
Scaling and accelerating LLM trainings
Andrea Pilzer, Solutions Architect | NHR PerfLab Seminar/15.01.26

• Intro & Motivational Example

• TL;DR Parallelization Techniques

• Parallelization Techniques

•

•

Agenda

3NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Andrea Pilzer
apilzer@nvidia.com

• Since May 2022 Solution Architect at NVIDIA
• SA HER, Leading NVAITC Italy
• VLMs, Video Models, LLMs

• Postdoc at Aalto (Helsinki, Finland)
• Uncertainty quantification for deep learning

• Previous industrial experience (Huawei Ireland, Dublin)
• Domain Adaptation

• Ph.D. in CS @ Trento (2016-2019)
• Supervised by Elisa Ricci & Nicu Sebe
• Main topic stereo matching

Introduction

NVIDIA’s Evolution From Chips to an AI Infrastructure Company

ACCELERATED COMPUTING

AI Scaling Laws Drive Exponential Demand for Compute
New “long thinking” supercharges inference scaling

TEST-TIME SCALING
“LONG THINKING”

Demo Leonardo

TL;DR

This Session in One Slide (1)
NVIDIA GPUs: Remember you are using HW

• Capabilities

• Tensor Cores – accelerate GEMM

• NVENC – Encode video

• NVDEC – Decode video

• NVJPEG – Decode JPEG images

• Optical flow – Track pixels

• CUDA – General-purpose compute, train, infer, …

• vRAM – our OOM friend ☺ (the most expensive part)

• Highly accelerated

• Power efficient

• Scalable

• If you want to learn more https://www.nvidia.com/en-us/on-
demand/session/gtc25-s72756/

CPU

PCIe

RAM

NVENC

NVDEC

NVJPEG

Optical Flow
Hardware

CUDA & Tensor Cores

VRAM

Not all features are available in all GPUs. Please check NVIDIA developer zone web site for detailed information

https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/

This Session in One Slide (2)
Speed Memory Trade-Off

Single GPU Multiple GPUs (4D parallelism)

• DP, Data Parallelism

• PP, Pipeline Parallelism (Model Parallelism)

• TP, Tensor Parallelism (Model Parallelism)

• SP, Sequence Parallelism (Activation Parallelism)

• CP, Context Parallelism (Activation Parallelism)

[1] Efficient Training on a Single GPU
(*) Listed here because it affects single GPU, but it is used for multi-GPU training
[2] https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
[3] Efficient Training on Multiple GPUs

Method Speed Memory

Gradient
Accumulation

No Yes

Gradient
Checkpointing

No Yes

Mixed Precision
Training

Yes (No)

Batch Size Yes Yes

Optimizer Choice Yes Yes

DataLoader Yes No

Distributed
Optimizer*

No Yes

Offloading No Yes

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_many

This Session in One Slide (3)
What do I use when? A super simplified take on it

• AI is a fine balance between networking and computing

• So which techniques should I use and when?

• First, optimize on one GPU

• use memory friendly data formats

• Check your dataloader hyperparameters

• Use reduced precision

• After that, it depends, but generally these help ☺

• DDP is the fastest if your model fits in memory

• DDP + Zero/FSDP to reduce memory use

• They might not be enough, for transformers we can use also TP typically within the same node to take advantage of NVLink interconnect for
matrices sync

• When they are not enough, we can play with PP

• On top of PP, we can play with other techniques like offloading and activation recomputation, sometimes it is worth to recompute to save
memory while anyway you wait for communications and synchronizations to happen

Notes:
In case you use NVIDIA Superchips like GH or GB offloading is very powerful thanks to the high CPU-GPU bandwidth

Parallelization Techniques

Utilizing a single GPU efficiently

Dealing with memory constraints

Gradient accumulation

• Gradient accumulation is a mechanism to split the batch of samples — used for training a neural network — into several mini-batches of
samples that will be run sequentially.

https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa

Gradient accumulation

optimizer = ...

for epoch in range(...):

for i, sample in enumerate(dataloader):

inputs, labels = sample

optimizer.zero_grad()

Forward Pass

outputs = model(inputs)

Compute Loss and Perform Back-propagation

loss = loss_fn(outputs, labels)

loss.backward()

Update Optimizer optimizer.step()

optimizer = ...

NUM_ACCUMULATION_STEPS = ...

for epoch in range(...):

 for idx, sample in enumerate(dataloader):

 inputs, labels = sample

 # Forward Pass

 outputs = model(inputs)

 # Compute Loss and Perform Back- propagation

 loss = loss_fn(outputs, labels)

 # Normalize the Gradients

 loss = loss / NUM_ACCUMULATION_STEPS

 loss.backward()

 if ((idx + 1) % NUM_ACCUMULATION_STEPS ==

 0) or (idx + 1 == len(dataloader)):

 optimizer.zero_grad()

 # Update Optimizer

 optimizer.step()

Activation Re-computation or gradient checkpointing
https://pytorch.org/docs/stable/checkpoint.html

• The memory intensive part of training deep neural networks is computing the gradient of the loss by backpropagation.

• By checkpointing nodes in the computation graph defined by your model, and recomputing the parts of the graph in between those
nodes during backpropagation, it is possible to calculate gradients at reduced memory cost.

https://github.com/cybertronai/gradient-checkpointing

Activation Re-computation or gradient checkpointing

Dataloader

Dataloaders

• Think of the GPU as a very powerful parallel processing device hungry for data

• Dataloaders have very important parameters that you can tune

• Workers, how many subprocesses the dataloader can create

• Prefetching, how many batches each worker will load at the time

• Pin memory, allow workers to always use a specific memory address in CPU & GPU

• Asyncronous copy, CUDA can help in hiding data moving cost behind other operations

• data = data.to(device) ⇒ data = data.to(device, non_blocking=True)

• There are also specific libraries you can use to accelerate dataloading like NVIDIA DALI for images and PyNvVideoCodec for videos

NVIDIA Video/Image Processing Hardware
Dedicated hardware for video/image decoding, encoding, optical flow, post-processing

• Capabilities

• NVENC – Encode video

• NVDEC – Decode video

• NVJPEG – Decode JPEG images

• Optical flow – Track pixels

• CUDA – General-purpose compute, train, infer, …

• Highly accelerated

• Power efficient

• Scalable

• If you want to learn more https://www.nvidia.com/en-us/on-
demand/session/gtc25-s72756/

CPU

PCIe

RAM

NVENC

NVDEC

NVJPEG

Optical Flow
Hardware

CUDA & Tensor Cores

VRAM

Not all features are available in all GPUs. Please check NVIDIA developer zone web site for detailed information

https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/

How to exploit HW decoding?
DALI and PyNvVideoCodec

• Some NVIDIA libraries can help you with HW accelerated decoding

• DALI for images and videos

• PyNvVideoCodec for videos

• DALI and PyNvC are easy drop in replacements for existing code implementations

• What are the important things to remember

• GPUs can be slowed down by CPU data preprocessing -> benchmark for your use case

• CUDA zero copy is a great advantage -> decoding compressed data in GPU means less bandwith for data transfer

• Use memory friendly data formats -> few compressed files rather than millions images

Notes:
If interested in video, feel free to check out video materials I am collecting in a playbook on GitHub here, accelerated-video-for-ai-playbook

https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook
https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook
https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook
https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook
https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook
https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook
https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook
https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook
https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook

Multimodal data loading with Megatron Energon

What is Megatron Energon?

• Advanced multimodal dataloader for Megatron-LM

• Efficient loading and processing of diverse data

• Flexible configuration via Python API or CLI

• pip install megatron-energon

Key Features

• Multimodal Support: Text, images, audio

• Data Blending: Mix datasets with fine-grained control

• Distributed Loading: Optimized for multi-node training
environments

• Save & Restore: Resume training state from exact data position

Data Processing Capabilities

• WebDataset Support: Storage for multimodal data

• Packing: Optimize sequence length utilization

• Grouping: Smart batching of similar-length sequences

• Joining: Combine multiple dataset sources

• Object storage: Optimized loading from common object storage
providers

Usage Example

from megatron.energon import get_train_dataset, get_loader,

WorkerConfig

load a training dataset and create a data loader

ds = get_train_dataset(

'/my/dataset/path',

batch_size=1,

shuffle_buffer_size=100,

max_samples_per_sequence=100,

worker_config=WorkerConfig.default_worker_config(),

)

loader = get_loader(ds)Megatron Energon Docs

https://nvidia.github.io/Megatron-Energon/

Code (PyNvC)

https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook/blob/main/assets/pynvc_dataloader.py

Data Parallelism

(Distributed) Data Parallelism
DDP vs DP

Distributed Data Parallelism fixes a weakness of DP, where one process controls all the GPUs training on a
node

With DDP each GPU has it’s own task, they need to wait for each other only when synchronizing the
gradients

There is also the option of using more advanced data parallelism techniques like Zero or FSDP but
fundamentally the way your training works is the same

Training a Neural Network
Multiple GPUs

CPU/GPU

ℒ(ො𝑦, 𝑦) GPU ℒ(ො𝑦, 𝑦)

CPU/GPU

CPU/GPU

𝑊[2] = 𝑊[2] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[2]

𝑊[1] = 𝑊[1] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[1]

𝑊[2] = 𝑊[2] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[2]

𝑊[1] = 𝑊[1] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[1]

𝑊[3] = 𝑊[3] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[3]
𝑊[3] = 𝑊[3] − 𝛼 ∗

𝜕ℒ

𝜕𝑊[3]

W[1]

ො𝑦

W[2]

W[3]

GPU

W[1]

ො𝑦

W[2]

W[3]

Parameters Sharding

Distributed Data Parallel - DDP
FairScale: Fully Sharded Data Parallel - FSDP

For each GPU:

1. Get the shard of the model

2. Get the shard of the data

3. Local forward pass: Gather weights from the
others

4. Local backward pass: Gather again weights
from the others

5. Local weights shard update: Synchronize
Gradients

https://fairscale.readthedocs.io/en/stable/api/nn/fsdp.html

Sharded Data Parallelism
ZeRO: Zero Redundancy Optimizer

• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages) for a progressive memory savings and Communication
Volume

Sharded Data Parallelism
Communication overheads

Model Parallelism

Model Parallelism

•Pipeline (Inter-Layer) Parallelism
• Split sets of layers across multiple devices

• Layer 0,1,2 and layer 3,4,5 are on difference devices

•Tensor (Intra-Layer) Parallelism
• Split individual layers across multiple devices

• Both devices compute difference parts of Layer
0,1,2,3,4,5

Pipeline Parallelism

1

1

1

1 1

GPU 1

GPU 2

GPU 3

GPU 4

Time

Forward pass

Backward pass

Pipeline Parallelism
Challenges

Challenges – Idle Workers

1

1

1

1 1

GPU 1

GPU 2

GPU 3

GPU 4

Time

Forward pass

Backward pass

Pipeline Parallelism

Split batch into micro batches and pipeline execution

Forward pass

Backward pass

1a 1a

1a 1a

1a 1a

1a 1a

GPU 1

GPU 2

GPU 3

GPU 4

Time

Pipeline Parallelism

Split batch into micro batches and pipeline execution

Forward pass

Backward pass

GPU 1

GPU 2

GPU 3

GPU 4

Time

1a 1b 1a 1b

1a 1b 1a 1b

1a 1b 1a 1b

1a 1a 1b 1b

Pipeline Parallelism

Forward pass

Backward pass

GPU 1

GPU 2

GPU 3

GPU 4

Time

1a 1b 1c 1a 1b 1c

1a 1b 1c 1a 1b 1c

1a 1b 1c 1a 1b 1c

1a 1a 1b 1b 1c 1c

Pipeline Parallelism
Split batch into micro batches and pipeline execution

Forward pass

Backward pass

GPU 1

GPU 2

GPU 3

GPU 4

Time

1a 1b 1c 1a 1b 1c

1a 1b 1c 1a 1b 1c

1a 1b 1c 1a 1b 1c

1a 1a 1b 1b 1c 1c

1a 1b 1c 1d 1a 1b 1c 1d

1a 1b 1c 1d 1a 1b 1c 1d

1a 1b 1c 1d 1a 1b 1c 1d

1a 1a 1b 1b 1c 1c 1d 1d

Pipeline Parallelism
Split batch into micro batches and pipeline execution

Split batch into micro batches and pipeline execution

Forward pass

Backward pass

GPU 1

GPU 2

GPU 3

GPU 4

Time

1a 1b 1c 1d 1a 1b 1c 1d

1a 1b 1c 1d 1a 1b 1c 1d

1a 1b 1c 1d 1a 1b 1c 1d

1a 1a 1b 1b 1c 1c 1d 1d

1a 1b 1c 1d 1a 1b 1c 1d 2a 2b

1a 1b 1c 1d 1a 1b 1c 1d 2a

1a 1b 1c 1d 1a 1b 1c 1d

1a 1a 1b 1b 1c 1c 1d 1d

Pipeline Parallelism

Split batch into micro batches and pipeline execution

Forward pass

Backward pass

1

1

1

1 1

GPU 1

GPU 2

GPU 3

GPU 4

Time

Split batch into micro batches and pipeline execution

1a 1b 1c 1d 1a 1b 1c 1d 2a 2b

1a 1b 1c 1d 1a 1b 1c 1d 2a

1a 1b 1c 1d 1a 1b 1d 1d

1a 1a 1b 1b 1c 1c 1d 1d

Time

GPU 1

GPU 2

GPU 3

GPU 4

Pipeline Parallelism

Split batch into micro batches and pipeline execution

Forward pass

Backward pass

GPU 1 1 2 3 4 1 5 2 6 3 7 4 8 5 9 6 7 8 9

GPU 2 1 2 3 1 4 2 5 3 6 4 7 5 8 6 9 7 8 9

GPU 3 1 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 9

GPU 4 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Time

Pipeline Parallelism

Code (DualPipe)

https://gitlab.hpc.cineca.it/apilzer0/scalable-ai-modena/-/blob/main/src/part-2/dualpipe/dualpipe.ipynb

Tensor Parallelism

Tensor Parallelism

• Relatively simple to implement

• Easier to load-balance

• Less restrictive on the batch-size (avoids bubble issue in pipelining)

• Tensor parallelism works well for large matrices

• Example: Transformers have large GEMMs

Simple example of Tensor parallelism

79

	Slide 1: Scaling and accelerating LLM trainings
	Slide 2
	Slide 3: Andrea Pilzer
	Slide 4
	Slide 5: NVIDIA’s Evolution From Chips to an AI Infrastructure Company
	Slide 6
	Slide 7: AI Scaling Laws Drive Exponential Demand for Compute
	Slide 8
	Slide 9
	Slide 10: This Session in One Slide (1)
	Slide 11: This Session in One Slide (2)
	Slide 12: This Session in One Slide (3)
	Slide 13
	Slide 14
	Slide 40
	Slide 41: Gradient accumulation
	Slide 42: Gradient accumulation
	Slide 43: Activation Re-computation or gradient checkpointing
	Slide 44: Activation Re-computation or gradient checkpointing
	Slide 48
	Slide 49: Dataloaders
	Slide 50: NVIDIA Video/Image Processing Hardware
	Slide 51: How to exploit HW decoding?
	Slide 52: Multimodal data loading with Megatron Energon
	Slide 53
	Slide 54
	Slide 55: (Distributed) Data Parallelism
	Slide 56: Training a Neural Network
	Slide 58
	Slide 59: Distributed Data Parallel - DDP
	Slide 60: Sharded Data Parallelism
	Slide 61: Sharded Data Parallelism
	Slide 63
	Slide 64: Model Parallelism
	Slide 65
	Slide 66: Pipeline Parallelism
	Slide 67: Pipeline Parallelism
	Slide 68: Pipeline Parallelism
	Slide 69: Pipeline Parallelism
	Slide 70: Pipeline Parallelism
	Slide 71: Pipeline Parallelism
	Slide 72: Pipeline Parallelism
	Slide 73: Pipeline Parallelism
	Slide 74: Pipeline Parallelism
	Slide 76
	Slide 77
	Slide 78: Tensor Parallelism
	Slide 79: Simple example of Tensor parallelism
	Slide 85

