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CONTINUED DEMAND FOR MORE HARDWARE

PERFORMANCE

Power scales GPU performance

GPUs are close to perfect for standard DNNs "

and LLMs, but can we do better? 14000 -
Future scaling of GPUs comes at tremendous
costs in terms of power consumption 12000 -

Do GPUs create a bias towards “standard’-
DNN-based solutions?

Hardware lottery: yes!

10000 -~
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()] o0
o o
(- o
o o

What are promising alternatives? 1

Emerging HW often comes with 4000 -
imperfections

Noise, non-linearities, saturation effects, etc.
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Analog computations (electrical, photonic), 0
resistive memory

" Careful, billion-dollar question

Blackwell Rubin  Feynman

Post-
Feynman

15,360 W

Next-Gen

KAIST Teralab, HBM Roadmap Ver 1.7 Workshop, https://drive.google.com/file/d/ 1wdGvyAYMOSOjlweJcgPDKwXlkéczbuZo/view



https://drive.google.com/file/d/1wdGvyAYM0SOjlweJcgPDKwXlk6czbuZo/view

POST-DENNARD CMOS PERFORMANCE SCALING
- o ops ops
p f[ > ] P[W] }7[ ) ] Energy is additive

ops
€op T €mem / === Data movement
€op — c()mp(ta b) [pJ] Gmem mem(l d b) [p.]]
GPU FPOA SRAM HEM
CPU WIRE S DRAM
CHMOS-BASED,. ARCH DEP. TECHNOLOGY DEP.

Frequency f, efficiency €, data type f[{f1oat, int}], bit width b, distance d[mm], memory level [ 5



CMOS TECHNOLOGY TRENDS
45NM (2014) VS 7NM (2021)

picodJoules
Float 45nm 7nm

picodoules 64-bit picodoules

Mem 45nm 7nm
SRAM

Integer 45nm 7nm

0.03 0.007 8kB 10 7.0
0.1 0.03 32kB 20 8.5
1MB 100 14

0.2 0.0/ plnistiE 1300 - 2600 1300 -
3.1 1.48 HBM2 200 - 450

M. Horowitz, "1.1 Computing's energy problem (and what we can do about it),” 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). doi: 10.1109/1S5CC.2014.675732

Norman P. Jouppi, et al. 2021. Ten lessons from three generations shaped Google's TPUv4i. ISCA. https://doi.org/10.1109/
ISCA52012.2021.00010



https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1109/ISCA52012.2021.00010

A100 NUMBER CHECK

NVIDIA A100 SXM, 7nm, 400W

A100 A100 Theory Residual = memory
TOPS/s pJ/OP pJ/OP pJ/bit

Vector FP32 [TF/s} 1.31
Matrix FP32 [TF/s] 156 2.56 1.31 0.01
Matrix FP16 [TF/s] 312 1.28 0.34 0.02
Matrix INT8 [TOP/s] 624 0.64 0.07 0.02

7/nm Memory Energy

64bit 1bit

SRAM 8kB 7.5 012
SRAM 32kB 8.5  0.13
SRAM 1MB 14 0.22

DDR4 1300 20.31

HBM2 450  7.03



PICOJOULES <=> GIGAWAT T-HOURS

No matter the scale, same physics,
just aggregated differently

Energy is power integrated over time
E = JP(t)dtzF-t

Fixed workload
Then, DVFS is fundamentally a
trade-off curve

More power to finish faster, or,

Lower power and take longer

Power P(t)

200 -

150 -

50 -

— |nstantaneous power P(t)

.
Energy E = fOP(t) dt (shaded area)

- -~ Average power P=E/T

Equivalent rectangle P- T

2 4 6 8
Time t
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ON (IDEALIZED) FREQUENCY-INDEPENDENCE

Following Dennard yields frequency independency

Egyn = Payal = (@CetV*f) - (Noyeies/f)  const - V2 Switching activity o
From first principles, dynamic energy per fixed work is roughly independent C .. = Z C
of frequency if voltage is constant and performance scales linearly. But: eff
Increasing f typically requires higher V for timing closure Ncycles =1tf
E x V(f)?
dyn overhead(./ ) & VL) Temperature 7 4.,

Static/leakage and other time-proportional power

Real chips consume non-zero power even when not doing “useful” switching

E = P N A~ Ileak(V’ lee) V - 7 ‘/in Vout

static

Architectural overheads and non-linear performance scaling

In practice, Perf(f) =~ f does not hold true except for compute-bound
kernels with fully utilized pipelines .

If Perf(f) grows slower than P(f), then total energy E(f) rises

static




WHY REALITY BENDS IT: THREE DEVIATIONS

P total(f ) =P dyn,compute(v(f )’f ) + P dyn,overhead(V(f )’f ) + P static(V(f )’ Tdie) + P uncore+mem

lealzage weakly tied to SM f

useful svvvitching clock/ control
1. Useful work 30°
2. Clock/Control: DVFS requires 25 -

V = V(f) (the V tax at high clocks)

3. Leakage: time-proportional power
(the low-clock penalty)

4. Bottlenecks/overheads: Perf(f)

Energy-to-completion (J)
=
U

saturates (wasted watts at high clocks) 5 -

=> UU-shaped energy-frequency behavior

N
o
|

-
o
l

- Edyn, compute = den,compute t(f)

Edyn, overhead — den, overhead t(f)
——  Estatic = Pstatic t()
—— Euncore +mem = Puncore + mem t(7)
= Etotal = Ptotal t(f)

e

0.2

0.8 1.0 1.2 1.4 1.6 1.8

Frequency f (GHz)

0.4 0.6
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DECODER LAYER AS THE REPEATABLE UNIT

Inputs —

Outputs —

Input
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Original Transformer

Decoder-only Transformer

Inputs &
Outputs

Softmax

Output
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MICRO-SCALE: ENERGY-TO-COMPLETION
+ GPU DVFS FOR DECODER LAYERS



MO

Use NVIDIA Management Library (NVML) to
set SM clocks and to measure power

-

LT

consumption -

nvmlDeviceGetSamples is used with | 5 :\ B“‘% o

NVML TOTAL POWER SAMPLES to get most | SEEESE ERstal 1=
% % :0 .

recent power samples at ~2ms resolution
SM clock: from 210 to 1440 MHz in 15 MHz steps

HBM clock is fixed at 1215 MHz
Energy-to-solution is obtained by running a Rivulet: 4 nodes, each 4x NVIDIA A30 GPU
tranSfOI‘mel‘ layer -in a lOOp Until a Stable Gen3 TensorCores: 82 TFLOP/s TF32, 165 TFLOP/s FP16

. . . . 24GB HBM2 at 933GB/s
runtime and power reading is obtained, 165W TDP
D 200GB/s NVLINK (for two neighboring GPUs)

13

then E=P -t



]

Power Draw |

150

—
-
-]

o)
-

EXPERIMENTAL SETUP

Example power measurement for various

problem sizes at 1035 MHz

CUDA Cores Tensor Cores
ATDP T T A TDP T
T| . : 150 | —
T % . T
= | 15T = I
=
. * w 1 B 100 ¥ o_ e ‘
e & e o B
* -
° . - °
® = -
= *
o
o N = Q“50* u
@ B o « o o EH o « o S B 8 % o+ 8 =
S I A NN N S N SR S O S I A NN N S N SR S
QO 000 ae = e QO Q00 = =
wwwwww%’%’%g *oww*u*u*u%’%’%?y
3933335 B B g 3933335 B B g
i = e S B = W = O = = g = g
NI wW =~ =~ NI wW =3 ~J
22EIFE RSO SR REIE R
Configuration Configuration

Rivulet: 4 nodes, each 4x NVIDIA A30 GPU
Gen3 TensorCores: 82 TFLOP/s TF32, 165 TFLOP/s FP16
24GB HBM2 at 933GB/s
165W TDP
200GB/s NVLINK (for two neighboring GPUs)
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OBSERVATION 1: U-SHAPED ENERGY PER LAYER

1. If SM clock is too low runtime

: model — 3 eads — ; d =4 y © — 4
increases and thereby effects GPT 350M dinoder = 1024, Mheads = 16, dppn = 4096, s = 102

of static power — energy % - * * * * * *
grows disproportionally £ 10} :
2. Mid-range clock settings f o }
offer the best tradeoff % 150 |- t
S 100 - Saturation dugto
3. If SM clock is too high power 2 | + + + + rermalreting
consumption increases _ + + + + + +
disproportionally — energy P
grows disproportionally again 2 82 i

| | | | |
200 400 600 800 1,000 1,200 1,400
~ SM Clock [MHz]
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OBSERVATION 1: U-SHAPED ENERGY PER LAYER

1. If SM clock is too low runtime
increases and thereby effects
of static power — energy
grows disproportionally

2. Mid-range clock settings
offer the best tradeoff

3. If SM clock is too high power
consumption increases
disproportionally — energy
grows disproportionally again

4. The optimal setting depends
on workload properties

120
100
80
60
40

150

Power [W] Runtime |[ms]

Energy [J]

GPT 138 dmoder = 5120, Mheads = 40, dppn = 20480, s = 1024

200

|
400

|
600

\
300 1,000
SM Clock [MHz|

|
1,200

|
1,400
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OBSERVATION 2: LAYER SIZE & EFFICIENCY

Sequence Length s = 128 Clock = 555 MHz Sequence Length s = 128 Clock = 945 MHz Sequence Length s = 128 Clock = 1440 MHz

12 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0E 1T 7 [ 1032 ]
9 10 10 :
5 20 58 1615 1F 7.04 .
= g ) 4.62 10 1.26 1T i
= 45| 1 1 9 :
z 3 210 9 14 1,99 179 245 2.14 1.93 2.37 1t 228 184 164 1 47 209 1.81 166202 | | 80919 184 16 249212183233

b:>.8 0 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

q;j Sequence Length s = 1024 Clock = 555 MHz Sequence Length s = 1024 Clock = 945 MHz Sequence Length s = 1024 Clock = 1440 MHz

= 12 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2 105] 1 [ 1 F -
2 I | |1l 72 i
= 15[ 6.57 5.59 1 | 55 1| = 6.09 -
2 6] - 10 4.82 1t :
4.5+ 3.8 - - 3.27 ] - 3.87 ]
3 243 2.2 1, 244900 159 2 | | 214 213 1 43 2.051.95 1 53 1.77 | | 241225 1 59 240219 46 2.05 -

O ! ! ! ! ! ’_‘ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Q O Q@ Q@  Q 5 = = Q O Q@ Q@  Q 5 = = Q QO Q@ Q@ OO Q@ F 5 B
¥ Y Y Y Y " B E 5 ¥ Y Y Y Y T E B E 5 ¥ °v Y Y T T E B E %
2% % o@ % o= 5 5 B E sl B B B N A -] 2% % @ o= o= 5 5 B E
- S T T - S T T R A T T
) o o ~J =~ (N S Ju ~J =~ o) i o - ~J
S 2 B3 ¥ g 7w @ ® S 2 B8 8 wg ¥ g 2 2 ¥ 8w g ¥ e R
Configuration Configuration Configuration

Larger layer configurations offer better “effective” energy per
operation, i.e. energy required for the calculation including data/
instruction fetch, scheduling, and baseline power draw

17



OBSERVATION 3: SEQUENCE LENGTH SHIFTS THE

OPTIMUM

Sequence length is very important
for energy per layer

Larger sequences result in more time
being spent in low intensity memory
heavy kernels that don’t benefit from
faster compute clocks

Compute bound kernels achieve very
similar throughput in both cases

=> There is no single best clock for a
layer, it depends on the input, too
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ENERGY VS RUNTIME PARETO FRONTS ACROSS
MODELS

GGGGGG M PT 350

APa‘reto Front‘ ‘. A‘Pareto‘Front | ‘. A‘Pareto Front |
0.3 .

Optimizing for both energy and 2

o | o
0.3 ° 4 081 °
tim m g } | 2 |

runtime %

\ \ \ 0.2 b \ \ [ \ \ \ \

2 8 5 10 15 20

GPT 175B
\ \ \

Characteristic “V”-shape for e
smaller layers that softens to “U”- e = .
shape for larger ones - N [ N ﬁ

Fastest runtime is not necessarily O O

a t h .i g h e St C l O C k ;| A Pareto Front o | 4 APareto Front o I A Pareto Front ‘ ;




ENERGY VS RUNTIME PARETO FRONTS ACROSS

MODELS

Optimizing for both energy and
runtime

Characteristic “V”-shape for
smaller layers that softens to “U”-
shape for larger ones

Fastest runtime is not necessarily
at highest clock

Softens even more for longer
sequences and larger datatypes

GGGGGG M

A T’ aaaaa PLront |

aaaaaaa

FP32, s = 1024
G

PPPPP M

GGGGGG

|
000000000
aaaaaaaa

000000

000000000
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PRACTITIONER TAKEAWAY: ~10-20% ENERGY
SAVINGS FOR SIMILAR SLOWDOWN

Energy Runtime

Table shows comparison of fastest Saving [%] Penalty [%]

Pareto optimal runtime to lowest 108 5 3 16
Pareto optimal energy GPT 125M 512 30.8 23.9
Again: fastest optimal runtime is not 1024 28.1 18.3
necessarily at highest clock 128 24.5 27 .4
. . . GPT1.3B 512 20.5 14.8
Relative energy savings and runtime oo o1 G s
penalties are often very close o6 h e 40
Energy saving compared to GPT13B 512 10.8 12.7
maximum clock speed can be 1024 11.8 11.3
substantially higher for larger 128 13.5 11.3
models GPT175B 512 90 155
1024 199 307 |

———— —— — = —— = iy _ — == == === e = = — —



FEASIBILITY STUDY: PREDICTION MODEL

| A ALY ATHAN Mt Nt A N AN T

Residual [W]
=
|
I

Simple Random Forest predictor achieves i i v
acceptable accuracy Preciced Pover [

g
Training data shifted to small values, more E
training data required = I
. . Predicted Runtime [ms]
Feature importance tracks with our _ —
intuitions and observations ] i e —
= 0 10 20 30 40 50
Predicted Energy [J]
Runtime Energy =1 ‘ T8 Pooe Moddd
0.8} | )
3.6ms 0.5 ) - HBREUHTE;G&Z?
1.5% 3.5% 3.0% el i )
é 0.2 + H -
1.6W 1.1ms 0.2 S oL ml W= oMl 0§ m= cfie
Arch Dtype f 5 dmodel '*heads dppN
0.9965 0.9919 0.9974 Feature

22



MACRO-5SCALE: MODELING LARGE-SCALE
LLM TRAINING TIME



FROM LAYER ENERGY TO RUN ENERGY

Training LLMs is easy given 4k+ GPUs

Stacked decoder blocks
Plethora of training data

Model Layers Heads

length Size Size

Sequence Hidden FFN Vocab Head Hidden
Size Dim. Act.

Year

Qwen/Qwen-72B JERCYygIs 8192 491562 80 64 152064 128 SwiGLU 2023
Mistral LI 2411 131072 12288 28672 388 96 32/68 128 silu 2024

Megatron-1T 2048 20000 49152 128 160 51200 160 Qe
GPT-3 175B 2048 12288 49152 96 96 50257 128 Qe

u 2023
u 2020

Hidden Size

‘Decoder, N x

Add Residual
& Normalize

A

Inputs & Output Add Residual
Outputs ] Embedding _)O m & Normalize 1 -
\_ J A \, J \_
A

Positional |
@ Encoding

PatM—Gemmm 1.5
. -
Claude ]30
GPT-3 :
®
104 - LLaMA-2
Cla®ie 2
= L105S
c
GPT-4 (API) g
Q
O
o
104 >
O
. LLaMA-2 -
GPT-2 (1.5B) a
® GPT-3 PaLM
O O
GPT-2 (1.5B)
103 - - =103
BERT-base ;
| = .
2018 2020 2022 2024
24



WHY MODELING MATTERS - GRAPHCULON

Question: can we model the behavior of these 4k+ GPUs?

LLMs: one iteration perfectly predictable

Performance model: LLMs mainly based on linear algebra + element-wise operations

ldea: “walking the computational graph”, computation and communication tasks modeled as nodes

Critical-path walk or full traversal

Model various details: 3D parallelism, (collective) communication, memory consumption (fwd + activations + bwd +

optimizer)

SYSTEM MODEL
= Number of GPUs & model
= GPU performance model

EXECUTION CONFIG

= Mini-batch size
m Activation recalculation

strategy

® |nterconnection network
= Messaging performance model

—

—)

MODEL CONFIG
= Model hyperparameters

= Number of layers, sequence
length, hidden dimension, ...

® (Currently only GPT-style)

SCHEDULER
= GPipe, 1F1B, ...
m Walks a

computational
graph

STATISTICS
= FLOPs
= Memory

TIMELINE
® Trace of actions
= JSON

25



PARALLELISM TOOLBOX: DP / TP / PP

Data parallelism (DP

Split data, not model

° ° ° /r‘\\\ %"‘\\
Different mini-batches go to - J w A

WO

7
A

different (sets of) GPUs

“Embarrassingly parallel”
Tensor parallelism (TP
Split a single layer onto multiple A, A
Collective communication -
allreduce & broadcast
Pipeline parallelism (PP
Split mini-batch into micro-batches
Process multiple layers in a . S8 ¢ 3 ¢ : . 2 &
pipelines fashion \ | g° || R 1 s

q
q




PIPELINE SCHEDULES & BUBBLE FRACTION
INTUITION

Pipelining is a powerful technique, but introduces bubbles due to synchronous
SGD

GPipe as starting point, (interleaved) 1F1B as common optimization

Variety of pipelines schedules proposed, with different trades (bubbles,
memory, etc.)

GPU 0O 2134(5|6|7 0| 1] 2] 3] 4 6 | 7
GPU 1 0(1/2(3|4|5|6]|7 0| 1|2 ]3] 4|5
GPU 2 0/1/2/3/4]5 0 2 1 3| 4|5 |6
GPU 3 0/1/2(3/4/5/6/7] 0 | 1 | 2|3 | 4|5 |67

Time —b> t = 32 t = 065

(forward pass micro bateh 0) (backward pass micro batch 0 (forward pass micro batch 1) (backward pass micro batch 1

GPU 0
GPU 1
GPU 2

GPU 3
Time —b> t = 56

EREPEEEOND) (backward pass micro Bateh0) (forward pass micro batch 1) (backward pass micro batch 1]

N | O | Ot =

27



- . e e e e e e e e

GRAPHCULON: TIMELINE
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CLOSED-FORM ITERATION TIME BREAKDOWN
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Megatron-1T single batch training on 4096 A100 GPUs with various parallelism strategies
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WHAT IT’S GOOD FOR TODAY

Use for trend exploration: bubble sensitivity, micro-batch scaling, where overlap
could matter

Overall simulation behavior is internally consistent except for specific issues

Checks against (1) fundamentals (FLOP/parameter counts), (2) analytical model (same ballpark
for 25k configurations), (3) calculon [1] results, (4) own on-premise experiments with Megatron

Current status: informal collaboration with NVIDIA research + UK-based start-up
Current goal: good enough (usability, accuracy) for publication (code+paper)
Under development, next major iteration expected mid-February

Future work
Modeling energy-to-completion

Comparing and optimizing pipeline schedules

Extensions for LLM inference - autoregressive aspects, prefill phase (initial fill) + decode phase
(generation)

[1] Mikhail Isaev, Nic Mcdonald, Larry Dennison, and Richard Vuduc. 2023. Calculon: a methodology and tool for
high-level co-design of systems and large language models. SC 23. https://doi.org/10.1145/3581784.3607102
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ENERGY-EFFICIENT SYSTEMS AND Al LAB (ESAIL

Explore optimality

GPU type (consumer/
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SUMMARY

Research on the intersection of accelerators
and deep neural networks

Scalable ML ->“Green ML”, LLMs
Robust ML -> Build “Bayesian Machines”
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ML Accelerators -> Diversification

HARDWARE & ARTIFICIAL
Beyond today INTELLIGENCE

Bayesian Machines - co-designed to reason about
uncertainty (intractable workloads such as BNNs)

RRAM for LLMs - efficient activation storage but
unstable devices

Repulsive ensembles - combining LLMs & uncertainty
estimates
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FPGAs as SVI accelerators
Greener training - compressing the backward pass
Energy-Efficient Systems and Al Lab (ESAIL)
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SUMMARY

Energy-to-completion for LLMs is promising

V- and U-shaped pareto curves suggest that race-to-idle
is not always the best strategy
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DVFS-control was actually quite limited - no control over

HBM
LLM training is unaffordable (but super interesting B ARE & ARTIFICIAL
HPC case) INTELLIGENCE

Simulators a la GraphCulon
Even dynamic features can often be modeled - e.g. MoEs

FlashAttention might require the use of statistics

Research questions

Predictability and granularity (frequency, time) of DVFS
settings
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Energy efficiency for all system components -
interconnection network
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Alternative forms of processing




