigin
* When it doesn'’t exist yet on remote: git push -u neworigin
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Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:

Branch “tracking” assigns a local branch to a remote

git clone automatically tracks the remote’s default branch
(origin/HEAD)

E.g. main automatically tracks origin/main

You can change it any time: git branch -u neworigin
When it doesn’t exist yet on remote: git push -u neworigin
Afterwards you can push/pull “normally”
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Summary

Useful commands to remember:

git
git
git
git
git
git
git
git
git
git

status - Know what’s going on

log -p <filename> - Show history of a file

log -S <searchterm> - Search for diff affecting a term

log -G <searchterm> - Search for diff containing a term
blame <filename> - Show file with history annotation

reflog - Show all commits (including “lost” commits)

gc - Cleanup unreferenced commits (reflog recovery impossible!)
rebase <branch> - Reapply commits onto branch

rebase -1 <commit> - Interactively edit commits up to commit
cherry-pick <commit> - Reapply committo current branch
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Summary

Useful commands to remember:

git
git
git
git
git
git
git

add -p <filename> - Perform git add on parts of filename
commit -v - See what you commit

stash - Move unstaged changes to “stash” and reset files
stash pop - Restore all previous unstaged changes

reset <filename> - Unstage all changes of filename

reset --hard - Discard all uncommited changes

reset --hard <commit> - Make current branch point to

commit. Discards all commits that are not part of new branch history!

git
git

reset <commit> - Show changes of commit
bisect start <badcommit> <goodcommit> - Find a

regression between two commits
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Summary

Other useful resources:
* Manpages are really good!
* man gltrevisions - Explanations how version strings look like
* Pro Git book
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https://git-scm.com/book/en/v2
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