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Introduction



NVIDIA’s Evolution From Chips to an AI Infrastructure Company



ACCELERATED COMPUTING



AI Scaling Laws Drive Exponential Demand for Compute
New “long thinking” supercharges inference scaling

TEST-TIME SCALING
“LONG THINKING”



Demo Leonardo



TL;DR



This Session in One Slide (1)
NVIDIA GPUs: Remember you are using HW

• Capabilities

• Tensor Cores – accelerate GEMM

• NVENC – Encode video

• NVDEC – Decode video

• NVJPEG – Decode JPEG images

• Optical flow – Track pixels

• CUDA – General-purpose compute, train, infer, …

• vRAM – our OOM friend ☺ (the most expensive part)

• Highly accelerated

• Power efficient

• Scalable

• If you want to learn more https://www.nvidia.com/en-us/on-
demand/session/gtc25-s72756/
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Not all features are available in all GPUs. Please check NVIDIA developer zone web site for detailed information

https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/
https://www.nvidia.com/en-us/on-demand/session/gtc25-s72756/


This Session in One Slide (2)
Speed Memory Trade-Off

Single GPU Multiple GPUs (4D parallelism)

• DP, Data Parallelism

• PP, Pipeline Parallelism (Model Parallelism)

• TP, Tensor Parallelism (Model Parallelism)

• SP, Sequence Parallelism (Activation Parallelism)

• CP, Context Parallelism (Activation Parallelism)

[1] Efficient Training on a Single GPU
(*) Listed here because it affects single GPU, but it is used for multi-GPU training
[2] https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
[3] Efficient Training on Multiple GPUs

Method Speed Memory

Gradient 
Accumulation

No Yes

Gradient 
Checkpointing

No Yes

Mixed Precision 
Training

Yes (No)

Batch Size Yes Yes

Optimizer Choice Yes Yes

DataLoader Yes No

Distributed 
Optimizer*

No Yes

Offloading No Yes

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one
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This Session in One Slide (3) 
What do I use when? A super simplified take on it

• AI is a fine balance between networking and computing

• So which techniques should I use and when?

• First, optimize on one GPU

• use memory friendly data formats

• Check your dataloader hyperparameters

• Use reduced precision

• After that, it depends, but generally these help ☺ 

• DDP is the fastest if your model fits in memory

• DDP + Zero/FSDP to reduce memory use

• They might not be enough, for transformers we can use also TP typically within the same node to take advantage of NVLink interconnect for 
matrices sync

• When they are not enough, we can play with PP

• On top of PP, we can play with other techniques like offloading and activation recomputation, sometimes it is worth to recompute to save 
memory while anyway you wait for communications and synchronizations to happen

Notes:
In case you use NVIDIA Superchips like GH or GB offloading is very powerful thanks to the high CPU-GPU bandwidth



Parallelization Techniques



Utilizing a single GPU efficiently 



Dealing with memory constraints



Gradient accumulation

• Gradient accumulation is a mechanism to split the batch of samples — used for training a neural network — into several mini-batches of 
samples that will be run sequentially.

https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa



Gradient accumulation

optimizer = ...

for epoch in range(...):    

for i, sample in enumerate(dataloader):        

inputs, labels = sample        

optimizer.zero_grad() 

# Forward Pass        

outputs = model(inputs)        

# Compute Loss and Perform Back-propagation

 

loss = loss_fn(outputs, labels)

loss.backward()

# Update Optimizer        optimizer.step()

optimizer = ...

NUM_ACCUMULATION_STEPS = ...

for epoch in range(...):

 for idx, sample in enumerate(dataloader):

 inputs, labels = sample

 # Forward Pass

 outputs = model(inputs)

 # Compute Loss and Perform Back- propagation

 loss = loss_fn(outputs, labels)

 # Normalize the Gradients

 loss = loss / NUM_ACCUMULATION_STEPS

 loss.backward()

 if ((idx + 1) % NUM_ACCUMULATION_STEPS == 

     0) or (idx + 1 == len(dataloader)):

  optimizer.zero_grad()

  # Update Optimizer

  optimizer.step()



Activation Re-computation or gradient checkpointing
https://pytorch.org/docs/stable/checkpoint.html

• The memory intensive part of training deep neural networks is computing the gradient of the loss by backpropagation. 

• By checkpointing nodes in the computation graph defined by your model, and recomputing the parts of the graph in between those 
nodes during backpropagation, it is possible to calculate gradients at reduced memory cost. 

https://github.com/cybertronai/gradient-checkpointing



Activation Re-computation or gradient checkpointing



Dataloader



Dataloaders

• Think of the GPU as a very powerful parallel processing device hungry for data

• Dataloaders have very important parameters that you can tune

• Workers, how many subprocesses the dataloader can create

• Prefetching, how many batches each worker will load at the time

• Pin memory, allow workers to always use a specific memory address in CPU & GPU

• Asyncronous copy, CUDA can help in hiding data moving cost behind other operations

• data = data.to(device) ⇒ data = data.to(device, non_blocking=True)

• There are also specific libraries you can use to accelerate dataloading like NVIDIA DALI for images and PyNvVideoCodec for videos



NVIDIA Video/Image Processing Hardware
Dedicated hardware for video/image decoding, encoding, optical flow, post-processing

• Capabilities

• NVENC – Encode video

• NVDEC – Decode video

• NVJPEG – Decode JPEG images

• Optical flow – Track pixels

• CUDA – General-purpose compute, train, infer, …

• Highly accelerated

• Power efficient

• Scalable

• If you want to learn more https://www.nvidia.com/en-us/on-
demand/session/gtc25-s72756/
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How to exploit HW decoding?
DALI and PyNvVideoCodec

• Some NVIDIA libraries can help you with HW accelerated decoding

• DALI for images and videos

• PyNvVideoCodec for videos

• DALI and PyNvC are easy drop in replacements for existing code implementations

• What are the important things to remember

• GPUs can be slowed down by CPU data preprocessing -> benchmark for your use case

• CUDA zero copy is a great advantage -> decoding compressed data in GPU means less bandwith for data transfer

• Use memory friendly data formats -> few compressed files rather than millions images

Notes:
If interested in video, feel free to check out video materials I am collecting in a playbook on GitHub here, accelerated-video-for-ai-playbook

https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook
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Multimodal data loading with Megatron Energon

What is Megatron Energon?

• Advanced multimodal dataloader for Megatron-LM

• Efficient loading and processing of diverse data

• Flexible configuration via Python API or CLI

• pip install megatron-energon

Key Features

• Multimodal Support: Text, images, audio

• Data Blending: Mix datasets with fine-grained control

• Distributed Loading: Optimized for multi-node training 
environments

• Save & Restore: Resume training state from exact data position

Data Processing Capabilities

• WebDataset Support: Storage for multimodal data

• Packing: Optimize sequence length utilization

• Grouping: Smart batching of similar-length sequences

• Joining: Combine multiple dataset sources

• Object storage: Optimized loading from common object storage 
providers

Usage Example

from megatron.energon import get_train_dataset, get_loader, 

WorkerConfig

# load a training dataset and create a data loader

ds = get_train_dataset(

'/my/dataset/path',

batch_size=1,

shuffle_buffer_size=100,

max_samples_per_sequence=100,

worker_config=WorkerConfig.default_worker_config(),

)

loader = get_loader(ds)Megatron Energon Docs

https://nvidia.github.io/Megatron-Energon/


Code (PyNvC)

https://github.com/NVIDIA-AI-Technology-Center/accelerated-video-for-ai-playbook/blob/main/assets/pynvc_dataloader.py


Data Parallelism



(Distributed) Data Parallelism
DDP vs DP

Distributed Data Parallelism fixes a weakness of DP, where one process controls all the GPUs training on a 
node

With DDP each GPU has it’s own task, they need to wait for each other only when synchronizing the 
gradients

There is also the option of using more advanced data parallelism techniques like Zero or FSDP but 
fundamentally the way your training works is the same



Training a Neural Network
Multiple GPUs
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Parameters Sharding



Distributed Data Parallel - DDP
FairScale: Fully Sharded Data Parallel - FSDP

For each GPU:

1. Get the shard of the model

2. Get the shard of the data

3. Local forward pass: Gather weights from the 
others

4. Local backward pass: Gather again weights 
from the others

5. Local weights shard update: Synchronize 
Gradients

https://fairscale.readthedocs.io/en/stable/api/nn/fsdp.html



Sharded Data Parallelism 
ZeRO: Zero Redundancy Optimizer

• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages) for a progressive memory savings and Communication 
Volume



Sharded Data Parallelism 
Communication overheads



Model Parallelism



Model Parallelism

•Pipeline (Inter-Layer) Parallelism
• Split sets of layers across multiple devices

• Layer 0,1,2 and layer 3,4,5 are on difference devices

•Tensor (Intra-Layer) Parallelism
• Split individual layers across multiple devices

• Both devices compute difference parts of Layer 
0,1,2,3,4,5



Pipeline Parallelism
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Challenges – Idle Workers 
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Split batch into micro batches and pipeline execution

Forward pass

Backward pass
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Split batch into micro batches and pipeline execution
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Forward pass

Backward pass
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Pipeline Parallelism
Split batch into micro batches and pipeline execution



Forward pass
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Split batch into micro batches and pipeline execution
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Split batch into micro batches and pipeline execution

Forward pass

Backward pass
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Split batch into micro batches and pipeline execution

Forward pass

Backward pass

GPU 1 1 2 3 4 1 5 2 6 3 7 4 8 5 9 6 7 8 9

GPU 2 1 2 3 1 4 2 5 3 6 4 7 5 8 6 9 7 8 9

GPU 3 1 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 9

GPU 4 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Time

Pipeline Parallelism



Code (DualPipe)

https://gitlab.hpc.cineca.it/apilzer0/scalable-ai-modena/-/blob/main/src/part-2/dualpipe/dualpipe.ipynb


Tensor Parallelism



Tensor Parallelism

• Relatively simple to implement

• Easier to load-balance

• Less restrictive on the batch-size (avoids bubble issue in pipelining)

• Tensor parallelism works well for large matrices

• Example: Transformers have large GEMMs



Simple example of Tensor parallelism

79
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