
Git advanced usage 

Michael Panzlaff

Erlangen National High Performance Computing Center (NHR@FAU)

NHR@FAU HPC Café
February 3, 2026

mailto:NHR@FAU


Git advanced usage

Michael Panzlaff

Erlangen National High Performance Computing Center (NHR@FAU)

HPC Café, February 3, 2026





2026-02-03

Introduction



Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

5 / 38

https://github.com/RRZE-HPC/likwid


Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

But do you know about?
 staging area

5 / 38

https://github.com/RRZE-HPC/likwid


Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

But do you know about?
 staging area
 history

5 / 38

https://github.com/RRZE-HPC/likwid


Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

But do you know about?
 staging area
 history
 reflog

5 / 38

https://github.com/RRZE-HPC/likwid


Git advanced usage 2026-02-03

Introduction

So you probably know those commands?
 git clone https://github.com/RRZE-HPC/likwid
 git pull
 git add main.c
 git commit -m “very much interesting!”
 git push

But do you know about?
 staging area
 history
 reflog Don’t worry, this won’t be a “just theory” lesson :-) 
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Git history

First things first:
 What it is not: The history of the tool Git itself
 What it is: The history of commits of a Git repository

Why is history relevant?
 We use it to look back in time.

→ It should be easy to look back in time
 Because it is non-linear (directed acyclic graph)

→ complications during merge/rebase
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 mkdir myrepo && cd myrepo      # Create directory
 git init                       # Init Git repository
 echo “hello” > file.txt        # Create file.txt with some content
 git add file.txt && git commit # Create commit #1 (02d0b) 
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Commit hashes will differ for you!
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Reproduce step 2:
 git remote add origin “git@github.com:myuser/myrepo.git”

# Add a remote called origin
 git push --set-upstream-to origin main

# Push the current branch remote origin and mark it as upstream

Reproduce step 3:
 git switch 182d0                # Switch to a previous commit
 git switch --create feature-a   # Create branch feature-a and       

                                # switch to it
 echo “FAU” > file2.txt          # Create file2.txt
 git add file2.txt && git commit # Create commit #4 (17017)
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Reproduce step 4:
 git switch main         # Switch back to main branch
 git merge feature-a     # Merge changes from feature-a into main

Reproduce step 5:
 git push                # Push new state of main branch to origin
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Git history (with rebase)

Reproduce step 4:
 git rebase main # Rewrite history so that feature-a’s commits are   

                  ontop of main

Reproduce step 5:
 git switch main               # Switch to main
 git merge --ff-only feature-a # Merge feature-a into main, but do   

                              # not create an explicit merge commit

Reproduce step 6:
 same as “merge” example
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● Avoids “opqaue” merge commits (“does this merge commit produce 

functional code?”)
● → clean and linear “easy to read” history

Why not rebase?
● One conflict may have to be resolved more than once (→ more work).
● Other people are working on your branch (→ do not delete someone’s 
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Git history (pull)

So what does git pull actually do?
● git fetch
● git merge origin/mybranch (remote and branch determined via 

“tracking”)

It can also rebase (with git config --global pull.rebase true):
● git fetch
● git rebase origin/mybranch

I highly suggest to use git pull with rebase enabled
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Git history (interactive rebase)

“I messed something up during my rebase. What do I do?”
● You can always abort a rebase with git rebase --abort
● This also works for merging, e.g. during a conflict, via git merge --abort

If you have already completed the rebase, use the reflogs for recovery.
● Reflogs contain previous commits (even “deleted” commits).
● git reflog
● git reset --hard 84d72f1
● Caution: “deleted” commits expire eventually
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Don’t be afraid of rewriting/rebasing history!

Unless it is already public!
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Git staging area

Untracked Unmodified Modified Staged

Image inspired by Pro Git chapter 2.2

git add myfile.txt

edit myfile.txt git add myfile.txt

git reset --hard

git reset

git reset --soft HEAD~1

git commit

git commit (after: git rm --cached)
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git stash pop
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“I want to push to my GitHub/GitLab. This is what origin is, right?”:

Equivalent of git clone ‘https://github.com/RRZE-HPC/likwid’:
● mkdir likwid && cd likwid
● git init
● git remote add origin 

‘https://github.com/RRZE-HPC/likwid’
● git switch --track origin/master

→ origin is Git’s default name for a remote

→ master is the default branch of LIKWID
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Git remotes

Interact with repositories outside yours:
● Way of interacting with GitHub / GitLab
● “Fancy platforms” are not mandatory. Remote can also be:

– A folder on a machine reachable via standard SSH

– A different folder on your local machine
● You can have as many remotes as you like (e.g. mirrors, backups, etc.)
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● git clone ‘git@github.com:myuser/myproject.git’
● cd myproject
● git remote add gitlab ‘git@gitlab.com:myuser/myproject.git’
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Git remotes

“Why do I sometimes need to specify the remote and sometimes not?”:
● Branch “tracking” assigns a local branch to a remote
● git clone automatically tracks the remote’s default branch 

(origin/HEAD)

E.g. main automatically tracks origin/main
● You can change it any time: git branch -u neworigin
● When it doesn’t exist yet on remote: git push -u neworigin
● Afterwards you can push/pull “normally”
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Summary

Useful commands to remember:
 git status → Know what’s going on
 git log -p <filename> → Show history of a file
 git log -S <searchterm> → Search for diff affecting a term
 git log -G <searchterm> → Search for diff containing a term
 git blame <filename> → Show file with history annotation
 git reflog → Show all commits (including “lost” commits)
 git gc → Cleanup unreferenced commits (reflog recovery impossible!)
 git rebase <branch> → Reapply commits onto branch
 git rebase -i <commit> → Interactively edit commits up to commit 
 git cherry-pick <commit> → Reapply commit to current branch
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Summary

Useful commands to remember:
 git add -p <filename> → Perform git add on parts of filename
 git commit -v → See what you commit
 git stash → Move unstaged changes to “stash” and reset files
 git stash pop → Restore all previous unstaged changes
 git reset <filename> → Unstage all changes of filename
 git reset --hard → Discard all uncommited changes
 git reset --hard <commit> → Make current branch point to 

commit. Discards all commits that are not part of new branch history!
 git reset <commit> → Show changes of commit
 git bisect start <badcommit> <goodcommit> → Find a 

regression between two commits
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Summary

Other useful resources:
 Manpages are really good!
 man gitrevisions → Explanations how version strings look like
 Pro Git book

38 / 38

https://git-scm.com/book/en/v2
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