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Introduction




NVIDIA’s Evolution From Chips to an Al Infrastructure Company
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Al Scaling Laws Drive Exponential Demand for Compute

New “long thinking” supercharges inference scaling
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This Session in One Slide (1)
NVIDIA GPUs: Remember you are using HW

e Capabilities

» Tensor Cores — accelerate GEMM

* NVENC - Encode video

* NVDEC — Decode video

* NVJPEG — Decode JPEG images

* Optical flow — Track pixels

e CUDA - General-purpose compute, train, infer, ...

* VRAM — our OOM friend © (the most expensive part)

e Highly accelerated
e Power efficient
e Scalable

e |f you want to learn more https://www.nvidia.com/en-us/on-

demand/session/gtc25-s72756/
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Not all features are available in all GPUs. Please check NVIDIA developer zone web site for detailed information
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This Session in One Slide (2)

Single GPU
Gradient No Yes
Accumulation
Gradient No Yes
Checkpointing
Mixed Precision Yes (No)
Training
Batch Size Yes Yes
Optimizer Choice |Yes Yes
DatalLoader Yes No
Distributed No Yes
Optimizer*
Offloading No Yes

Multiple GPUs (4D parallelism)

DP, Data Parallelism

PP, Pipeline Parallelism (Model Parallelism)
TP, Tensor Parallelism (Model Parallelism)
SP, Sequence Parallelism (Activation Parallelism)

CP, Context Parallelism (Activation Parallelism)

(*) Listed here because it affects single GPU, but it is used for multi-GPU training

NVIDIA
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This Session in One Slide (3)

Al is a fine balance between networking and computing
So which techniques should | use and when?

First, optimize on one GPU

use memory friendly data formats
Check your dataloader hyperparameters
Use reduced precision

After that, it depends, but generally these help ©
DDP is the fastest if your model fits in memory

DDP + Zero/FSDP to reduce memory use

They might not be enough, for transformers we can use also TP typically within the same node to take advantage of NVLink interconnect for
matrices sync

When they are not enough, we can play with PP

On top of PP, we can play with other techniques like offloading and activation recomputation, sometimes it is worth to recompute to save
memory while anyway you wait for communications and synchronizations to happen

NVIDIA



Parallelization Techniques



Utilizing a single GPU efficiently



Dealing with memory constraints



* Gradient accumulation is a mechanism to split the batch of samples — used for training a neural network — into several mini-batches of

samples that will be run sequentially.

Gradient accumulation

GPU
SN MINI-BATCH s MINI-BATCH s MINI-BATCH s MINI-BATCH
0 1 2 3
A 4 h 4 h 4 h 4
grado gradl grad2 grad3
hd WV WV h 4
GLOBAL BATCH GRADIENTS
Time

https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa
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Gradient accumulation

optimizer = ... optimizer =

NUM ACCUMULATION STEPS =

for epoch in range(...): for epoch 1in range(...):

for 1, sample 1n enumerate (dataloader) : for 1dx, sample 1n enumerate (dataloader) :

inputs, labels = sample inputs, labels = sample

optimizer.zero grad () # Forward Pass

# Forward Pass outputs = model (inputs)

outputs = model (1nputs) # Compute Loss and Perform Back- propagation
# Compute Loss and Perform Back-propagation loss = loss fn(outputs, labels)

# Normalize the Gradients

loss = loss fn (outputs, labels)
loss = loss / NUM ACCUMULATION ST:

[
i,
N

loss.backward ()
loss.backward ()

1f ((1dx + 1) % NUM_ACCUMULATION_STEP ==
0) or (1dx + 1 == len(dataloader)) :

# Update Optimizer optimizer.step ()

optimizer.zero grad()
# Update Optimizer

optimizer.step ()
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Activation Re-computation or gradient checkpointing
https://pytorch.org/docs/stable/checkpoint.html

* The memory intensive part of training deep neural networks is computing the gradient of the loss by backpropagation.

* By checkpointing nodes in the computation graph defined by your model, and recomputing the parts of the graph in between those
nodes during backpropagation, it is possible to calculate gradients at reduced memory cost.

......."- ."...;. ......."- = ........'- =

https://github.com/cybertronai/gradient-checkpointing
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Activation Re-computation or gradient checkpointing

checkpoint

O— —O—C—C
O—CO—O—C—C

# b I %, Pl I %, I %,
- - } - -
, A h, r e h, # h, r
Y Y Y Y
# , # , P # , # ,
- - { | -
\, r ', r N \, r \, v

<ANVIDIA. I



Dataloader




Dataloaders

Think of the GPU as a very powerful parallel processing device hungry for data

Dataloaders have very important parameters that you can tune

Workers, how many subprocesses the dataloader can create
Prefetching, how many batches each worker will load at the time
Pin memory, allow workers to always use a specific memory address in CPU & GPU

Asyncronous copy, CUDA can help in hiding data moving cost behind other operations
data = data.to(device) = data = data.to(device, non_blocking=True)

There are also specific libraries you can use to accelerate dataloading like NVIDIA DALI for images and PyNvVideoCodec for videos

NVIDIA



NVIDIA Video/Image Processing Hardware

Dedicated hardware for video/image decoding, encoding, optical flow, post-processing

e Capabilities

* NVENC - Encode video

* NVDEC — Decode video

* NVJPEG — Decode JPEG images

* Optical flow — Track pixels

e CUDA - General-purpose compute, train, infer, ...

e Highly accelerated

e Power efficient

e Scalable

e |f you want to learn more https://www.nvidia.com/en-us/on-

demand/session/gtc25-s72756/

1111 CUDA & Tensor Cores 1111
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N

Not all features are available in all GPUs. Please check NVIDIA developer zone web site for detailed information
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How to exploit HW decoding?

Some NVIDIA libraries can help you with HW accelerated decoding
DALI for images and videos
PyNvVideoCodec for videos

DALI and PyNvC are easy drop in replacements for existing code implementations

What are the important things to remember
GPUs can be slowed down by CPU data preprocessing -> benchmark for your use case
CUDA zero copy is a great advantage -> decoding compressed data in GPU means less bandwith for data transfer
Use memory friendly data formats -> few compressed files rather than millions images

Notes:
If interested in video, feel free to check out video materials | am collecting in a playbook on GitHub here,

NVIDIA
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Multimodal data loading with

What is Megatron Energon? Data Processing Capabilities
WebDataset Support: Storage for multimodal data

Advanced multimodal dataloader for Megatron-LM
Packing: Optimize sequence length utilization

Efficient loading and processing of diverse data Grouping: Smart batching of similar-length sequences
Flexible configuration via Python API or CLI Joining: Combine multiple dataset sources
pip install megatron-energon Object storage: Optimized loading from common object storage
providers
Key Features Usage Example
2 . ' : from t . import t train dat t, t loader,
Multimodal Support: Text, images, audio ;orﬁigofl‘ggenerg‘m port get_train dataset, get_‘oader

Data Blending: Mix datasets with fine-grained control # load a training dataset and create a data loader

ds = get train dataset(

Distributed Loading: Optimized for multi-node training

environments '/my/dataset/path’,

batch size=l,

Save & Restore: Resume training state from exact data position
shuffle buffer size=100,

max samples per sequence=100,
worker config=WorkerConfig.default worker config(),

)

loader = get loader (ds)
_ NVIDIA.


https://nvidia.github.io/Megatron-Energon/

Code (PyNv()



https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook/blob/main/assets/pynvc_dataloader.py

Data Parallelism




(Distributed) Data Parallelism
DDP vs DP

Distributed Data Parallelism fixes a weakness of DP, where one process controls all the GPUs training on a
node

With DDP each GPU has it’s own task, they need to wait for each other only when synchronizing the
gradients

There is also the option of using more advanced data parallelism techniques like Zero or FSDP but
fundamentally the way your training works is the same
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Training a Neural Network
Multiple GPUs
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Distributed Data Parallel - DDP

FairScale: Fully Sharded Data Parallel - FSDP

UFPFDATE
MODEL ALL- FORWARD ALL- BACKWARD
For each GPU:

J:"i N LAYERS r':*.., M LAYERS ..*":"#
| n |
| | |
| |
i |

Get the shard of the model
Get the shard of the data

LCATHER DATHER SYNC
WEIGHTS WEIGHTS GRADS
Local forward pass: Gather weights from the : : :
others . :
Local backward pass: Gather again weights ‘e M LAYERS d N OLAYERS
from the others MODEL ALL- FORWARD ALL- BACKWARD REDUCE- ::ﬂ‘:'_lTTE‘
SHARD > GATHER ) (LOCAL]J GATHER ILOCAL) > SCATTER (LOCAL)
Local weights shard update: Synchronize
Gradients .

https://fairscale.readthedocs.io/en/stable/api/nn/fsdp.html SANVIDIA. I



. deepspeed
Sharded Data Parallelism

/eRO removes the redundancy across data parallel process

Partitioning optimizer states, gradients and parameters (3 stages) for a progressive memory savings and Communication
Volume

gPuy gpu; 8PUn_
Baseline " . (2
P, A
Pﬂs+g ;
PDS+g+p
Parameters Gradients Optimizer L...._s
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Sharded Data Parallelism

Communication overheads

b

Memory Consumption Comm
Formulation Specific Example Volume
gpuo gpui ngN 1 K=12 ¥=7.58 N,=64
31.4GB 1
Pos " x
(2+ K) Y
Pos+g I I I 16.6GB 1x
; erzenew]

OS+g+p 2. N, 1.5x

mn Parameters

« Gradients « Optimizer States
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Model Parallelism




*Pipeline (Inter-Layer) Parallelism

* Split sets of layers across multiple devices
* Layer 0,1,2 and layer 3,4,5 are on difference devices

*Tensor (Intra-Layer) Parallelism

*» Split individual layers across multiple devices
* Both devices compute difference parts of Layer

0,1,2,3,4,5

Model Parallelism
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Pipeline Parallelism
Challenges

Time

GPU 1
GPU 2
GPU 3
GPU 4

Forward pass

I Backward pass
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Pipeline Parallelism
Challenges - Idle Workers

Time | N
GPU 1

GPU 2
GPU 3
GPU 4

Forward pass

I Backward pass
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Pipeline Parallelism
Split batch into micro batches and pipeline execution

Time

GPU 1
GPU 2
GPU 3
GPU 4

Forward pass

I Backward pass
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Pipeline Parallelism
Split batch into micro batches and pipeline execution

Time

GPU 1
GPU 2
GPU 3
GPU 4

Forward pass

I Backward pass
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Pipeline Parallelism

Split batch into micro batches and pipeline execution

Time
GPU 1 1a 1b 1c
GPU 2 1a 1b Tc
GPU 3 1a 1b 1c

GPU 4

T1a

Forward pass

I Backward pass
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Pipeline Parallelism

Split batch into micro batches and pipeline execution

Time

GPU 1 1a 1b 1c 1d
GPU 2 1a 1b 1c 1d

GPU 3 1a 1b 1c 1d
GPU 4 13 1b

Forward pass

I Backward pass
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Pipeline Parallelism
Split batch into micro batches and pipeline execution

Time

GPU 1 1a 1b 1c 1d
GPU 2 1a 1b 1c 1d

GPU 3 1a 1b 1c 1d

Forward pass

I Backward pass
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GPU 1
GPU 2
GPU 3
GPU 4

GPU 1
GPU 2
GPU 3
GPU 4

Time

Time

1a 1b 1c 1d

1a 1b 1c 1d

ipeline P

Split batch inE)IRncro

1a 1b 1c 1d

N

T1a

1D

rall

atchaes anSISISpe Ine execution

Split batch into micro batches and pipeline execution

2a

Forward pass

Backward pass
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Pipeline Parallelism
Split batch into micro batches and pipeline execution

Time : =

GPU 1
GPU 2
GPU 3
GPU 4

total time = (m +p — 1) X (t5 + tp)
ideal time = m x (tf + tp) bubble time p— 1

. bubble time overhead = — _ —
bubble time = (p — 1) X (¢t + tp) ideal time m

p : number of pipeline stages Forward pass

m : number of micro batches

t¢ : forward step time I Backward pass
ty : backward step time
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Code (DualPipe)



https://gitlab.hpc.cineca.it/apilzer0/scalable-ai-modena/-/blob/main/src/part-2/dualpipe/dualpipe.ipynb

Tensor Parallelism




Tensor Parallelism

* Relatively simple to implement

» Easier to load-balance

* Less restrictive on the batch-size (avoids bubble issue in pipelining)
» Tensor parallelism works well for large matrices

* Example: Transformers have large GEMMs
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Simple example of Tensor parallelism

Row Parallel Linear Layer

Y

gy
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X1A1

|

‘ -El \‘ X2 \

|
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B
T

XgA=

{

I

X

forward: Y =Y +Y,
(all- reduce)
backward: 5 = 5¢ (identity)

=[]
X = [X1, X5

forward: X; (split)
backward: ‘” [HJ& dxg]

(all gather)

{—

XA

Column Parallel Linear Layer

S

—>

f:

forward:

q.

Y = [Y,Y5]
(all-gather)

backward: ﬂa—é (split)

A=

forward:
backward:

[Al 3 AQ]

X (1d&nt‘.1t}f)

oL =0L+ %
(all- reduce)

::H:;
-{5|

XA, XA,
{ {r

<ANVIDIA. I



< NVIDIA.




	Slide 1: Scaling and accelerating LLM trainings
	Slide 2
	Slide 3: Andrea Pilzer
	Slide 4
	Slide 5: NVIDIA’s Evolution From Chips to an AI Infrastructure Company
	Slide 6
	Slide 7: AI Scaling Laws Drive Exponential Demand for Compute
	Slide 8
	Slide 9
	Slide 10: This Session in One Slide (1)
	Slide 11: This Session in One Slide (2)
	Slide 12: This Session in One Slide (3) 
	Slide 13
	Slide 14
	Slide 40
	Slide 41: Gradient accumulation
	Slide 42: Gradient accumulation
	Slide 43: Activation Re-computation or gradient checkpointing
	Slide 44: Activation Re-computation or gradient checkpointing
	Slide 48
	Slide 49: Dataloaders
	Slide 50: NVIDIA Video/Image Processing Hardware
	Slide 51: How to exploit HW decoding?
	Slide 52: Multimodal data loading with Megatron Energon
	Slide 53
	Slide 54
	Slide 55: (Distributed) Data Parallelism
	Slide 56: Training a Neural Network
	Slide 58
	Slide 59: Distributed Data Parallel - DDP
	Slide 60: Sharded Data Parallelism 
	Slide 61: Sharded Data Parallelism 
	Slide 63
	Slide 64: Model Parallelism
	Slide 65
	Slide 66: Pipeline Parallelism 
	Slide 67: Pipeline Parallelism
	Slide 68: Pipeline Parallelism
	Slide 69: Pipeline Parallelism
	Slide 70: Pipeline Parallelism
	Slide 71: Pipeline Parallelism
	Slide 72: Pipeline Parallelism
	Slide 73: Pipeline Parallelism
	Slide 74: Pipeline Parallelism
	Slide 76
	Slide 77
	Slide 78: Tensor Parallelism
	Slide 79: Simple example of Tensor parallelism
	Slide 85

