W e

— Friedrich-Alexander-Universitat
E//A\ Erlangen-Nirnberg '
LI/ e\
-

HPC Café
February 3, 2026

Michael Panzlaff

Erlangen National High Performance Computing Center (NHR@FAU)

mailto:NHR@FAU

Friedrich-Alexander-Universitét
| Erlangen-Nirnberg

Git advanced usage

Michael Panzlaff

Erlangen National High Performance Computing Center (NHR@FAU)

HPC Cafe, February 3, 2026

UPCOMING
RSES

2026

Erlangen National High Performance
Computing Center (NHR@FAU)

Experience amming
) MPI+X <<<hybrid>>>
Feb] HPC Systems <<<on-site>>>
May OpenMP -
<<<online>>>
MPI
1ing

with \

with \
for > <<<online>>>

with /

Apr with modern C++ /

Understand your
| Apr 22-24 | . on GPUs

| | s <<<online>>>

Learn about elopment
| | ... with <<<online>>>

And did we mention
| [<<<online>>>

Register at go-nhr.de/trainings

|“E AU g::::::ﬁl;::::;r»Unlnnlm NHR @ FAU

Friedrich-Alexander-Universitét
| Erlangen-Nirnberg

Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push

Git advanced usage 2026-02-03 5/38

https://github.com/RRZE-HPC/likwid

Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push

But do you know about?
* staging area

Git advanced usage 2026-02-03 5/38

https://github.com/RRZE-HPC/likwid

Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push

But do you know about?
* staging area
* history

Git advanced usage 2026-02-03 5/38

https://github.com/RRZE-HPC/likwid

Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push

But do you know about?
* staging area
* history
* reflog

Git advanced usage 2026-02-03 5/38

https://github.com/RRZE-HPC/likwid

Introduction

So you probably know those commands?

* git clone https://github.com/RRZE-HPC/likwid
« git pull

* git add main.c

e git commit -m “very much interesting!”

* git push

But do you know about?

* staging area

* history

« reflog Don’t worry, this won’t be a “just theory” lesson :-)|

Git advanced usage 2026-02-03 5/38

https://github.com/RRZE-HPC/likwid

Introduction

Have you seen those “errors” before?

Git advanced usage 2026-02-03 6/38

Introduction

Have you seen those “errors” before?

git status
78badff

nothing to commit, working tree clean

Git advanced usage 2026-02-03 6/38

Introduction

Have you seen those “errors” before?

MLCNas, nrz104h@testfrontl git pull
Updating e45c56c0f8..66ee941fea
error: Your local changes to the following files would be overwritten by merge:

nothin

README . md
Please commit your changes or stash them before you merge.
Aborting

—

Git advanced usage 2026-02-03 6/38

Introduction

Have you seen those “errors” before?

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee941fea

thi : : :
r—":‘hlﬂer'rw::r-: Your local changes to the following files would be overwritten by merge:

git merge feature-a

Auto-merging main.c
CONFLICT (content): Merge conflict in main.c
Automatic merge failed; fix conflicts and then commit the result.

Git advanced usage 2026-02-03 6/38

Introduction

Have you seen those “errors” before?
1LCN98 nrz104h@test frontl git pull

Updating e45c56c0f8..66ee941fea

error: Your local changes to the following files would be overwritten by merge:
nichael@michael -HP ait merae feature-a

Auto-memichael@michael -HP glit push origin master

CONFLI(To github.com:1ipatix/deleteme.git

nothin

Ao master -> master (non-fast-forward)

Git advanced usage 2026-02-03 6/38

Introduction

Have you seen those “errors” before?

michaef - Gah@inichaelanichael-Hp
Updating "Smote:

remote:
error: YO remote:

git pull
18, done.
100% (18/18), done.

100% (11/11), done. herge.
Total 18 (delta 2), reused 16 (delta 0), pack-reused 0 (from 0)
Auto-nu*Tif ae Unpacking objects: 100% (18/18), 1.41 KiB | 481.00 KiB/s, done.
CONFLI(To g1t

wFrom github.com:ipatix/deleteme
* [new branch]
Automart

Enumerating objects:

nothin Counting objects:

Compressing objects:
nichael@michz

4¢ remote:

master -> origin/master
here is no tracking information for the current branchp

Please specify which branch you want to rebase against.
See git-pull(l) for details.

git pull <remote> <branch>

If you wish to set tracking information for this branch you can do so with:

git branch --set-upstream-to=origin/<branch> master

Git advanced usage

2026-02-03 6/38

Introduction

“solid fundamentals — advanced user”

Git

advanced usage 2026-02-03

71738

Friedrich-Alexander-Universitét
| Erlangen-Nirnberg

Git history

First things first:
* What it is not: The history of the tool Git itself

Git advanced usage 2026-02-03 9/38

Git history

First things first:
* What it is not: The history of the tool Git itself
* What it is: The history of commits of a Git repository

Git advanced usage 2026-02-03 9/38

Git history

First things first:
* What it is not: The history of the tool Git itself
* What it is: The history of commits of a Git repository

Why is history relevant?
* We use it to look back in time.

Git advanced usage 2026-02-03 9/38

Git history

First things first:
* What it is not: The history of the tool Git itself
* What it is: The history of commits of a Git repository

Why is history relevant?
* We use it to look back in time.
— It should be easy to look back in time

Git advanced usage 2026-02-03 9/38

Git history

First things first:
* What it is not: The history of the tool Git itself
* What it is: The history of commits of a Git repository

Why is history relevant?

* We use it to look back in time.
— It should be easy to look back in time

* Because it is non-linear (directed acyclic graph)
— complications during merge/rebase

Git advanced usage 2026-02-03 9/38

Git history (with merge)

02d0b j—> 182d0 j—> d7dd8 i

-

Git advanced usage 2026-02-03 10/38

Git history (with merge)

02d0b '—> 182d0 '—> d7dd8 '

3

Git advanced usage 2026-02-03 10/38

Git history (with merge)

\

Git advanced usage 2026-02-03 10/38

Git history (with merge)

git merge feature-a
(on main)

02d0b }*

TR s O _
i \ sl

182d0 |

Git advanced usage 2026-02-03 10/38

Git history (with merge)

git merge feature-a
(on main)

02d0b }*

///7//'//7/7/"/}//'//'//7///4% main

182d0 |

Git advanced usage 2026-02-03 10/38

Git history (with merge)

Reproduce step 1:
* mkdir myrepo && cd myrepo # Create directory

Git advanced usage 2026-02-03 11/38

Git history (with merge)

Reproduce step 1:
* mkdir myrepo && cd myrepo # Create directory
e git init # Init Git repository

Git advanced usage 2026-02-03 11/38

Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory

e git init # Init Git repository

* echo “hello” > file.txt # Create file.txt with some content

Git advanced usage 2026-02-03 11/38

Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory
e git init # Init Git repository
* echo “hello” > file.txt # Create file.txt with some content

e git add file.txt && git commit # Create commit #1 (02dOb)

Git advanced usage 2026-02-03 11/38

Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory
e git init # Init Git repository
* echo “hello” > file.txt # Create file.txt with some content

e git add file.txt && git commit # Create commit #1 (02dOb)
e echo “there” >> file.txt # Add some content to file.txt

Git advanced usage 2026-02-03 11/38

Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory

e git init # Init Git repository

* echo “hello” > file.txt # Create file.txt with some content
e git add file.txt && git commit # Create commit #1 (02dOb)

e echo “there” >> file.txt # Add some content to file.txt

e git add file.txt && git commit # Create commit #2 (182d0)

Git advanced usage 2026-02-03 11/38

Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo # Create directory

e git init # Init Git repository

* echo “hello” > file.txt # Create file.txt with some content
e git add file.txt && git commit # Create commit #1 (02dOb)

e echo “there” >> file.txt # Add some content to file.txt

e git add file.txt && git commit # Create commit #2 (182d0)
e echo “NHR” >> file.txt # Add more content to file.txt

Git advanced usage 2026-02-03 11/38

Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo #
e git init #
* echo “hello” > file.txt #
e git add file.txt && git commit #
 echo “there” >> file.txt #
e git add file.txt && git commit #
« echo “NHR” >> file.txt #
* @it add file.txt && git commit #

Create directory

Init Git repository

Create file.txt with some content
Create commit #1 (02dOb)

Add some content to file.txt
Create commit #2 (182d0)

Add more content to file.txt
Create commit #3 (d7dd8)

Git advanced usage

2026-02-03 11/38

Git history (with merge)

Reproduce step 1:

* mkdir myrepo && cd myrepo #
e git init #
* echo “hello” > file.txt 7
e git add file.txt && git commit #
e echo “there” >> file.txt 7
e git add file.txt && git commit #
« echo “NHR” >> file.txt #
e git add file.txt && git commit #

Create directory

Init Git repository

Create file.txt with some content
Create commit #1 (02d0Ob)

Add some content to file.txt
Create commit #2 (182d0)

Add more content to file.txt
Create commit #3 (d7dd8)

Commit hashes will differ for you!

Git advanced usage

2026-02-03 11/38

Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
Add a remote called origin

Git advanced usage 2026-02-03 12/38

Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
Add a remote called origin
* git push --set-upstream-to origin main
Push the current branch remote origin and mark it as upstream

Git advanced usage 2026-02-03 12/38

Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
Add a remote called origin
* git push --set-upstream-to origin main
Push the current branch remote origin and mark it as upstream

Reproduce step 3:

e (@it switch 182d0 # Switch to a previous commit

Git advanced usage 2026-02-03 12/38

Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
Add a remote called origin
* git push --set-upstream-to origin main
Push the current branch remote origin and mark it as upstream

Reproduce step 3:
e (@it switch 182d0 # Switch to a previous commit

e @it switch --create feature-a # (Create branch feature-a and
switch to it

Git advanced usage 2026-02-03 12/38

Git history (with merge)

Reproduce step 2:
* git remote add origin “git@github.com:myuser/myrepo.git”
Add a remote called origin
* git push --set-upstream-to origin main
Push the current branch remote origin and mark it as upstream

Reproduce step 3:
e (@it switch 182d0 # Switch to a previous commit

e @it switch --create feature-a # (Create branch feature-a and
switch to it

e echo “FAU” > file2.txt # Create file2.txt

Git advanced usage 2026-02-03 12/38

Git history (with merge)

Reproduce step 2:

git remote add origin “git@github.com:myuser/myrepo.git”

Add a remote called origin

git push --set-upstream-to origin main

Push the current branch remote origin and mark it as upstream

Reproduce step 3:
git switch 182d0 # Switch to a previous commit

git switch --create feature-a # Create branch feature-a and
switch to it

echo “FAU” > file2.txt # Create file2.txt
git add file2.txt && git commit # Create commit #4 (17017)

Git advanced usage 2026-02-03 12/38

Git history (with merge)

Reproduce step 4.
* git switch main # Switch back to main branch

Git advanced usage 2026-02-03 13/38

Git history (with merge)

Reproduce step 4.
* git switch main # Switch back to main branch
e (git merge feature-a # Merge changes from feature-a into main

Git advanced usage 2026-02-03 13/38

Git history (with merge)

Reproduce step 4.
* git switch main # Switch back to main branch
e (git merge feature-a # Merge changes from feature-a into main

Reproduce step 5:
« git push # Push new state of main branch to origin

Git advanced usage 2026-02-03 13/38

Git history (with rebase)

02d0b '—> 182d0 '—> d7dd8 '

main '
HEAD '

Git advanced usage 2026-02-03 14/38

Git history (with rebase)

02d0b i* 182d0 i* d7dd8 '

HEAD '

Git advanced usage 2026-02-03 14/38

Git history (with rebase)

d7dd8

02d0b | > 182d0 | —i
17017 i

 origin/HEAD | main

feature-a j HEAD i

Git advanced usage 2026-02-03 14/38

Git history (with rebase)

git commit
02d0b }* 182d0 }*» ;

v . —_— |
i P . il

feature-a i HEAD j

A¢é%%%%2%%%éé

Git advanced usage 2026-02-03 14/38

Git history (with rebase)

git merge --ff-only feature-a

(on main)

02d0b i* 182d0 i*»
/’

///7/)/7/'//"/}//'//'//7///‘% main

feature-a ' HEAD '

Git advanced usage 2026-02-03 14/38

Git history (with rebase)

git merge --ff-only feature-a

(on main)

02d0b i* 182d0 i*»

feature-a ' HEAD '

Git advanced usage 2026-02-03 14/38

Git history (with rebase)

Reproduce step 4.

* git rebase main # Rewrite history so that feature-a’s commits are
ontop of main

Git advanced usage 2026-02-03 15/38

Git history (with rebase)

Reproduce step 4.

* git rebase main # Rewrite history so that feature-a’s commits are
ontop of main

Reproduce step 5:

« @it switch main # Switch to main

Git advanced usage 2026-02-03 15/38

Git history (with rebase)

Reproduce step 4.

* git rebase main # Rewrite history so that feature-a’s commits are
ontop of main

Reproduce step 5:
« @it switch main # Switch to main

« @it merge --ff-only feature-a # Merge feature-a into main, but do
not create an explicit merge commit

Git advanced usage 2026-02-03 15/38

Git history (with rebase)

Reproduce step 4.

* git rebase main # Rewrite history so that feature-a’s commits are
ontop of main

Reproduce step 5:
« @it switch main # Switch to main

« @it merge --ff-only feature-a # Merge feature-a into main, but do
not create an explicit merge commit

Reproduce step 6:

* same as “merge” example

Git advanced usage 2026-02-03 15/38

Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so

Git advanced usage 2026-02-03 16 /38

Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.

Git advanced usage 2026-02-03 16 /38

Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.

* Avoids “opqaue” merge commits (“does this merge commit produce
functional code?”)

Git advanced usage 2026-02-03 16/38

Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.

* Avoids “opgaue” merge commits (“does this merge commit produce
functional code?”)

* — clean and linear “easy to read” history

Git advanced usage 2026-02-03 16/38

Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.

* Avoids “opgaue” merge commits (“does this merge commit produce
functional code?”)

* — clean and linear “easy to read” history

Why not rebase?
* One conflict may have to be resolved more than once (— more work).

Git advanced usage 2026-02-03 16/38

Git history (merge vs. rebase)

Why rebase (at all)?
* Project maintainers may ask you to do so
* Avoids future merge conflicts. Immediate resolution is required on rebase.

* Avoids “opgaue” merge commits (“does this merge commit produce
functional code?”)

* — clean and linear “easy to read” history

Why not rebase?
* One conflict may have to be resolved more than once (— more work).

* Other people are working on your branch (— do not delete someone’s
base commit).

Git advanced usage 2026-02-03 16/38

Git history (merge vs. rebase)

Example: history comparison cc-backend and likwid

Git advanced usage 2026-02-03 17/38

Git history (pull)

So what does git pull actually do?

Git advanced usage 2026-02-03 18/38

Git history (pull)

So what does git pull actually do?
* git fetch

* git merge origin/mybranch (remote and branch determined via
“tracking”)

Git advanced usage 2026-02-03 18/38

Git history (pull)

So what does git pull actually do?
* git fetch

* git merge origin/mybranch (remote and branch determined via
“tracking”)

It can also rebase (with git config --global pull.rebase true):
* git fetch
* git rebase origin/mybranch

Git advanced usage 2026-02-03 18/38

Git history (pull)

So what does git pull actually do?
* git fetch

* git merge origin/mybranch (remote and branch determined via
“tracking”)

It can also rebase (with git config --global pull.rebase true):
* git fetch
* git rebase origin/mybranch

| highly suggest to use git pull with rebase enabled

Git advanced usage 2026-02-03 18/38

Useful commands - tig

Merge pull reque|commit 69202fa7297f057k d19e307692dd

= igi 1
H Use transform overload for two ra
n eraC Ive y Merge pull request #209 from be

Avoid checking for TBB backend

. Merge pull request #211 from
browse h IStO y Removed DoConcurrent flags.
Make DoConcurrentStream.F90 c
Merge pull request #213 fro fixing typo
removing trailing whitespac
removing trailing whitespac | 2
renaming array_init annotatf| 1 file changed, 1 insertion(+), 1 deletion(-)
label annotations by functi
2025-602-19 15:37 -0800 august-knox fixing typo

Use __all to See ?f:i:g i;;ga annotations

relabeling annotations in.
relabeling annotations
a ranC eS moving annotations double dt_min, double dt max, double dt_avg) {
separating cases to reuse r ricout
adding instantiation std::left << std::setw(12) << function
updating typing
changing return var names
moving return statements std::left << std::setw(12) std::setprecision(5) << dt_min
moving cali flush std::left << std::setw(12) std::setprecision(5) << dt_max
testing refactor std::left << std::setw(12) std::setprecision(5) << dt_avg
Include missing run rules
Merge pull request #188 fro
support_large_arrays
Merge pull request #186 from go
Whitespace
Missing std:: and whitespace
Fix typo gigibytes to gibibytes
Fix white space
Add comment about Dot answer
Implement support for choosing
Update src/main.cpp
Update src/main.cpp
Update src/Unit.h
Update src/Unit.h
Update src/Unit.h
Update src/cuda/CUDAStream.cu
Fix OpenMP model.cmake flags
Cleanup
Update
[main] 69202fa7297f057b60abd19e307692ddafaa8249 - commit 13 of 1121 [diff] 69202fa7297fe57k 119e307692dd 249 - line 1 of 25

Git advanced usage

Useful commands - tig

Merge pull reque|commit 69202fa7297f057k d19e307692dd
H Use transform overload for two ra
n era Ctlve y Merge pull request #209 from be
Avoid checking for TBB backend
. Merge pull request #211 from
browse h IStO y Removed DoConcurrent flags.
Make DoConcurrentStream.F90 c
Merge pull request #213 fro fixing typo
removing trailing whitespac
removing trailing whitespac | 2
renaming array_init annotatf| 1 file changed, 1 insertion(+), 1 deletion(-)
label annotations by functi
2025-602-19 15:37 -0800 august-knox fixing typo

Use __all to See ?f:i:g i:;ga annotations

relabeling annotations
relabeling annotations
a ranC eS moving annotations double dt_min, double dt max, double dt_avg) {
separating cases to reuse r g
adding instantiation << std::setw(12) << function
updating typing
changing return var names
moving return statements << std::setw(12) std::setprecision(5) << dt_min
moving cali flush 88 << std::setw(12) std::setprecision(5) << dt_max
testing refactor << std::setw(12) std::setprecision(5) << dt_avg
Include missing run rules
Merge pull request #188 fro
support_large_arrays
Merge pull request #186 from go
Whitespace
Missing std:: and whitespace

Ll --graph --decorate -

Update STe/imaLit.cpp
Update src/Unit.h
Update src/Unit.h
Update src/Unit.h
Update src/cuda/CUDAStream.cu
Fix OpenMP model.cmake flags
Cleanup
Update
[main] 69202fa7297f057b60abd19e307692ddafaa8249 - commit 13 of 1121 3%| [diff] 69202fa7297f057L 119e307692dd 249 - line 1 of 25

Git advanced usage

Git history (interactive rebase)

Rebase can do much more than reordering commits:
* Edit/fix commits

* Delete commits

* Insert new commits

* Merge/split commits

Git advanced usage 2026-02-03 20/38

Git history (interactive rebase)

Rebase can do much more than reordering commits:
* Edit/fix commits

* Delete commits

* Insert new commits

* Merge/split commits

— git rebase -i 0d8fdfl: Edit history down to (excluding) commit 0d7fdf1

Git advanced usage 2026-02-03 20/38

Git history (interactive rebase)

Rebase can do much more than reordering commits:
* Edit/fix commits

* Delete commits

* Insert new commits

* Merge/split commits

— git rebase -i 0d8fdfl: Edit history down to (excluding) commit 0d7fdf1
— git rebase -i HEAD~8: Edit history of previous 8 commits

Git advanced usage 2026-02-03 20/38

Git history (interactive rebase)

Rebase can do much more than reordering commits:
* Edit/fix commits

* Delete commit
* Insert new co
* Merge/split co

c07e433b
f7fa60ab
82fad7ce
b1a81528
37d61907
5f8bbcd8
2e196ee?2
fbf01lbb3

rocmo
rocmo
rocmo
g ‘*I memory

f metric cannot be
~ last/full coun

rocmon
rocmon:
rocmo

rocmo

O I

rocmo

1
2
4
5
6
7
8
9

—_—> i =
git rebase fce4598b. . fbfo1lbb3 fced598b

— git rebase -

Git advanced usage 2026-02-03 20/38

Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”

Git advanced usage 2026-02-03 21/38

Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort

Git advanced usage 2026-02-03 21/38

Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort

Git advanced usage 2026-02-03 21/38

Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
* Reflogs contain previous commits (even “deleted” commits).

Git advanced usage 2026-02-03 21/38

Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
* Reflogs contain previous commits (even “deleted” commits).
* git reflog

Git advanced usage 2026-02-03 21/38

Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
* Reflogs contain previous commits (even “deleted” commits).

* git reflog

* git reset --hard 84d72f1

Git advanced usage 2026-02-03 21/38

Git history (interactive rebase)

“I messed something up during my rebase. What do | do?”
* You can always abort a rebase with git rebase --abort
* This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
* Reflogs contain previous commits (even “deleted” commits).

* git reflog

* git reset --hard 84d72f1

* Caution: “deleted” commits expire eventually

Git advanced usage 2026-02-03 21/38

Git history (“clean” commits)

Tips:
* “l forgot something”: You can update (without creating a new one) the
last commit via: git commit --amend.

Git advanced usage 2026-02-03 22/38

Git history (“clean” commits)

Tips:
* “l forgot something”: You can update (without creating a new one) the
last commit via: git commit --amend.

* Abort committing by leaving the commit message blank or clearing it.

Git advanced usage 2026-02-03 22/38

Git history (“clean” commits)

Tips:
* “l forgot something”: You can update (without creating a new one) the
last commit via: git commit --amend.
* Abort committing by leaving the commit message blank or clearing it.

* Use verbose git commit. Either via -v or git config --global
commit.verbose true.

Git advanced usage 2026-02-03 22/38

Git history (“clean” commits)

Tips:
* “l forgot something”: You can update (without creating a new one) the
last commit via: git commit --amend.
* Abort committing by leaving the commit message blank or clearing it.

* Use verbose git commit. Either via -v or git config --global
commit.verbose true.

* My opinion: Avoid git commit -m “...". Review your commits via verbose
commit.

Git advanced usage 2026-02-03 22/38

Git history (“clean” commits)

Tips:
F) 3 The paragraph after the first line gives you opportunity to explain your
1 - : : . . .
] I forgot Somethl 4 commit in more detail. Why did you change thlngs

5

last commit via: f;

Abort committingjs

g
Use verbose git [

commit.verbose {Er)

My opinion: Avoigs
commit. =

18 dlff q1t a/myfile hfmvfllp
19 ind 56cf9..5427306 100644
20 --- axmyflle

21 +++ hxmyfllﬁ

22 +1 3 @

23 Hello people

24 +

25 +Nobody there.

Git advanced usage 2026-02-03

Git history (conclusion)

Don’t be afraid of rewriting/rebasing history!

Git

advanced usage 2026-02-03

Git history (conclusion)

Don’t be afraid of rewriting/rebasing history!

Unless it is already public!

Git advanced usage 2026-02-03 23/38

Friedrich-Alexander-Universitét
| Erlangen-Nirnberg

Git staging area

‘I want to commit. | have to type git add file.txt and git commit™:

Git advanced usage 2026-02-03 25/38

Git staging area

‘I want to commit. | have to type git add file.txt and git commit™:
* Yes, but why? Not all version control systems have it (e.g. SVN)

Git advanced usage 2026-02-03 25/38

Git staging area

‘I want to commit. | have to type git add file.txt and git commit™:
* Yes, but why? Not all version control systems have it (e.g. SVN)
* Before we commit we can carefully choose what to commit!

Git advanced usage 2026-02-03 25/38

Git staging area

‘I want to commit. | have to type git add file.txt and git commit”:
* Yes, but why? Not all version control systems have it (e.g. SVN)
* Before we commit we can carefully choose what to commit!

chael@michael -HP git status
On branch master
Changes to be committed:

(use "git restore --staged <file=...

to unstage)

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

Untracked files:
(use "git add <file=>..." to include in what will be committed)

Git advanced usage

2026-02-03

25/ 38

Git staging area

‘I want to commit. | have to type git add file.txt and git commit”:
* Yes, but why? Not all version control systems have it (e.g. SVN)

* Before we commit we can carefully choose what to commit!

michael -HP git status
chael-HP git status

(Changes to be committed:
(use "git restore --staged <file>..." to unstage)

Cha

(Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
Unt
(

Untracked files:
(use "git add <file>..." to include in what will be committed)

Git advanced usage 2026-02-03

25/ 38

Git staging area

Untracked

Unmodified

Modified

Image inspired by Pro Git chapter 2.2

Git advanced usage

2026-02-03

26/38

Git staging area

Untracked

Unmodified Modified

git add myfile.txt

Image inspired by Pro Git chapter 2.2

Git advanced usage

2026-02-03

26/38

Git staging area

Untracked

Unmodified Modified

git add myfile.txt

>

edit myfile.txt _ __ git add myfile.txt_

Image inspired by Pro Git chapter 2.2

Git advanced usage

2026-02-03

26/38

Git staging area

Untracked

Unmodified Modified

git add myfile.txt

>

edit myfile.txt _ __ git add myfile.txt_

git commit

Image inspired by Pro Git chapter 2.2

Git advanced usage

2026-02-03

26/38

Git staging area

Untracked Unmodified Modified

git add myfile.txt

>

edit myfile.txt git add myfile.txt

>

git commit

-
git commit (after: git rm --cached)

Image inspired by Pro Git chapter 2.2

Git advanced usage 2026-02-03 26 /38

Git staging area

Untracked

Unmodified Mod

git add myfile.txt

>

edit myfile.txt

git co

>

qit ca

git add myfile.txt>

< git reset

mmit

-
mmit (after: git rm --ca

ched)

Image inspired by Pro Git chapter 2.2

Git advanced usage

2026-02-03

26/38

Git staging area

Untracked Unmodified Modified
git add myfile.txt >
edit myfile.txt _ __ git add myfile.txt_
- git reset
-< git reset --hard
- git commit
- git commit (after: git rm --cached)

Image inspired by Pro Git chapter 2.2

Git advanced usage

2026-02-03

26/38

Git staging area

Untracked Unmodified Modified Staged
git add myfile.txt >
edit myfile.txt _ __ git add myfile.txt_
- git reset
-< git reset --hard
git reset --soft HEAD~1 >
- git commit
- git commit (after: git rm --cached)

Image inspired by Pro Git chapter 2.2

Git advanced usage

2026-02-03

26/38

Git staging area

“But | only want to commit funcA in main.c, not my debug statements™:

Git advanced usage 2026-02-03 271738

Git staging area

“But | only want to commit funcA in main.c, not my debug statements™:
— git add -p main.c

Git advanced usage 2026-02-03 271738

Git staging area

git add -p main.c

“But | only want to commit funcAl I ARy, SRR
index cc388fa..cl2b2bc 100644

— git add -p main.c D iR

+++ b/main.c

#include <stdio.h>

int funcA(int x) {

}

int main(void) {
TR =R

= funch{x);
printf(”a: \d\n”, x);

Git advanced usage 2026-02-03 27738

Git staging area

michael@michael -HP git add -p main.c

“‘But | only want to commit funCACR SRR FASEYL EF UYL EE TN
— git add -p main.c

index cc388fa..cl2b2bc 100644
--- a/main.c
+++ b/main.c

#include <stdio.h>

#include <stdio.h>

int funcA(int x) {

}

int main(void) {
InE =3

Git advanced usage 2026-02-03

Git staging area

haal
ac

L@michael -HP git add -p main.c

“‘But | only want to commit funCACR SRR FASEYL EF UYL EE TN
— git add -p main.c

Mmoo
mic

index cc388fa..cl2b2bc 100644
--- a/main.c
+++ b/main.c

#include <stdio.h>

}

int main(void) {
TRE X — -

x = TuncA(x);
printf("a: \d\n", x);

Git advanced usage 2026-02-03

Friedrich-Alexander-Universitét
| Erlangen-Nirnberg

git stash

unrzl104h@testfrontl git pull
Updating e45c56c0f8..66ee941fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.

Aborting

—

Current branch: main

\
\
\
\

unco\mmitted,
modified files

Git advanced usage 2026-02-03 29/38

git stash

unrzl104h@testfrontl git pull
Updating e45c56c0f8..66ee941fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.

Aborting

—

Current branch: main

\
\
\
\

unco\mmitted,
modified files

Git advanced usage 2026-02-03 29/38

git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.

Aborting

—

Current branch: main

orginmain g e

unco\mmitted,
modified files

Git advanced usage 2026-02-03 29/38

git stash

unrzl@4h@testfrontl

git pull
Updating e45c56c0f8..66ee94]1fea

error: Your local changes to the following files would be overwritten by merge:

README . md

Please commit your changes or stash them before you merge.
Aborting

—

Current branch: main

unco\mmitted,
modified files

Git advanced usage

2026-02-03 29/38

git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.

Aborting

—

Current branch: main

\
\
\
\
\

unco\mmitted,
modified files

Git advanced usage 2026-02-03 29/38

git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.

Aborting

—

.
Current branch: main

Git advanced usage 2026-02-03 29/38

git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.
Aborting

—

.
Current branch: main

Git advanced usage 2026-02-03 29/38

git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.
Aborting

—

.
Current branch: main

Git advanced usage 2026-02-03 29/38

git stash

unrzl04h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.
Aborting

—

.
Current branch: main

Git advanced usage 2026-02-03 29/38

git stash

unrz104h@testfrontl git pull
Updating e45c56c0f8..66ee94]1fea
error: Your local changes to the following files would be overwritten by merge:

README . md
Please commit your changes or stash them before you merge.
Aborting

—

.
Current branch: main

Git advanced usage 2026-02-03 29/38

git stash

unrzl@4h@testfrontl

git pull
Updating e45c56c0f8..66ee94]1fea

error: Your local changes to the following files would be overwritten by merge:

README . md

Please commit your changes or stash them before you merge.
Aborting

—

.
Current branch: main

Git advanced usage

2026-02-03 29/38

Friedrich-Alexander-Universitét
| Erlangen-Nirnberg

Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Git advanced usage 2026-02-03 31/38

Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:

Git advanced usage 2026-02-03 31/38

Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:
* mkdir likwid && cd likwid

Git advanced usage 2026-02-03 31/38

Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:
* mkdir likwid && cd likwid
* git 1init

Git advanced usage 2026-02-03 31/38

Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:

* mkdir likwid && cd likwid

* git 1init

* git remote add origin
‘https://github.com/RRZE-HPC/likwid’

Git advanced usage 2026-02-03 31/38

Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:

* mkdir likwid && cd likwid

* git 1init

* git remote add origin
‘https://github.com/RRZE-HPC/likwid’

* git switch --track origin/master

Git advanced usage 2026-02-03 31/38

Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:

* mkdir likwid && cd likwid

* git 1init

* git remote add origin
‘https://github.com/RRZE-HPC/likwid’

* git switch --track origin/master

— origin is Git's default name for a remote

Git advanced usage 2026-02-03 31/38

Git remotes

‘I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalentof git clone ‘https://github.com/RRZE-HPC/likwid’:

* mkdir likwid && cd likwid

* git 1init

* git remote add origin
‘https://github.com/RRZE-HPC/likwid’

* git switch --track origin/master

— origin is Git's default name for a remote
— master is the default branch of LIKWID

Git advanced usage 2026-02-03 31/38

Git remotes

Interact with repositories outside yours:
* Way of interacting with GitHub / GitLab

Git advanced usage 2026-02-03 32/38

Git remotes

Interact with repositories outside yours:
* Way of interacting with GitHub / GitLab
* “Fancy platforms” are not mandatory. Remote can also be:

— A folder on a machine reachable via standard SSH

Git advanced usage 2026-02-03 32/38

Git remotes

Interact with repositories outside yours:
* Way of interacting with GitHub / GitLab
* “Fancy platforms” are not mandatory. Remote can also be:

— A folder on a machine reachable via standard SSH

— Addifferent folder on your local machine

Git advanced usage 2026-02-03 32/38

Git remotes

Interact with repositories outside yours:
* Way of interacting with GitHub / GitLab
* “Fancy platforms” are not mandatory. Remote can also be:

— A folder on a machine reachable via standard SSH

— Addifferent folder on your local machine
* You can have as many remotes as you like (e.g. mirrors, backups, etc.)

Git advanced usage 2026-02-03 32/38

Git remotes

Example: Copy main branch from Github repository to GitLab:
* git clone ‘git@github.com:myuser/myproject.git’

Git advanced usage 2026-02-03 33/38

Git remotes

Example: Copy main branch from Github repository to GitLab:
* git clone ‘git@github.com:myuser/myproject.git’
* cd myproject

Git advanced usage 2026-02-03 33/38

Git remotes

Example: Copy main branch from Github repository to GitLab:

* git clone ‘git@github.com:myuser/myproject.git’

* cd myproject

» git remote add gitlab ‘git@gitlab.com:myuser/myproject.git’

Git advanced usage 2026-02-03 33/38

Git remotes

Example: Copy main branch from Github repository to GitLab:

* git clone ‘git@github.com:myuser/myproject.git’

* cd myproject

» git remote add gitlab ‘git@gitlab.com:myuser/myproject.git’
* git push gitlab main

Git advanced usage 2026-02-03 33/38

Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:

Git advanced usage 2026-02-03 34/38

Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:
* Branch “tracking” assigns a local branch to a remote

Git advanced usage 2026-02-03 34/38

Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:
* Branch “tracking” assigns a local branch to a remote

* git clone automatically tracks the remote’s default branch
(origin/HEAD)

E.g. main automatically tracks origin/main

Git advanced usage 2026-02-03 34/38

Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:
* Branch “tracking” assigns a local branch to a remote

* git clone automatically tracks the remote’s default branch
(origin/HEAD)
E.g. main automatically tracks origin/main

* You can change it any time: git branch -u neworigin

Git advanced usage 2026-02-03 34/38

Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:
* Branch “tracking” assigns a local branch to a remote
* git clone automatically tracks the remote’s default branch
(origin/HEAD)
E.g. main automatically tracks origin/main
* You can change it any time: git branch -u neworigin
* When it doesn'’t exist yet on remote: git push -u neworigin

Git advanced usage 2026-02-03 34/38

Git remotes

“Why do | sometimes need to specify the remote and sometimes not?”:

Branch “tracking” assigns a local branch to a remote

git clone automatically tracks the remote’s default branch
(origin/HEAD)

E.g. main automatically tracks origin/main

You can change it any time: git branch -u neworigin
When it doesn’t exist yet on remote: git push -u neworigin
Afterwards you can push/pull “normally”

Git advanced usage 2026-02-03

34/38

Friedrich-Alexander-Universitét
| Erlangen-Nirnberg

Summary

Useful commands to remember:

git
git
git
git
git
git
git
git
git
git

status - Know what’s going on

log -p <filename> - Show history of a file

log -S <searchterm> - Search for diff affecting a term

log -G <searchterm> - Search for diff containing a term
blame <filename> - Show file with history annotation

reflog - Show all commits (including “lost” commits)

gc - Cleanup unreferenced commits (reflog recovery impossible!)
rebase <branch> - Reapply commits onto branch

rebase -1 <commit> - Interactively edit commits up to commit
cherry-pick <commit> - Reapply committo current branch

Git advanced usage

2026-02-03 36/38

Summary

Useful commands to remember:

git
git
git
git
git
git
git

add -p <filename> - Perform git add on parts of filename
commit -v - See what you commit

stash - Move unstaged changes to “stash” and reset files
stash pop - Restore all previous unstaged changes

reset <filename> - Unstage all changes of filename

reset --hard - Discard all uncommited changes

reset --hard <commit> - Make current branch point to

commit. Discards all commits that are not part of new branch history!

git
git

reset <commit> - Show changes of commit
bisect start <badcommit> <goodcommit> - Find a

regression between two commits

Git advanced usage

2026-02-03 37/38

Summary

Other useful resources:
* Manpages are really good!
* man gltrevisions - Explanations how version strings look like
* Pro Git book

Git advanced usage 2026-02-03 38/38

https://git-scm.com/book/en/v2

	Git advanced usage Michael Panzlaff Erlangen National High Pe
	Tips and tricks with Git
	Slide: 3
	Slide: 4
	Introduction (1)
	Introduction (2)
	Introduction (3)
	Introduction (4)
	Introduction (5)
	Introduction (2) (1)
	Introduction (2) (2)
	Introduction (2) (3)
	Introduction (2) (4)
	Introduction (2) (5)
	Introduction (2) (6)
	Slide: 7
	Slide: 8
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Git history (with merge) (1)
	Git history (with merge) (2)
	Git history (with merge) (3)
	Git history (with merge) (4)
	Git history (with merge) (5)
	Git history (with merge) (2) (1)
	Git history (with merge) (2) (2)
	Git history (with merge) (2) (3)
	Git history (with merge) (2) (4)
	Git history (with merge) (2) (5)
	Git history (with merge) (2) (6)
	Git history (with merge) (2) (7)
	Git history (with merge) (2) (8)
	Git history (with merge) (2) (9)
	Git history (with merge) (3) (1)
	Git history (with merge) (3) (2)
	Git history (with merge) (3) (3)
	Git history (with merge) (3) (4)
	Git history (with merge) (3) (5)
	Git history (with merge) (3) (6)
	Git history (with merge) (4) (1)
	Git history (with merge) (4) (2)
	Git history (with merge) (4) (3)
	Git history (with rebase) (1)
	Git history (with rebase) (2)
	Git history (with rebase) (3)
	Git history (with rebase) (4)
	Git history (with rebase) (5)
	Git history (with rebase) (6)
	Git history (with rebase) (2) (1)
	Git history (with rebase) (2) (2)
	Git history (with rebase) (2) (3)
	Git history (with rebase) (2) (4)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 16 (3)
	Slide: 16 (4)
	Slide: 16 (5)
	Slide: 16 (6)
	Slide: 17
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 18 (4)
	Useful commands - tig (1)
	Useful commands - tig (2)
	git stash (1)
	git stash (2)
	git stash (3)
	git stash (4)
	Slide: 21 (1)
	Slide: 21 (2)
	Slide: 21 (3)
	Slide: 21 (4)
	Slide: 21 (5)
	Slide: 21 (6)
	Slide: 21 (7)
	Slide: 22 (1)
	Slide: 22 (2)
	Slide: 22 (3)
	Slide: 22 (4)
	Slide: 22 (5)
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 24
	Git history (1)
	Git history (2)
	Git history (3)
	Git history (4)
	Git history (5)
	Slide: 26 (1)
	Slide: 26 (2)
	Slide: 26 (3)
	Slide: 26 (4)
	Slide: 26 (5)
	Slide: 26 (6)
	Slide: 26 (7)
	Slide: 26 (8)
	Slide: 27 (1)
	Slide: 27 (2)
	Slide: 27 (3)
	Slide: 27 (4)
	Slide: 27 (5)
	Slide: 28
	Slide: 29 (1)
	Slide: 29 (2)
	Slide: 29 (3)
	Slide: 29 (4)
	Slide: 29 (5)
	Slide: 29 (6)
	Slide: 29 (7)
	Slide: 29 (8)
	Slide: 29 (9)
	Slide: 29 (10)
	Slide: 29 (11)
	Slide: 30
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 31 (3)
	Slide: 31 (4)
	Slide: 31 (5)
	Slide: 31 (6)
	Slide: 31 (7)
	Slide: 31 (8)
	Slide: 32 (1)
	Slide: 32 (2)
	Slide: 32 (3)
	Slide: 32 (4)
	Slide: 33 (1)
	Slide: 33 (2)
	Slide: 33 (3)
	Slide: 33 (4)
	Slide: 34 (1)
	Slide: 34 (2)
	Slide: 34 (3)
	Slide: 34 (4)
	Slide: 34 (5)
	Slide: 34 (6)
	Slide: 35
	Summary
	Summary (2)
	Slide: 38

