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GROUP BACKGROUND: 
FROM HW TO ACCELERATORS TO ML
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From: database engineer, HW designer 
(ASICS, FPGA), HPC

To: vertically integrated approach to 
efficient ML => HW systems for AI

Neural Architectures

Compiler

Plethora of HW

perf [ ops
s ] = p[Watt] ⋅ e[ ops

J ] P = afCV 2 + V Ileakage

xl = Φ(W ⊕ xl−1 + bl)
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HARDWARE & ARTIFICIAL
INTELLIGENCE
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CONTINUED DEMAND FOR MORE HARDWARE 
PERFORMANCE

GPUs are close to perfect for standard DNNs 
and LLMs, but can we do better? 

Future scaling of GPUs comes at tremendous 
costs in terms of power consumption 

Do GPUs create a bias towards “standard”-
DNN-based solutions? 

Hardware lottery: yes! 

What are promising alternatives? 1 

Emerging HW often comes with 
imperfections 

Noise, non-linearities, saturation effects, etc. 

Analog computations (electrical, photonic), 
resistive memory
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Power scales GPU performance

1 Careful, billion-dollar question 

KAIST Teralab, HBM Roadmap Ver 1.7 Workshop, https://drive.google.com/file/d/1wdGvyAYM0SOjlweJcgPDKwXlk6czbuZo/view 

https://drive.google.com/file/d/1wdGvyAYM0SOjlweJcgPDKwXlk6czbuZo/view


POST-DENNARD CMOS PERFORMANCE SCALING
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perf[ ops
s ] = P[W] ⋅ η[ ops

J ]

Frequency , efficiency , data type , bit width , distance , memory level f ϵ t[{𝚏𝚕𝚘𝚊𝚝, 𝚒𝚗𝚝}] b d[mm] l

Operation

ϵop = fcomp(t, b) [pJ]
GPU

CPU
FPGA

CMOS-based, arch dep.

Data movement

ϵmem = fmem(l, d, b) [pJ]
SRAM

DRAM
HBM

Technology dep.
Wires

= P ⋅ ( ops
ϵop + ϵmem )

Energy is additive

perf[ ops
s ] = IPC ⋅ fPeak-compute 

throughput

Power-limited 
throughput



CMOS TECHNOLOGY TRENDS 
45NM (2014) VS 7NM (2021)
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M. Horowitz, "1.1 Computing's energy problem (and what we can do about it)," 2014 IEEE International Solid-State Circuits Conference 
Digest of Technical Papers (ISSCC). doi: 10.1109/ISSCC.2014.675732 

Norman P. Jouppi, et al. 2021. Ten lessons from three generations shaped Google's TPUv4i. ISCA. https://doi.org/10.1109/
ISCA52012.2021.00010 

picoJoules
Integer 45nm 7nm
Add

8 bit 0.03 0.007
32 bit 0.1 0.03

Mult
8 bit 0.2 0.07

32 bit 3.1 1.48

picoJoules
Float 45nm 7nm

FAdd
16 bit 0.4 0.16
32 bit 0.9 0.38

FMult
16 bit 1.1 0.34
32 bit 3.7 1.31

64-bit picoJoules
Mem 45nm 7nm

SRAM
8kB 10 7.5

32kB 20 8.5
1MB 100 14

DDR4 1300 - 2600 1300 -
HBM2 250 - 450

https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1109/ISCA52012.2021.00010


A100 NUMBER CHECK
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NVIDIA A100 SXM, 7nm, 400W
A100

TOPS/s
A100
pJ/OP

Theory
pJ/OP

Residual = memory
pJ/bit

Vector FP32 [TF/s] 19.5 20.51 1.31 0.20
Matrix FP32 [TF/s] 156 2.56 1.31 0.01

Matrix FP16 [TF/s] 312 1.28 0.34 0.02

Matrix INT8 [TOP/s] 624 0.64 0.07 0.02

7nm Memory Energy
64bit 1bit

SRAM 8kB 7.5 0.12
SRAM 32kB 8.5 0.13
SRAM 1MB 14 0.22

DDR4 1300 20.31
HBM2 450 7.03



PICOJOULES <=> GIGAWATT-HOURS

No matter the scale, same physics, 
just aggregated differently 

Energy is power integrated over time 

 

Fixed workload 

Then, DVFS is fundamentally a 
trade-off curve 

More power to finish faster, or, 

Lower power and take longer

E = ∫ P(t) dt = P ⋅ t
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ON (IDEALIZED) FREQUENCY-INDEPENDENCE
Following Dennard yields frequency independency 

 

From first principles, dynamic energy per fixed work is roughly independent 
of frequency if voltage is constant and performance scales linearly. But: 

Increasing  typically requires higher  for timing closure 

 

Static/leakage and other time-proportional power 
Real chips consume non-zero power even when not doing "useful" switching 

 

Architectural overheads and non-linear performance scaling 

In practice,  does not hold true except for compute-bound 
kernels with fully utilized pipelines 

If  grows slower than , then total energy  rises

Edyn = Pdynt = (αCeffV2f ) ⋅ (Ncycles/f ) ≈ const ⋅ V2

f V
Edyn,overhead( f ) ∝ V( f )2

Estatic = Pstatic ⋅ T ≈ Ileak(V, Tdie) V ⋅ t

Perf( f ) ≈ f

Perf( f ) P( f ) E( f )
9

Vin

Switching activity  

 

 

Temperature 

α
Ceff = ∑ C

Ncycles = t f

Tdie

Vout

C



WHY REALITY BENDS IT: THREE DEVIATIONS 

1. Useful work 

2. Clock/Control: DVFS requires 
 (the  tax at high clocks) 

3. Leakage: time-proportional power 
(the low-clock penalty) 

4. Bottlenecks/overheads: 
saturates (wasted watts at high clocks) 

=> U-shaped energy-frequency behavior

V = V( f ) V2

Perf( f )
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Ptotal( f ) = Pdyn,compute(V( f ), f ) + Pdyn,overhead(V( f ), f ) + Pstatic(V( f ), Tdie) + Puncore+mem

useful switching clock/control leakage weakly tied to SM f



DECODER LAYER AS THE REPEATABLE UNIT
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Inputs
Input

Embedding +

Positional
Encoding

Encoder, N→

Multi-Head
Attention

Add Residual
& Normalize

Feed-Forward
Network

Add Residual
& Normalize

Outputs
Output

Embedding +

Positional
Encoding

Decoder, N→

Masked
Multi-Head
Attention

Add Residual
& Normalize

Cross
Multi-Head
Attention

Add Residual
& Normalize

Feed-Forward
Network

Add Residual
& Normalize

K

V

Q

Linear Softmax Output

Scores

Inputs &

Outputs

Output
Embedding +

Positional
Encoding

Decoder, N→

Masked
Multi-Head
Attention

Add Residual
& Normalize

Feed-Forward
Network

Add Residual
& Normalize Linear Softmax Output

Scores

Original Transformer

Decoder-only Transformer

Attention(Q, K, V) = softmax( QKT

dk )V

FFN(x) = σ(W0 ⋅ x) ⋅ W2



MICRO-SCALE: ENERGY-TO-COMPLETION 
+ GPU DVFS FOR DECODER LAYERS



EXPERIMENTAL SETUP
Use NVIDIA Management Library (NVML) to 
set SM clocks and to measure power 
consumption 

nvmlDeviceGetSamples is used with 
NVML_TOTAL_POWER_SAMPLES to get most 
recent power samples at ~2ms resolution 

SM clock: from 210 to 1440 MHz in 15 MHz steps 

HBM clock is fixed at 1215 MHz 

Energy-to-solution is obtained by running a 
transformer layer in a loop until a stable 
runtime and power reading is obtained, 
then  E = P ⋅ t
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Rivulet: 4 nodes, each 4x NVIDIA A30 GPU  
Gen3 TensorCores: 82 TFLOP/s TF32, 165 TFLOP/s FP16 

24GB HBM2 at 933GB/s 

165W TDP 

200GB/s NVLINK (for two neighboring GPUs)



EXPERIMENTAL SETUP
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Example power measurement for various 
problem sizes at 1035 MHz

Rivulet: 4 nodes, each 4x NVIDIA A30 GPU  
Gen3 TensorCores: 82 TFLOP/s TF32, 165 TFLOP/s FP16 

24GB HBM2 at 933GB/s 

165W TDP 

200GB/s NVLINK (for two neighboring GPUs)



OBSERVATION 1: U-SHAPED ENERGY PER LAYER
1. If SM clock is too low runtime 

increases and thereby effects 
of static power → energy 
grows disproportionally 

2. Mid-range clock settings 
offer the best tradeoff 

3. If SM clock is too high power 
consumption increases 
disproportionally → energy 
grows disproportionally again 
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OBSERVATION 1: U-SHAPED ENERGY PER LAYER
1. If SM clock is too low runtime 

increases and thereby effects 
of static power → energy 
grows disproportionally 

2. Mid-range clock settings 
offer the best tradeoff 

3. If SM clock is too high power 
consumption increases 
disproportionally → energy 
grows disproportionally again 

4. The optimal setting depends 
on workload properties
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OBSERVATION 2: LAYER SIZE & EFFICIENCY

Larger layer configurations offer better “effective” energy per 
operation, i.e. energy required for the calculation including data/
instruction fetch, scheduling, and baseline power draw
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OBSERVATION 3: SEQUENCE LENGTH SHIFTS THE 
OPTIMUM

Sequence length is very important 
for energy per layer 

Larger sequences result in more time 
being spent in low intensity memory 
heavy kernels that don’t benefit from 
faster compute clocks 

Compute bound kernels achieve very 
similar throughput in both cases 

=> There is no single best clock for a 
layer, it depends on the input, too
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ENERGY VS RUNTIME PARETO FRONTS ACROSS 
MODELS

Optimizing for both energy and 
runtime 

Characteristic “V”-shape for 
smaller layers that softens to “U”-
shape for larger ones 

Fastest runtime is not necessarily 
at highest clock 
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ENERGY VS RUNTIME PARETO FRONTS ACROSS 
MODELS

Optimizing for both energy and 
runtime 

Characteristic “V”-shape for 
smaller layers that softens to “U”-
shape for larger ones 

Fastest runtime is not necessarily 
at highest clock 

Softens even more for longer 
sequences and larger datatypes
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PRACTITIONER TAKEAWAY: ~10–20% ENERGY 
SAVINGS FOR SIMILAR SLOWDOWN

Table shows comparison of fastest 
Pareto optimal runtime to lowest 
Pareto optimal energy 

Again: fastest optimal runtime is not 
necessarily at highest clock 

Relative energy savings and runtime 
penalties are often very close 

Energy saving compared to 
maximum clock speed can be 
substantially higher for larger 
models
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Layer S Energy 
Saving [%]

Runtime 
Penalty [%]

GPT 125M
128 5.3 1.6
512 30.8 23.9
1024 28.1 18.3

GPT 1.3B
128 24.5 27.4
512 20.5 14.8
1024 21.0 12.8

GPT 13B
128 14.6 14.9
512 10.8 12.7
1024 11.8 11.3

GPT 175B
128 13.5 11.3
512 9.0 15.5
1024 19.9 30.7



FEASIBILITY STUDY: PREDICTION MODEL

Simple Random Forest predictor achieves 
acceptable accuracy 

Training data shifted to small values, more 
training data required 

Feature importance tracks with our 
intuitions and observations
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MACRO-SCALE: MODELING LARGE-SCALE 
LLM TRAINING TIME



FROM LAYER ENERGY TO RUN ENERGY
Training LLMs is easy given 4k+ GPUs 

Stacked decoder blocks 

Plethora of training data
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Model Sequence 
length

Hidden 
Size

FFN 
Size Layers Heads Vocab 

Size
Head 
Dim.

Hidden 
Act. Year

Qwen/Qwen-72B 32768 8192 49152 80 64 152064 128 SwiGLU 2023

Mistral LI 2411 131072 12288 28672 88 96 32768 128 silu 2024

Megatron-1T 2048 25600 49152 128 160 51200 160 gelu 2023

GPT-3 175B 2048 12288 49152 96 96 50257 128 gelu 2020



WHY MODELING MATTERS - GRAPHCULON
Question: can we model the behavior of these 4k+ GPUs? 

LLMs: one iteration perfectly predictable 

Performance model: LLMs mainly based on linear algebra + element-wise operations 

Idea: “walking the computational graph”, computation and communication tasks modeled as nodes 
Critical-path walk or full traversal 

Model various details: 3D parallelism, (collective) communication, memory consumption (fwd + activations + bwd + 
optimizer)
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EXECUTION CONFIG 
Mini-batch size 
Activation recalculation 
strategy 
…

SCHEDULER 
GPipe, 1F1B, … 
Walks a 
computational 
graph

MODEL CONFIG 
Model hyperparameters 
Number of layers, sequence 
length, hidden dimension, … 
(Currently only GPT-style)

SYSTEM MODEL 
Number of GPUs & model 

GPU performance model 
Interconnection network 

Messaging performance model

STATISTICS 
FLOPs 
Memory

TIMELINE 
Trace of actions 
JSON



PARALLELISM TOOLBOX: DP / TP / PP
Data parallelism (DP) 

Split data, not model 

Different mini-batches go to 
different (sets of) GPUs 

“Embarrassingly parallel” 

Tensor parallelism (TP) 
Split a single layer onto multiple 
GPUs 

Collective communication - 
allreduce & broadcast 

Pipeline parallelism (PP) 
Split mini-batch into micro-batches 

Process multiple layers in a 
pipelines fashion
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PIPELINE SCHEDULES & BUBBLE FRACTION 
INTUITION

Pipelining is a powerful technique, but introduces bubbles due to synchronous 
SGD 

GPipe as starting point, (interleaved) 1F1B as common optimization 

Variety of pipelines schedules proposed, with different trades (bubbles, 
memory, etc.)
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GRAPHCULON: TIMELINE
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GRAPHCULON: TIMELINE
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CLOSED-FORM ITERATION TIME BREAKDOWN
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Megatron-1T single batch training on 4096 A100 GPUs with various parallelism strategies
(B = 3072, bµ = 1, v = 1, recompute=full, optim sharding)



WHAT IT’S GOOD FOR TODAY
Use for trend exploration: bubble sensitivity, micro-batch scaling, where overlap 
could matter 

Overall simulation behavior is internally consistent except for specific issues 

Checks against (1) fundamentals (FLOP/parameter counts), (2) analytical model (same ballpark 
for 25k configurations), (3) calculon [1] results, (4) own on-premise experiments with Megatron 

Current status: informal collaboration with NVIDIA research + UK-based start-up 
Current goal: good enough (usability, accuracy) for publication (code+paper) 

Under development, next major iteration expected mid-February 

Future work 
Modeling energy-to-completion 

Comparing and optimizing pipeline schedules 

Extensions for LLM inference - autoregressive aspects, prefill phase (initial fill) + decode phase 
(generation)

31[1] Mikhail Isaev, Nic Mcdonald, Larry Dennison, and Richard Vuduc. 2023. Calculon: a methodology and tool for 
high-level co-design of systems and large language models. SC '23. https://doi.org/10.1145/3581784.3607102 

https://doi.org/10.1145/3581784.3607102


WRAPPING UP



ENERGY-EFFICIENT SYSTEMS AND AI LAB (ESAIL)
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Explore optimality 
GPU type (consumer/
server) 

DVFS 

Other accelerators 

System overhead 

4x for comparisons



SUMMARY
Research on the intersection of accelerators 
and deep neural networks 

Scalable ML ->“Green ML”, LLMs 

Robust ML -> Build “Bayesian Machines" 

ML Accelerators -> Diversification 

Beyond today 
Bayesian Machines - co-designed to reason about 
uncertainty (intractable workloads such as BNNs) 

RRAM for LLMs - efficient activation storage but 
unstable devices 

Repulsive ensembles - combining LLMs & uncertainty 
estimates 

FPGAs as SVI accelerators 

Greener training - compressing the backward pass 

Energy-Efficient Systems and AI Lab (ESAIL)
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SUMMARY
Energy-to-completion for LLMs is promising 

V- and U-shaped pareto curves suggest that race-to-idle 
is not always the best strategy  

DVFS-control was actually quite limited - no control over 
HBM 

LLM training is unaffordable (but super interesting 
HPC case) 

Simulators à la GraphCulon 

Even dynamic features can often be modeled - e.g. MoEs 

FlashAttention might require the use of statistics 

Research questions 
Predictability and granularity (frequency, time) of DVFS 
settings 

Energy efficiency for all system components - 
interconnection network 

Alternative forms of processing
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