
Git advanced usage

Michael Panzlaff

Erlangen National High Performance Computing Center (NHR@FAU)

NHR@FAU HPC Café
February 3, 2026

mailto:NHR@FAU

Git advanced usage

Michael Panzlaff

Erlangen National High Performance Computing Center (NHR@FAU)

HPC Café, February 3, 2026

2026-02-03

Introduction

Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

5 / 38

https://github.com/RRZE-HPC/likwid

Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

But do you know about?
 staging area

5 / 38

https://github.com/RRZE-HPC/likwid

Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

But do you know about?
 staging area
 history

5 / 38

https://github.com/RRZE-HPC/likwid

Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

But do you know about?
 staging area
 history
 reflog

5 / 38

https://github.com/RRZE-HPC/likwid

Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

But do you know about?
 staging area
 history
 reflog Don’t worry, this won’t be a “just theory” lesson :-)

5 / 38

https://github.com/RRZE-HPC/likwid

Git advanced usage 2026-02-03

Introduction

Have you seen those “errors” before?

6 / 38

Git advanced usage 2026-02-03

Introduction

Have you seen those “errors” before?

6 / 38

Git advanced usage 2026-02-03

Introduction

Have you seen those “errors” before?

6 / 38

Git advanced usage 2026-02-03

Introduction

Have you seen those “errors” before?

6 / 38

Git advanced usage 2026-02-03

Introduction

Have you seen those “errors” before?

6 / 38

Git advanced usage 2026-02-03

Introduction

Have you seen those “errors” before?

6 / 38

Git advanced usage 2026-02-03

Introduction

“solid fundamentals → advanced user”

7 / 38

2026-02-03

Git history

Git advanced usage 2026-02-03

Git history

First things first:
 What it is not: The history of the tool Git itself

9 / 38

Git advanced usage 2026-02-03

Git history

First things first:
 What it is not: The history of the tool Git itself
 What it is: The history of commits of a Git repository

9 / 38

Git advanced usage 2026-02-03

Git history

First things first:
 What it is not: The history of the tool Git itself
 What it is: The history of commits of a Git repository

Why is history relevant?
 We use it to look back in time.

9 / 38

Git advanced usage 2026-02-03

Git history

First things first:
 What it is not: The history of the tool Git itself
 What it is: The history of commits of a Git repository

Why is history relevant?
 We use it to look back in time.

→ It should be easy to look back in time

9 / 38

Git advanced usage 2026-02-03

Git history

First things first:
 What it is not: The history of the tool Git itself
 What it is: The history of commits of a Git repository

Why is history relevant?
 We use it to look back in time.

→ It should be easy to look back in time
 Because it is non-linear (directed acyclic graph)

→ complications during merge/rebase

9 / 38

Git advanced usage 2026-02-03

Git history (with merge)

02d0b 182d0 d7dd8

git commit

main

HEAD

10 / 38

Git advanced usage 2026-02-03

Git history (with merge)

02d0b 182d0 d7dd8

origin/main

git commit

main

HEAD

origin/HEAD

10 / 38

Git advanced usage 2026-02-03

Git history (with merge)

02d0b 182d0 d7dd8

origin/main

git commit

feature-a

main

HEAD

origin/HEAD

17017

10 / 38

Git advanced usage 2026-02-03

Git history (with merge)

02d0b 182d0 d7dd8 96b81

origin/main

git commit
git merge feature-a

(on main)

feature-a

main

HEAD

origin/HEAD

17017

10 / 38

Git advanced usage 2026-02-03

Git history (with merge)

02d0b 182d0 d7dd8 96b81

origin/main

git commit
git merge feature-a

(on main)

feature-a

main

HEAD

origin/HEAD

17017

10 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 1:
 mkdir myrepo && cd myrepo # Create directory

11 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 1:
 mkdir myrepo && cd myrepo # Create directory
 git init # Init Git repository

11 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 1:
 mkdir myrepo && cd myrepo # Create directory
 git init # Init Git repository
 echo “hello” > file.txt # Create file.txt with some content

11 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 1:
 mkdir myrepo && cd myrepo # Create directory
 git init # Init Git repository
 echo “hello” > file.txt # Create file.txt with some content
 git add file.txt && git commit # Create commit #1 (02d0b)

11 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 1:
 mkdir myrepo && cd myrepo # Create directory
 git init # Init Git repository
 echo “hello” > file.txt # Create file.txt with some content
 git add file.txt && git commit # Create commit #1 (02d0b)
 echo “there” >> file.txt # Add some content to file.txt

11 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 1:
 mkdir myrepo && cd myrepo # Create directory
 git init # Init Git repository
 echo “hello” > file.txt # Create file.txt with some content
 git add file.txt && git commit # Create commit #1 (02d0b)
 echo “there” >> file.txt # Add some content to file.txt
 git add file.txt && git commit # Create commit #2 (182d0)

11 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 1:
 mkdir myrepo && cd myrepo # Create directory
 git init # Init Git repository
 echo “hello” > file.txt # Create file.txt with some content
 git add file.txt && git commit # Create commit #1 (02d0b)
 echo “there” >> file.txt # Add some content to file.txt
 git add file.txt && git commit # Create commit #2 (182d0)
 echo “NHR” >> file.txt # Add more content to file.txt

11 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 1:
 mkdir myrepo && cd myrepo # Create directory
 git init # Init Git repository
 echo “hello” > file.txt # Create file.txt with some content
 git add file.txt && git commit # Create commit #1 (02d0b)
 echo “there” >> file.txt # Add some content to file.txt
 git add file.txt && git commit # Create commit #2 (182d0)
 echo “NHR” >> file.txt # Add more content to file.txt
 git add file.txt && git commit # Create commit #3 (d7dd8)

11 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 1:
 mkdir myrepo && cd myrepo # Create directory
 git init # Init Git repository
 echo “hello” > file.txt # Create file.txt with some content
 git add file.txt && git commit # Create commit #1 (02d0b)
 echo “there” >> file.txt # Add some content to file.txt
 git add file.txt && git commit # Create commit #2 (182d0)
 echo “NHR” >> file.txt # Add more content to file.txt
 git add file.txt && git commit # Create commit #3 (d7dd8)

Commit hashes will differ for you!

11 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 2:
 git remote add origin “git@github.com:myuser/myrepo.git”

Add a remote called origin

12 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 2:
 git remote add origin “git@github.com:myuser/myrepo.git”

Add a remote called origin
 git push --set-upstream-to origin main

Push the current branch remote origin and mark it as upstream

12 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 2:
 git remote add origin “git@github.com:myuser/myrepo.git”

Add a remote called origin
 git push --set-upstream-to origin main

Push the current branch remote origin and mark it as upstream

Reproduce step 3:
 git switch 182d0 # Switch to a previous commit

12 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 2:
 git remote add origin “git@github.com:myuser/myrepo.git”

Add a remote called origin
 git push --set-upstream-to origin main

Push the current branch remote origin and mark it as upstream

Reproduce step 3:
 git switch 182d0 # Switch to a previous commit
 git switch --create feature-a # Create branch feature-a and

 # switch to it

12 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 2:
 git remote add origin “git@github.com:myuser/myrepo.git”

Add a remote called origin
 git push --set-upstream-to origin main

Push the current branch remote origin and mark it as upstream

Reproduce step 3:
 git switch 182d0 # Switch to a previous commit
 git switch --create feature-a # Create branch feature-a and

 # switch to it
 echo “FAU” > file2.txt # Create file2.txt

12 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 2:
 git remote add origin “git@github.com:myuser/myrepo.git”

Add a remote called origin
 git push --set-upstream-to origin main

Push the current branch remote origin and mark it as upstream

Reproduce step 3:
 git switch 182d0 # Switch to a previous commit
 git switch --create feature-a # Create branch feature-a and

 # switch to it
 echo “FAU” > file2.txt # Create file2.txt
 git add file2.txt && git commit # Create commit #4 (17017)

12 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 4:
 git switch main # Switch back to main branch

13 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 4:
 git switch main # Switch back to main branch
 git merge feature-a # Merge changes from feature-a into main

13 / 38

Git advanced usage 2026-02-03

Git history (with merge)

Reproduce step 4:
 git switch main # Switch back to main branch
 git merge feature-a # Merge changes from feature-a into main

Reproduce step 5:
 git push # Push new state of main branch to origin

13 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

02d0b 182d0 d7dd8

git commit

main

HEAD

14 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

02d0b 182d0 d7dd8

origin/main

git commit

main

HEAD

origin/HEAD

14 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

02d0b 182d0 d7dd8

origin/main

git commit

feature-a

main

HEAD

origin/HEAD

17017

14 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

02d0b 182d0 d7dd8

origin/main

git commit
git rebase main
(on feature-a)

feature-a

main

HEAD

origin/HEAD

a0d17

14 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

02d0b 182d0 d7dd8 a0d17

origin/main

git commit

feature-a

main

HEAD

origin/HEAD

git merge --ff-only feature-a
(on main)

14 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

02d0b 182d0 d7dd8 a0d17

origin/main

git commit

feature-a

main

HEAD

origin/HEAD

git merge --ff-only feature-a
(on main)

14 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

Reproduce step 4:
 git rebase main # Rewrite history so that feature-a’s commits are

 ontop of main

15 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

Reproduce step 4:
 git rebase main # Rewrite history so that feature-a’s commits are

 ontop of main

Reproduce step 5:
 git switch main # Switch to main

15 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

Reproduce step 4:
 git rebase main # Rewrite history so that feature-a’s commits are

 ontop of main

Reproduce step 5:
 git switch main # Switch to main
 git merge --ff-only feature-a # Merge feature-a into main, but do

 # not create an explicit merge commit

15 / 38

Git advanced usage 2026-02-03

Git history (with rebase)

Reproduce step 4:
 git rebase main # Rewrite history so that feature-a’s commits are

 ontop of main

Reproduce step 5:
 git switch main # Switch to main
 git merge --ff-only feature-a # Merge feature-a into main, but do

 # not create an explicit merge commit

Reproduce step 6:
 same as “merge” example

15 / 38

Git advanced usage 2026-02-03

Git history (merge vs. rebase)

Why rebase (at all)?
● Project maintainers may ask you to do so

16 / 38

Git advanced usage 2026-02-03

Git history (merge vs. rebase)

Why rebase (at all)?
● Project maintainers may ask you to do so
● Avoids future merge conflicts. Immediate resolution is required on rebase.

16 / 38

Git advanced usage 2026-02-03

Git history (merge vs. rebase)

Why rebase (at all)?
● Project maintainers may ask you to do so
● Avoids future merge conflicts. Immediate resolution is required on rebase.
● Avoids “opqaue” merge commits (“does this merge commit produce

functional code?”)

16 / 38

Git advanced usage 2026-02-03

Git history (merge vs. rebase)

Why rebase (at all)?
● Project maintainers may ask you to do so
● Avoids future merge conflicts. Immediate resolution is required on rebase.
● Avoids “opqaue” merge commits (“does this merge commit produce

functional code?”)
● → clean and linear “easy to read” history

16 / 38

Git advanced usage 2026-02-03

Git history (merge vs. rebase)

Why rebase (at all)?
● Project maintainers may ask you to do so
● Avoids future merge conflicts. Immediate resolution is required on rebase.
● Avoids “opqaue” merge commits (“does this merge commit produce

functional code?”)
● → clean and linear “easy to read” history

Why not rebase?
● One conflict may have to be resolved more than once (→ more work).

16 / 38

Git advanced usage 2026-02-03

Git history (merge vs. rebase)

Why rebase (at all)?
● Project maintainers may ask you to do so
● Avoids future merge conflicts. Immediate resolution is required on rebase.
● Avoids “opqaue” merge commits (“does this merge commit produce

functional code?”)
● → clean and linear “easy to read” history

Why not rebase?
● One conflict may have to be resolved more than once (→ more work).
● Other people are working on your branch (→ do not delete someone’s

base commit).

16 / 38

Git advanced usage 2026-02-03

Git history (merge vs. rebase)

Example: history comparison cc-backend and likwid

17 / 38

Git advanced usage 2026-02-03

Git history (pull)

So what does git pull actually do?

18 / 38

Git advanced usage 2026-02-03

Git history (pull)

So what does git pull actually do?
● git fetch
● git merge origin/mybranch (remote and branch determined via

“tracking”)

18 / 38

Git advanced usage 2026-02-03

Git history (pull)

So what does git pull actually do?
● git fetch
● git merge origin/mybranch (remote and branch determined via

“tracking”)

It can also rebase (with git config --global pull.rebase true):
● git fetch
● git rebase origin/mybranch

18 / 38

Git advanced usage 2026-02-03

Git history (pull)

So what does git pull actually do?
● git fetch
● git merge origin/mybranch (remote and branch determined via

“tracking”)

It can also rebase (with git config --global pull.rebase true):
● git fetch
● git rebase origin/mybranch

I highly suggest to use git pull with rebase enabled

18 / 38

Git advanced usage 2026-02-03

Useful commands - tig

Interactively
browse history

Use --all to see
all branches

19 / 38

Git advanced usage 2026-02-03

Useful commands - tig

Interactively
browse history

Use --all to see
all branches

Poor man’s tig: git log --all --graph --decorate --oneline

19 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

Rebase can do much more than reordering commits:
● Edit/fix commits
● Delete commits
● Insert new commits
● Merge/split commits

20 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

Rebase can do much more than reordering commits:
● Edit/fix commits
● Delete commits
● Insert new commits
● Merge/split commits

→ git rebase -i 0d8fdf1: Edit history down to (excluding) commit 0d7fdf1

20 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

Rebase can do much more than reordering commits:
● Edit/fix commits
● Delete commits
● Insert new commits
● Merge/split commits

→ git rebase -i 0d8fdf1: Edit history down to (excluding) commit 0d7fdf1

→ git rebase -i HEAD~8: Edit history of previous 8 commits

20 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

Rebase can do much more than reordering commits:
● Edit/fix commits
● Delete commits
● Insert new commits
● Merge/split commits

→ git rebase -i 0d8fdf1: Edit history down to (excluding) commit 0d7fdf1

→ git rebase -i HEAD~8: Edit history of previous 8 commits

20 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

“I messed something up during my rebase. What do I do?”

21 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

“I messed something up during my rebase. What do I do?”
● You can always abort a rebase with git rebase --abort

21 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

“I messed something up during my rebase. What do I do?”
● You can always abort a rebase with git rebase --abort
● This also works for merging, e.g. during a conflict, via git merge --abort

21 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

“I messed something up during my rebase. What do I do?”
● You can always abort a rebase with git rebase --abort
● This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
● Reflogs contain previous commits (even “deleted” commits).

21 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

“I messed something up during my rebase. What do I do?”
● You can always abort a rebase with git rebase --abort
● This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
● Reflogs contain previous commits (even “deleted” commits).
● git reflog

21 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

“I messed something up during my rebase. What do I do?”
● You can always abort a rebase with git rebase --abort
● This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
● Reflogs contain previous commits (even “deleted” commits).
● git reflog
● git reset --hard 84d72f1

21 / 38

Git advanced usage 2026-02-03

Git history (interactive rebase)

“I messed something up during my rebase. What do I do?”
● You can always abort a rebase with git rebase --abort
● This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
● Reflogs contain previous commits (even “deleted” commits).
● git reflog
● git reset --hard 84d72f1
● Caution: “deleted” commits expire eventually

21 / 38

Git advanced usage 2026-02-03

Git history (“clean” commits)

Tips:
● “I forgot something”: You can update (without creating a new one) the

last commit via: git commit --amend.

22 / 38

Git advanced usage 2026-02-03

Git history (“clean” commits)

Tips:
● “I forgot something”: You can update (without creating a new one) the

last commit via: git commit --amend.
● Abort committing by leaving the commit message blank or clearing it.

22 / 38

Git advanced usage 2026-02-03

Git history (“clean” commits)

Tips:
● “I forgot something”: You can update (without creating a new one) the

last commit via: git commit --amend.
● Abort committing by leaving the commit message blank or clearing it.
● Use verbose git commit. Either via -v or git config --global

commit.verbose true.

22 / 38

Git advanced usage 2026-02-03

Git history (“clean” commits)

Tips:
● “I forgot something”: You can update (without creating a new one) the

last commit via: git commit --amend.
● Abort committing by leaving the commit message blank or clearing it.
● Use verbose git commit. Either via -v or git config --global

commit.verbose true.
● My opinion: Avoid git commit -m “…”. Review your commits via verbose

commit.

22 / 38

Git advanced usage 2026-02-03

Git history (“clean” commits)

Tips:
● “I forgot something”: You can update (without creating a new one) the

last commit via: git commit --amend.
● Abort committing by leaving the commit message blank or clearing it.
● Use verbose git commit. Either via -v or git config --global

commit.verbose true.
● My opinion: Avoid git commit -m “…”. Review your commits via verbose

commit.

22 / 38

Git advanced usage 2026-02-03

Git history (conclusion)

Don’t be afraid of rewriting/rebasing history!

23 / 38

Git advanced usage 2026-02-03

Git history (conclusion)

Don’t be afraid of rewriting/rebasing history!

Unless it is already public!

23 / 38

2026-02-03

Git staging area

Git advanced usage 2026-02-03

Git staging area

“I want to commit. I have to type git add file.txt and git commit”:

25 / 38

Git advanced usage 2026-02-03

Git staging area

“I want to commit. I have to type git add file.txt and git commit”:
 Yes, but why? Not all version control systems have it (e.g. SVN)

25 / 38

Git advanced usage 2026-02-03

Git staging area

“I want to commit. I have to type git add file.txt and git commit”:
 Yes, but why? Not all version control systems have it (e.g. SVN)
 Before we commit we can carefully choose what to commit!

25 / 38

Git advanced usage 2026-02-03

Git staging area

“I want to commit. I have to type git add file.txt and git commit”:
 Yes, but why? Not all version control systems have it (e.g. SVN)
 Before we commit we can carefully choose what to commit!

25 / 38

Git advanced usage 2026-02-03

Git staging area

“I want to commit. I have to type git add file.txt and git commit”:
 Yes, but why? Not all version control systems have it (e.g. SVN)
 Before we commit we can carefully choose what to commit!

25 / 38

Git advanced usage 2026-02-03

Git staging area

Untracked Unmodified Modified Staged

Image inspired by Pro Git chapter 2.2

26 / 38

Git advanced usage 2026-02-03

Git staging area

Untracked Unmodified Modified Staged

Image inspired by Pro Git chapter 2.2

git add myfile.txt

26 / 38

Git advanced usage 2026-02-03

Git staging area

Untracked Unmodified Modified Staged

Image inspired by Pro Git chapter 2.2

git add myfile.txt

edit myfile.txt git add myfile.txt

26 / 38

Git advanced usage 2026-02-03

Git staging area

Untracked Unmodified Modified Staged

Image inspired by Pro Git chapter 2.2

git add myfile.txt

edit myfile.txt git add myfile.txt

git commit

26 / 38

Git advanced usage 2026-02-03

Git staging area

Untracked Unmodified Modified Staged

Image inspired by Pro Git chapter 2.2

git add myfile.txt

edit myfile.txt git add myfile.txt

git commit

git commit (after: git rm --cached)

26 / 38

Git advanced usage 2026-02-03

Git staging area

Untracked Unmodified Modified Staged

Image inspired by Pro Git chapter 2.2

git add myfile.txt

edit myfile.txt git add myfile.txt

git reset

git commit

git commit (after: git rm --cached)

26 / 38

Git advanced usage 2026-02-03

Git staging area

Untracked Unmodified Modified Staged

Image inspired by Pro Git chapter 2.2

git add myfile.txt

edit myfile.txt git add myfile.txt

git reset --hard

git reset

git commit

git commit (after: git rm --cached)

26 / 38

Git advanced usage 2026-02-03

Git staging area

Untracked Unmodified Modified Staged

Image inspired by Pro Git chapter 2.2

git add myfile.txt

edit myfile.txt git add myfile.txt

git reset --hard

git reset

git reset --soft HEAD~1

git commit

git commit (after: git rm --cached)

26 / 38

Git advanced usage 2026-02-03

Git staging area

“But I only want to commit funcA in main.c, not my debug statements”:

27 / 38

Git advanced usage 2026-02-03

Git staging area

“But I only want to commit funcA in main.c, not my debug statements”:

→ git add -p main.c

27 / 38

Git advanced usage 2026-02-03

Git staging area

“But I only want to commit funcA in main.c, not my debug statements”:

→ git add -p main.c

27 / 38

Git advanced usage 2026-02-03

Git staging area

“But I only want to commit funcA in main.c, not my debug statements”:

→ git add -p main.c

27 / 38

Git advanced usage 2026-02-03

Git staging area

“But I only want to commit funcA in main.c, not my debug statements”:

→ git add -p main.c

27 / 38

2026-02-03

Git stash

Git advanced usage 2026-02-03

git stash

uncommitted,
modified files

Current branch: main

29 / 38

Git advanced usage 2026-02-03

git stash

uncommitted,
modified files

Current branch: main

29 / 38

Git advanced usage 2026-02-03

git stash

origin/main

uncommitted,
modified files

Current branch: main

git merge

29 / 38

Git advanced usage 2026-02-03

git stash

origin/main

uncommitted,
modified files

Current branch: main

git merge

Error!

29 / 38

Git advanced usage 2026-02-03

git stash

origin/main

uncommitted,
modified files

Current branch: main

29 / 38

Git advanced usage 2026-02-03

git stash

origin/main
Current branch: main

Solution!

...

stash@{0}

git stash

29 / 38

Git advanced usage 2026-02-03

git stash

origin/main
Current branch: main

Solution!

...

stash@{0}

29 / 38

Git advanced usage 2026-02-03

git stash

origin/main
Current branch: main

git merge

Solution!

...

stash@{0}Success!

29 / 38

Git advanced usage 2026-02-03

git stash

Current branch: main
Solution!

...

stash@{0}

29 / 38

Git advanced usage 2026-02-03

git stash

Current branch: main
Solution!

...

stash@{0}

git stash pop

29 / 38

Git advanced usage 2026-02-03

git stash

Current branch: main
Solution!

...

29 / 38

2026-02-03

Git remotes

Git advanced usage 2026-02-03

Git remotes

“I want to push to my GitHub/GitLab. This is what origin is, right?”:

31 / 38

Git advanced usage 2026-02-03

Git remotes

“I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalent of git clone ‘https://github.com/RRZE-HPC/likwid’:

31 / 38

Git advanced usage 2026-02-03

Git remotes

“I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalent of git clone ‘https://github.com/RRZE-HPC/likwid’:
● mkdir likwid && cd likwid

31 / 38

Git advanced usage 2026-02-03

Git remotes

“I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalent of git clone ‘https://github.com/RRZE-HPC/likwid’:
● mkdir likwid && cd likwid
● git init

31 / 38

Git advanced usage 2026-02-03

Git remotes

“I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalent of git clone ‘https://github.com/RRZE-HPC/likwid’:
● mkdir likwid && cd likwid
● git init
● git remote add origin

‘https://github.com/RRZE-HPC/likwid’

31 / 38

Git advanced usage 2026-02-03

Git remotes

“I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalent of git clone ‘https://github.com/RRZE-HPC/likwid’:
● mkdir likwid && cd likwid
● git init
● git remote add origin

‘https://github.com/RRZE-HPC/likwid’
● git switch --track origin/master

31 / 38

Git advanced usage 2026-02-03

Git remotes

“I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalent of git clone ‘https://github.com/RRZE-HPC/likwid’:
● mkdir likwid && cd likwid
● git init
● git remote add origin

‘https://github.com/RRZE-HPC/likwid’
● git switch --track origin/master

→ origin is Git’s default name for a remote

31 / 38

Git advanced usage 2026-02-03

Git remotes

“I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalent of git clone ‘https://github.com/RRZE-HPC/likwid’:
● mkdir likwid && cd likwid
● git init
● git remote add origin

‘https://github.com/RRZE-HPC/likwid’
● git switch --track origin/master

→ origin is Git’s default name for a remote

→ master is the default branch of LIKWID

31 / 38

Git advanced usage 2026-02-03

Git remotes

Interact with repositories outside yours:
● Way of interacting with GitHub / GitLab

32 / 38

Git advanced usage 2026-02-03

Git remotes

Interact with repositories outside yours:
● Way of interacting with GitHub / GitLab
● “Fancy platforms” are not mandatory. Remote can also be:

– A folder on a machine reachable via standard SSH

32 / 38

Git advanced usage 2026-02-03

Git remotes

Interact with repositories outside yours:
● Way of interacting with GitHub / GitLab
● “Fancy platforms” are not mandatory. Remote can also be:

– A folder on a machine reachable via standard SSH

– A different folder on your local machine

32 / 38

Git advanced usage 2026-02-03

Git remotes

Interact with repositories outside yours:
● Way of interacting with GitHub / GitLab
● “Fancy platforms” are not mandatory. Remote can also be:

– A folder on a machine reachable via standard SSH

– A different folder on your local machine
● You can have as many remotes as you like (e.g. mirrors, backups, etc.)

32 / 38

Git advanced usage 2026-02-03

Git remotes

Example: Copy main branch from Github repository to GitLab:
● git clone ‘git@github.com:myuser/myproject.git’

33 / 38

Git advanced usage 2026-02-03

Git remotes

Example: Copy main branch from Github repository to GitLab:
● git clone ‘git@github.com:myuser/myproject.git’
● cd myproject

33 / 38

Git advanced usage 2026-02-03

Git remotes

Example: Copy main branch from Github repository to GitLab:
● git clone ‘git@github.com:myuser/myproject.git’
● cd myproject
● git remote add gitlab ‘git@gitlab.com:myuser/myproject.git’

33 / 38

Git advanced usage 2026-02-03

Git remotes

Example: Copy main branch from Github repository to GitLab:
● git clone ‘git@github.com:myuser/myproject.git’
● cd myproject
● git remote add gitlab ‘git@gitlab.com:myuser/myproject.git’
● git push gitlab main

33 / 38

Git advanced usage 2026-02-03

Git remotes

“Why do I sometimes need to specify the remote and sometimes not?”:

34 / 38

Git advanced usage 2026-02-03

Git remotes

“Why do I sometimes need to specify the remote and sometimes not?”:
● Branch “tracking” assigns a local branch to a remote

34 / 38

Git advanced usage 2026-02-03

Git remotes

“Why do I sometimes need to specify the remote and sometimes not?”:
● Branch “tracking” assigns a local branch to a remote
● git clone automatically tracks the remote’s default branch

(origin/HEAD)

E.g. main automatically tracks origin/main

34 / 38

Git advanced usage 2026-02-03

Git remotes

“Why do I sometimes need to specify the remote and sometimes not?”:
● Branch “tracking” assigns a local branch to a remote
● git clone automatically tracks the remote’s default branch

(origin/HEAD)

E.g. main automatically tracks origin/main
● You can change it any time: git branch -u neworigin

34 / 38

Git advanced usage 2026-02-03

Git remotes

“Why do I sometimes need to specify the remote and sometimes not?”:
● Branch “tracking” assigns a local branch to a remote
● git clone automatically tracks the remote’s default branch

(origin/HEAD)

E.g. main automatically tracks origin/main
● You can change it any time: git branch -u neworigin
● When it doesn’t exist yet on remote: git push -u neworigin

34 / 38

Git advanced usage 2026-02-03

Git remotes

“Why do I sometimes need to specify the remote and sometimes not?”:
● Branch “tracking” assigns a local branch to a remote
● git clone automatically tracks the remote’s default branch

(origin/HEAD)

E.g. main automatically tracks origin/main
● You can change it any time: git branch -u neworigin
● When it doesn’t exist yet on remote: git push -u neworigin
● Afterwards you can push/pull “normally”

34 / 38

2026-02-03

Git summary

Git advanced usage 2026-02-03

Summary

Useful commands to remember:
 git status → Know what’s going on
 git log -p <filename> → Show history of a file
 git log -S <searchterm> → Search for diff affecting a term
 git log -G <searchterm> → Search for diff containing a term
 git blame <filename> → Show file with history annotation
 git reflog → Show all commits (including “lost” commits)
 git gc → Cleanup unreferenced commits (reflog recovery impossible!)
 git rebase <branch> → Reapply commits onto branch
 git rebase -i <commit> → Interactively edit commits up to commit
 git cherry-pick <commit> → Reapply commit to current branch

36 / 38

Git advanced usage 2026-02-03

Summary

Useful commands to remember:
 git add -p <filename> → Perform git add on parts of filename
 git commit -v → See what you commit
 git stash → Move unstaged changes to “stash” and reset files
 git stash pop → Restore all previous unstaged changes
 git reset <filename> → Unstage all changes of filename
 git reset --hard → Discard all uncommited changes
 git reset --hard <commit> → Make current branch point to

commit. Discards all commits that are not part of new branch history!
 git reset <commit> → Show changes of commit
 git bisect start <badcommit> <goodcommit> → Find a

regression between two commits
37 / 38

Git advanced usage 2026-02-03

Summary

Other useful resources:
 Manpages are really good!
 man gitrevisions → Explanations how version strings look like
 Pro Git book

38 / 38

https://git-scm.com/book/en/v2

	Git advanced usage Michael Panzlaff Erlangen National High Pe
	Tips and tricks with Git
	Slide: 3
	Slide: 4
	Introduction (1)
	Introduction (2)
	Introduction (3)
	Introduction (4)
	Introduction (5)
	Introduction (2) (1)
	Introduction (2) (2)
	Introduction (2) (3)
	Introduction (2) (4)
	Introduction (2) (5)
	Introduction (2) (6)
	Slide: 7
	Slide: 8
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Git history (with merge) (1)
	Git history (with merge) (2)
	Git history (with merge) (3)
	Git history (with merge) (4)
	Git history (with merge) (5)
	Git history (with merge) (2) (1)
	Git history (with merge) (2) (2)
	Git history (with merge) (2) (3)
	Git history (with merge) (2) (4)
	Git history (with merge) (2) (5)
	Git history (with merge) (2) (6)
	Git history (with merge) (2) (7)
	Git history (with merge) (2) (8)
	Git history (with merge) (2) (9)
	Git history (with merge) (3) (1)
	Git history (with merge) (3) (2)
	Git history (with merge) (3) (3)
	Git history (with merge) (3) (4)
	Git history (with merge) (3) (5)
	Git history (with merge) (3) (6)
	Git history (with merge) (4) (1)
	Git history (with merge) (4) (2)
	Git history (with merge) (4) (3)
	Git history (with rebase) (1)
	Git history (with rebase) (2)
	Git history (with rebase) (3)
	Git history (with rebase) (4)
	Git history (with rebase) (5)
	Git history (with rebase) (6)
	Git history (with rebase) (2) (1)
	Git history (with rebase) (2) (2)
	Git history (with rebase) (2) (3)
	Git history (with rebase) (2) (4)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 16 (3)
	Slide: 16 (4)
	Slide: 16 (5)
	Slide: 16 (6)
	Slide: 17
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 18 (4)
	Useful commands - tig (1)
	Useful commands - tig (2)
	git stash (1)
	git stash (2)
	git stash (3)
	git stash (4)
	Slide: 21 (1)
	Slide: 21 (2)
	Slide: 21 (3)
	Slide: 21 (4)
	Slide: 21 (5)
	Slide: 21 (6)
	Slide: 21 (7)
	Slide: 22 (1)
	Slide: 22 (2)
	Slide: 22 (3)
	Slide: 22 (4)
	Slide: 22 (5)
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 24
	Git history (1)
	Git history (2)
	Git history (3)
	Git history (4)
	Git history (5)
	Slide: 26 (1)
	Slide: 26 (2)
	Slide: 26 (3)
	Slide: 26 (4)
	Slide: 26 (5)
	Slide: 26 (6)
	Slide: 26 (7)
	Slide: 26 (8)
	Slide: 27 (1)
	Slide: 27 (2)
	Slide: 27 (3)
	Slide: 27 (4)
	Slide: 27 (5)
	Slide: 28
	Slide: 29 (1)
	Slide: 29 (2)
	Slide: 29 (3)
	Slide: 29 (4)
	Slide: 29 (5)
	Slide: 29 (6)
	Slide: 29 (7)
	Slide: 29 (8)
	Slide: 29 (9)
	Slide: 29 (10)
	Slide: 29 (11)
	Slide: 30
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 31 (3)
	Slide: 31 (4)
	Slide: 31 (5)
	Slide: 31 (6)
	Slide: 31 (7)
	Slide: 31 (8)
	Slide: 32 (1)
	Slide: 32 (2)
	Slide: 32 (3)
	Slide: 32 (4)
	Slide: 33 (1)
	Slide: 33 (2)
	Slide: 33 (3)
	Slide: 33 (4)
	Slide: 34 (1)
	Slide: 34 (2)
	Slide: 34 (3)
	Slide: 34 (4)
	Slide: 34 (5)
	Slide: 34 (6)
	Slide: 35
	Summary
	Summary (2)
	Slide: 38

