
FROM PICOJOULES TO GIGAWATT-HOURS
ENERGY-TO-COMPLETION AND GPU DVFS

FOR LLM WORKLOADS
Holger Fröning, Daniel Barley, Dominik Gausepohl - holger.froening@ziti.uni-heidelberg.de

Hardware and Artificial Intelligence (HAWAII) Lab - hawaii.ziti.uni-heidelberg.de
Heidelberg University

NHR FAU, Jan 21, 2026

mailto:holger.froening@ziti.uni-heidelberg.de
http://hawaii.ziti.uni-heidelberg.de

GROUP BACKGROUND:
FROM HW TO ACCELERATORS TO ML

2

From: database engineer, HW designer
(ASICS, FPGA), HPC

To: vertically integrated approach to
efficient ML => HW systems for AI

Neural Architectures

Compiler

Plethora of HW

perf [ops
s] = p[Watt] ⋅ e[ops

J] P = afCV 2 + V Ileakage

xl = Φ(W ⊕ xl−1 + bl)

3

HARDWARE & ARTIFICIAL
INTELLIGENCE

L A B
[h ə ˈ w ɑ ː i ː]
H A W A I I

CONTINUED DEMAND FOR MORE HARDWARE
PERFORMANCE

GPUs are close to perfect for standard DNNs
and LLMs, but can we do better?

Future scaling of GPUs comes at tremendous
costs in terms of power consumption

Do GPUs create a bias towards “standard”-
DNN-based solutions?

Hardware lottery: yes!

What are promising alternatives? 1

Emerging HW often comes with
imperfections

Noise, non-linearities, saturation effects, etc.

Analog computations (electrical, photonic),
resistive memory

4

Power scales GPU performance

1 Careful, billion-dollar question

KAIST Teralab, HBM Roadmap Ver 1.7 Workshop, https://drive.google.com/file/d/1wdGvyAYM0SOjlweJcgPDKwXlk6czbuZo/view

https://drive.google.com/file/d/1wdGvyAYM0SOjlweJcgPDKwXlk6czbuZo/view

POST-DENNARD CMOS PERFORMANCE SCALING

5

perf[ops
s] = P[W] ⋅ η[ops

J]

Frequency , efficiency , data type , bit width , distance , memory level f ϵ t[{𝚏𝚕𝚘𝚊𝚝, 𝚒𝚗𝚝}] b d[mm] l

Operation

ϵop = fcomp(t, b) [pJ]
GPU

CPU
FPGA

CMOS-based, arch dep.

Data movement

ϵmem = fmem(l, d, b) [pJ]
SRAM

DRAM
HBM

Technology dep.
Wires

= P ⋅ (ops
ϵop + ϵmem)

Energy is additive

perf[ops
s] = IPC ⋅ fPeak-compute

throughput

Power-limited
throughput

CMOS TECHNOLOGY TRENDS
45NM (2014) VS 7NM (2021)

6

M. Horowitz, "1.1 Computing's energy problem (and what we can do about it)," 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). doi: 10.1109/ISSCC.2014.675732

Norman P. Jouppi, et al. 2021. Ten lessons from three generations shaped Google's TPUv4i. ISCA. https://doi.org/10.1109/
ISCA52012.2021.00010

picoJoules
Integer 45nm 7nm
Add

8 bit 0.03 0.007
32 bit 0.1 0.03

Mult
8 bit 0.2 0.07

32 bit 3.1 1.48

picoJoules
Float 45nm 7nm

FAdd
16 bit 0.4 0.16
32 bit 0.9 0.38

FMult
16 bit 1.1 0.34
32 bit 3.7 1.31

64-bit picoJoules
Mem 45nm 7nm

SRAM
8kB 10 7.5

32kB 20 8.5
1MB 100 14

DDR4 1300 - 2600 1300 -
HBM2 250 - 450

https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1109/ISCA52012.2021.00010

A100 NUMBER CHECK

7

NVIDIA A100 SXM, 7nm, 400W
A100

TOPS/s
A100
pJ/OP

Theory
pJ/OP

Residual = memory
pJ/bit

Vector FP32 [TF/s] 19.5 20.51 1.31 0.20
Matrix FP32 [TF/s] 156 2.56 1.31 0.01

Matrix FP16 [TF/s] 312 1.28 0.34 0.02

Matrix INT8 [TOP/s] 624 0.64 0.07 0.02

7nm Memory Energy
64bit 1bit

SRAM 8kB 7.5 0.12
SRAM 32kB 8.5 0.13
SRAM 1MB 14 0.22

DDR4 1300 20.31
HBM2 450 7.03

PICOJOULES <=> GIGAWATT-HOURS

No matter the scale, same physics,
just aggregated differently

Energy is power integrated over time

Fixed workload

Then, DVFS is fundamentally a
trade-off curve

More power to finish faster, or,

Lower power and take longer

E = ∫ P(t) dt = P ⋅ t

8

ON (IDEALIZED) FREQUENCY-INDEPENDENCE
Following Dennard yields frequency independency

From first principles, dynamic energy per fixed work is roughly independent
of frequency if voltage is constant and performance scales linearly. But:

Increasing typically requires higher for timing closure

Static/leakage and other time-proportional power
Real chips consume non-zero power even when not doing "useful" switching

Architectural overheads and non-linear performance scaling

In practice, does not hold true except for compute-bound
kernels with fully utilized pipelines

If grows slower than , then total energy rises

Edyn = Pdynt = (αCeffV2f) ⋅ (Ncycles/f) ≈ const ⋅ V2

f V
Edyn,overhead(f) ∝ V(f)2

Estatic = Pstatic ⋅ T ≈ Ileak(V, Tdie) V ⋅ t

Perf(f) ≈ f

Perf(f) P(f) E(f)
9

Vin

Switching activity

Temperature

α
Ceff = ∑ C

Ncycles = t f

Tdie

Vout

C

WHY REALITY BENDS IT: THREE DEVIATIONS

1. Useful work

2. Clock/Control: DVFS requires
 (the tax at high clocks)

3. Leakage: time-proportional power
(the low-clock penalty)

4. Bottlenecks/overheads:
saturates (wasted watts at high clocks)

=> U-shaped energy-frequency behavior

V = V(f) V2

Perf(f)

10

Ptotal(f) = Pdyn,compute(V(f), f) + Pdyn,overhead(V(f), f) + Pstatic(V(f), Tdie) + Puncore+mem

useful switching clock/control leakage weakly tied to SM f

DECODER LAYER AS THE REPEATABLE UNIT

11

Inputs
Input

Embedding +

Positional
Encoding

Encoder, N→

Multi-Head
Attention

Add Residual
& Normalize

Feed-Forward
Network

Add Residual
& Normalize

Outputs
Output

Embedding +

Positional
Encoding

Decoder, N→

Masked
Multi-Head
Attention

Add Residual
& Normalize

Cross
Multi-Head
Attention

Add Residual
& Normalize

Feed-Forward
Network

Add Residual
& Normalize

K

V

Q

Linear Softmax Output

Scores

Inputs &

Outputs

Output
Embedding +

Positional
Encoding

Decoder, N→

Masked
Multi-Head
Attention

Add Residual
& Normalize

Feed-Forward
Network

Add Residual
& Normalize Linear Softmax Output

Scores

Original Transformer

Decoder-only Transformer

Attention(Q, K, V) = softmax(QKT

dk)V

FFN(x) = σ(W0 ⋅ x) ⋅ W2

MICRO-SCALE: ENERGY-TO-COMPLETION
+ GPU DVFS FOR DECODER LAYERS

EXPERIMENTAL SETUP
Use NVIDIA Management Library (NVML) to
set SM clocks and to measure power
consumption

nvmlDeviceGetSamples is used with
NVML_TOTAL_POWER_SAMPLES to get most
recent power samples at ~2ms resolution

SM clock: from 210 to 1440 MHz in 15 MHz steps

HBM clock is fixed at 1215 MHz

Energy-to-solution is obtained by running a
transformer layer in a loop until a stable
runtime and power reading is obtained,
then E = P ⋅ t

13

Rivulet: 4 nodes, each 4x NVIDIA A30 GPU
Gen3 TensorCores: 82 TFLOP/s TF32, 165 TFLOP/s FP16

24GB HBM2 at 933GB/s

165W TDP

200GB/s NVLINK (for two neighboring GPUs)

EXPERIMENTAL SETUP

14

G
P

T
3

125M
G

P
T

3
350M

G
P

T
3

1.3B
G

P
T

3
6.7B

G
P

T
3

13B
G

P
T

3
175B

llam
a2

7B
llam

a2
13B

llam
a2

70B
m

istral7B

0

50

100

150

A30 TDP

Configuration

Po
w

er
D

ra
w

[W
]

CUDA Cores

G
P

T
3

125M
G

P
T

3
350M

G
P

T
3

1.3B
G

P
T

3
6.7B

G
P

T
3

13B
G

P
T

3
175B

llam
a2

7B
llam

a2
13B

llam
a2

70B
m

istral7B

0

50

100

150

A30 TDP

Configuration

Po
w

er
D

ra
w

[W
]

Tensor Cores

Example power measurement for various
problem sizes at 1035 MHz

Rivulet: 4 nodes, each 4x NVIDIA A30 GPU
Gen3 TensorCores: 82 TFLOP/s TF32, 165 TFLOP/s FP16

24GB HBM2 at 933GB/s

165W TDP

200GB/s NVLINK (for two neighboring GPUs)

OBSERVATION 1: U-SHAPED ENERGY PER LAYER
1. If SM clock is too low runtime

increases and thereby effects
of static power → energy
grows disproportionally

2. Mid-range clock settings
offer the best tradeoff

3. If SM clock is too high power
consumption increases
disproportionally → energy
grows disproportionally again

15

5

10

15

20

50

100

150

200 400 600 800 1,000 1,200 1,400
0.6

0.8

1

R
un

ti
m

e
[m

s
]

GPT 350M dmodel = 1024, nheads = 16, dFFN = 4096, s = 1024

Po
w

er
[W

]
SM Clock [MHz]

E
ne

rg
y
[J
]

Saturation due to
thermal throttling

OBSERVATION 1: U-SHAPED ENERGY PER LAYER
1. If SM clock is too low runtime

increases and thereby effects
of static power → energy
grows disproportionally

2. Mid-range clock settings
offer the best tradeoff

3. If SM clock is too high power
consumption increases
disproportionally → energy
grows disproportionally again

4. The optimal setting depends
on workload properties

16

40

60

80

100

120

100

150

200 400 600 800 1,000 1,200 1,400

6

7

R
un

ti
m

e
[m

s
]

GPT 13B dmodel = 5120, nheads = 40, dFFN = 20480, s = 1024

Po
w

er
[W

]
SM Clock [MHz]

E
ne

rg
y
[J
]

OBSERVATION 2: LAYER SIZE & EFFICIENCY

Larger layer configurations offer better “effective” energy per
operation, i.e. energy required for the calculation including data/
instruction fetch, scheduling, and baseline power draw

17

0
1.5
3

4.5
6

7.5
9

10.5
12

5.8
4.62

2.76 2.14 1.92 1.72 2.45 2.14 1.93 2.37

E
!e

ct
iv

e
E

ne
rg

y
[p
J/

F
L
O
P
]

Sequence Length s = 128 Clock = 555MHz

6.15
4.26

2.28 1.84 1.64 1.47 2.09 1.81 1.66 2.02

Sequence Length s = 128 Clock = 945MHz

10.32

7.04

2.86 2.12 1.84 1.6
2.49 2.12 1.83 2.33

Sequence Length s = 128 Clock = 1440MHz

G
P

T
3

125M

G
P

T
3

350M

G
P

T
3

1.3B

G
P

T
3

6.7B

G
P

T
3

13B

G
P

T
3

175B

llam
a2

7B

llam
a2

13B

llam
a2

70B

m
istral7B

0
1.5
3

4.5
6

7.5
9

10.5
12

6.57
5.59

3.8
2.43 2.2

1.34
2.44 2.09 1.59 2

Configuration

Sequence Length s = 1024 Clock = 555MHz

G
P

T
3

125M

G
P

T
3

350M

G
P

T
3

1.3B

G
P

T
3

6.7B

G
P

T
3

13B

G
P

T
3

175B

llam
a2

7B

llam
a2

13B

llam
a2

70B

m
istral7B

5.5 4.82
3.27

2.14 2.13 1.43 2.05 1.95 1.53 1.77

Configuration

Sequence Length s = 1024 Clock = 945MHz

G
P

T
3

125M

G
P

T
3

350M

G
P

T
3

1.3B

G
P

T
3

6.7B

G
P

T
3

13B

G
P

T
3

175B

llam
a2

7B

llam
a2

13B

llam
a2

70B

m
istral7B

7.2
6.09

3.87
2.41 2.25 1.59

2.46 2.19 1.66 2.05

Configuration

Sequence Length s = 1024 Clock = 1440MHz

OBSERVATION 3: SEQUENCE LENGTH SHIFTS THE
OPTIMUM

Sequence length is very important
for energy per layer

Larger sequences result in more time
being spent in low intensity memory
heavy kernels that don’t benefit from
faster compute clocks

Compute bound kernels achieve very
similar throughput in both cases

=> There is no single best clock for a
layer, it depends on the input, too

18

10
→3

10
→2

10
→1

10
0

10
1

10
2

10
3

In
t
e
n
s
it
y
[F
L
O
P
/B

]

GPT 6.7B s = 128 GPT 6.7B s = 1024

10
8

10
9

10
10

10
11

10
12

10
13

10
14

T
p
u
t
.
[F
L
O
P
/s
]

10
3

10
5

10
7

10
9

10
11

10
13

F
L
O

P
s

FP32 FP16 FP16 TC FP32 FP16 FP16 TC

10
→6

10
→5

10
→4

10
→3

10
→2

R
u
n
t
im

e
[s
]

unrolled-elementwise-kernel
vectorized-elementwise-kernel
reduce-kernel
vectorized-elementwise-kernel
vectorized-elementwise-kernel
elementwise-kernel
vectorized-elementwise-kernel
elementwise-kernel
sm80-xmma-gemm-f16f16
elementwise-kernel
elementwise-kernel
CatArrayBatchedCopy
elementwise-kernel
elementwise-kernel
elementwise-kernel
elementwise-kernel
CatArrayBatchedCopy
elementwise-kernel
elementwise-kernel
CatArrayBatchedCopy
CatArrayBatchedCopy
ampere-fp16-s16816gemm
vectorized-elementwise-kernel
elementwise-kernel
void
vectorized-elementwise-kernel
elementwise-kernel
ampere-fp16-s16816gemm
elementwise-kernel
sm80-xmma-gemm-f16f16
vectorized-elementwise-kernel
unrolled-elementwise-kernel
vectorized-elementwise-kernel
reduce-kernel
vectorized-elementwise-kernel
vectorized-elementwise-kernel
elementwise-kernel
vectorized-elementwise-kernel
elementwise-kernel
sm80-xmma-gemm-f16f16
vectorized-elementwise-kernel
ampere-fp16-s16816gemm
vectorized-elementwise-kernel

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Kernel

M
e
m

.
T
r
a
!

c
[B
]

unrolled-elementwise-kernel
vectorized-elementwise-kernel
reduce-kernel
vectorized-elementwise-kernel
vectorized-elementwise-kernel
elementwise-kernel
vectorized-elementwise-kernel
elementwise-kernel
Kernel2
elementwise-kernel
elementwise-kernel
CatArrayBatchedCopy
elementwise-kernel
elementwise-kernel
elementwise-kernel
elementwise-kernel
CatArrayBatchedCopy
elementwise-kernel
elementwise-kernel
CatArrayBatchedCopy
CatArrayBatchedCopy
Kernel2
vectorized-elementwise-kernel
elementwise-kernel
void
vectorized-elementwise-kernel
elementwise-kernel
ampere-fp16-s16816gemm
elementwise-kernel
Kernel2
vectorized-elementwise-kernel
unrolled-elementwise-kernel
vectorized-elementwise-kernel
reduce-kernel
vectorized-elementwise-kernel
vectorized-elementwise-kernel
elementwise-kernel
vectorized-elementwise-kernel
elementwise-kernel
sm80-xmma-gemm-f16f16
vectorized-elementwise-kernel
sm80-xmma-gemm-f16f16
vectorized-elementwise-kernel

Kernel

ENERGY VS RUNTIME PARETO FRONTS ACROSS
MODELS

Optimizing for both energy and
runtime

Characteristic “V”-shape for
smaller layers that softens to “U”-
shape for larger ones

Fastest runtime is not necessarily
at highest clock

19

2 4 6

0.15

0.2

0.25

0.3

E
ne

rg
y
[J
]

GPT 125M

Pareto Front

2 4 6 8
0.2

0.3

0.4

GPT 350M

Pareto Front

5 10 15 20

0.6

0.8

1

GPT 1.3B

Pareto Front

10 20 30 40 50

2

2.5

E
ne

rg
y
[J
]

GPT 6.7B

Pareto Front

20 40 60

2.5

3

3.5

4

GPT 13B

Pareto Front

100 150 200

11

12

13

GPT 175B

Pareto Front

20 40

1.5

2

2.5

3

Runtime [ms]

E
ne

rg
y
[J
]

Llama 7B

Pareto Front

300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400

SM Clock [MHz]

20 40 60

2.5

3

3.5

4

Runtime [ms]

Llama 13B

Pareto Front

50 100 150

7

8

Runtime [ms]

Llama 70B

Pareto Front

FP16, s = 512

ENERGY VS RUNTIME PARETO FRONTS ACROSS
MODELS

Optimizing for both energy and
runtime

Characteristic “V”-shape for
smaller layers that softens to “U”-
shape for larger ones

Fastest runtime is not necessarily
at highest clock

Softens even more for longer
sequences and larger datatypes

20

5 10 15

1.5

2

2.5

E
ne

rg
y
[J
]

GPT 125M

Pareto Front

10 20

2

3

4

GPT 350M

Pareto Front

20 40 60

7

8

9

GPT 1.3B

Pareto Front

50 100

14

16

18

20

22

E
ne

rg
y
[J
]

GPT 6.7B

Pareto Front

50 100 150
15

20

25

30

GPT 13B

Pareto Front

200 250 300

20

30

40

50

GPT 175B

Pareto Front

50 100 150

15

20

25

Runtime [ms]

E
ne

rg
y
[J
]

Llama 7B

Pareto Front

300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400

SM Clock [MHz]

50 100 150
15

20

25

30

Runtime [ms]

Llama 13B

Pareto Front

150 200 250

20

30

40

50

Runtime [ms]

Llama 70B

Pareto Front

FP32, s = 1024

PRACTITIONER TAKEAWAY: ~10–20% ENERGY
SAVINGS FOR SIMILAR SLOWDOWN

Table shows comparison of fastest
Pareto optimal runtime to lowest
Pareto optimal energy

Again: fastest optimal runtime is not
necessarily at highest clock

Relative energy savings and runtime
penalties are often very close

Energy saving compared to
maximum clock speed can be
substantially higher for larger
models

21

Layer S Energy
Saving [%]

Runtime
Penalty [%]

GPT 125M
128 5.3 1.6
512 30.8 23.9
1024 28.1 18.3

GPT 1.3B
128 24.5 27.4
512 20.5 14.8
1024 21.0 12.8

GPT 13B
128 14.6 14.9
512 10.8 12.7
1024 11.8 11.3

GPT 175B
128 13.5 11.3
512 9.0 15.5
1024 19.9 30.7

FEASIBILITY STUDY: PREDICTION MODEL

Simple Random Forest predictor achieves
acceptable accuracy

Training data shifted to small values, more
training data required

Feature importance tracks with our
intuitions and observations

22

40 60 80 100 120 140 160
→10
→5
0
5
10

Predicted Power [W]

R
es

id
ua

l[
W

]

0 50 100 150 200
→40
→20

0
20
40

Predicted Runtime [ms]

R
es

id
ua

l[
m
s]

0 10 20 30 40 50
→4
→2
0
2
4

Predicted Energy [J]

R
es

id
ua

l[
J]

Arch Dtype f s dmodel
nheads dFFN

0

0.2

0.4

0.6

0.8

1

Feature

N
or

m
al

iz
ed

C
V

-P
FI

Power Model
Runtime Model
Energy Model

Error Power Runtime Energy
RMSE 2.2W 3.6ms 0.5J
MAPE 1.5% 3.5% 3.0%
MAE 1.6W 1.1ms 0.2J

R² 0.9965 0.9919 0.9974

MACRO-SCALE: MODELING LARGE-SCALE
LLM TRAINING TIME

FROM LAYER ENERGY TO RUN ENERGY
Training LLMs is easy given 4k+ GPUs

Stacked decoder blocks

Plethora of training data

24

Inputs &

Outputs

Output
Embedding +

Positional
Encoding

Decoder, N→

Masked
Multi-Head
Attention

Add Residual
& Normalize

Feed-Forward
Network

Add Residual
& Normalize Linear Softmax Output

Scores

Model Sequence
length

Hidden
Size

FFN
Size Layers Heads Vocab

Size
Head
Dim.

Hidden
Act. Year

Qwen/Qwen-72B 32768 8192 49152 80 64 152064 128 SwiGLU 2023

Mistral LI 2411 131072 12288 28672 88 96 32768 128 silu 2024

Megatron-1T 2048 25600 49152 128 160 51200 160 gelu 2023

GPT-3 175B 2048 12288 49152 96 96 50257 128 gelu 2020

WHY MODELING MATTERS - GRAPHCULON
Question: can we model the behavior of these 4k+ GPUs?

LLMs: one iteration perfectly predictable

Performance model: LLMs mainly based on linear algebra + element-wise operations

Idea: “walking the computational graph”, computation and communication tasks modeled as nodes
Critical-path walk or full traversal

Model various details: 3D parallelism, (collective) communication, memory consumption (fwd + activations + bwd +
optimizer)

25

EXECUTION CONFIG
Mini-batch size
Activation recalculation
strategy
…

SCHEDULER
GPipe, 1F1B, …
Walks a
computational
graph

MODEL CONFIG
Model hyperparameters
Number of layers, sequence
length, hidden dimension, …
(Currently only GPT-style)

SYSTEM MODEL
Number of GPUs & model

GPU performance model
Interconnection network

Messaging performance model

STATISTICS
FLOPs
Memory

TIMELINE
Trace of actions
JSON

PARALLELISM TOOLBOX: DP / TP / PP
Data parallelism (DP)

Split data, not model

Different mini-batches go to
different (sets of) GPUs

“Embarrassingly parallel”

Tensor parallelism (TP)
Split a single layer onto multiple
GPUs

Collective communication -
allreduce & broadcast

Pipeline parallelism (PP)
Split mini-batch into micro-batches

Process multiple layers in a
pipelines fashion

26

PIPELINE SCHEDULES & BUBBLE FRACTION
INTUITION

Pipelining is a powerful technique, but introduces bubbles due to synchronous
SGD

GPipe as starting point, (interleaved) 1F1B as common optimization

Variety of pipelines schedules proposed, with different trades (bubbles,
memory, etc.)

27

GPU 0 0 1 2 3 0 1 2 3 4 5 6 0 7 1 4 2 5 3 6 0 7 1 2 3 4 5 6 7 4 5 6 7

GPU 1 0 1 2 3 0 1 2 3 4 0 5 1 6 2 7 3 4 0 5 1 6 2 7 3 4 5 6 7 4 5 6 7

GPU 2 0 1 2 3 0 1 2 0 3 1 4 2 5 3 6 0 7 1 4 2 5 3 6 4 7 5 6 7 4 5 6 7

GPU 3 0 1 2 3 0 0 1 1 2 2 3 3 4 0 5 1 6 2 7 3 4 4 5 5 6 6 7 7 4 5 6 7

t = 56Time
forward pass micro batch 0 backward pass micro batch 0 forward pass micro batch 1 backward pass micro batch 1

GPU 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

GPU 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

GPU 2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

GPU 3 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

t = 32 t = 65Time
forward pass micro batch 0 backward pass micro batch 0 forward pass micro batch 1 backward pass micro batch 1

GRAPHCULON: TIMELINE

28

GRAPHCULON: TIMELINE

29

30

CLOSED-FORM ITERATION TIME BREAKDOWN

t=4
p=32

t=8
p=16

t=16
p=8

t=32
p=4

0

50

100

150

T
im

e,
s

µm:96 µm:96
µm:96

µm:96

TP vs PP (DP=32) batch time

p=1
d=512

p=2
d=256

p=4
d=128

p=8
d=64

p=16
d=32

p=32
d=16

p=64
d=8

p=128
d=4

0

50

100

150

T
im

e,
s

µm:1 µm:12 µm:24 µm:48 µm:96 µm:192 µm:384 µm:768

PP vs DP (TP=8) batch time

ttotal

FWD Pass

BWD Pass

Optim

PP Bubble

Recompute

TP Comm.

PP Comm.

DP Comm.

t=4
d=32

t=8
d=16

t=16
d=8

t=32
d=4

0

50

100

150

T
im

e,
s

µm:96 µm:192
µm:384

µm:768

TP vs DP (PP=32) batch time

t=4
p=32

t=8
p=16

t=16
p=8

t=32
p=4

0

10

20

30

40

S
iz

e,
G

B

TP vs PP (DP=32) memory consumption (device)

p=1
d=512

p=2
d=256

p=4
d=128

p=8
d=64

p=16
d=32

p=32
d=16

p=64
d=8

p=128
d=4

0

200

400

600

S
iz

e,
G

B

PP vs DP (TP=8) memory consumption (device)

Weights

Activation - Recomp.

Weight Gradients

Activation Gradients

Optimizer Space

t=4
d=32

t=8
d=16

t=16
d=8

t=32
d=4

0

10

20

30

40

S
iz

e,
G

B

TP vs DP (PP=32) memory consumption (device)

Megatron-1T single batch training on 4096 A100 GPUs with various parallelism strategies
(B = 3072, bµ = 1, v = 1, recompute=full, optim sharding)

WHAT IT’S GOOD FOR TODAY
Use for trend exploration: bubble sensitivity, micro-batch scaling, where overlap
could matter

Overall simulation behavior is internally consistent except for specific issues

Checks against (1) fundamentals (FLOP/parameter counts), (2) analytical model (same ballpark
for 25k configurations), (3) calculon [1] results, (4) own on-premise experiments with Megatron

Current status: informal collaboration with NVIDIA research + UK-based start-up
Current goal: good enough (usability, accuracy) for publication (code+paper)

Under development, next major iteration expected mid-February

Future work
Modeling energy-to-completion

Comparing and optimizing pipeline schedules

Extensions for LLM inference - autoregressive aspects, prefill phase (initial fill) + decode phase
(generation)

31[1] Mikhail Isaev, Nic Mcdonald, Larry Dennison, and Richard Vuduc. 2023. Calculon: a methodology and tool for
high-level co-design of systems and large language models. SC '23. https://doi.org/10.1145/3581784.3607102

https://doi.org/10.1145/3581784.3607102

WRAPPING UP

ENERGY-EFFICIENT SYSTEMS AND AI LAB (ESAIL)

33

Explore optimality
GPU type (consumer/
server)

DVFS

Other accelerators

System overhead

4x for comparisons

SUMMARY
Research on the intersection of accelerators
and deep neural networks

Scalable ML ->“Green ML”, LLMs

Robust ML -> Build “Bayesian Machines"

ML Accelerators -> Diversification

Beyond today
Bayesian Machines - co-designed to reason about
uncertainty (intractable workloads such as BNNs)

RRAM for LLMs - efficient activation storage but
unstable devices

Repulsive ensembles - combining LLMs & uncertainty
estimates

FPGAs as SVI accelerators

Greener training - compressing the backward pass

Energy-Efficient Systems and AI Lab (ESAIL)

34

M L
A c c e l e r a t o r s

R
o
b
u
s
t

M
L

S
c
a
l
a
b
l
e

M
L

SUMMARY
Energy-to-completion for LLMs is promising

V- and U-shaped pareto curves suggest that race-to-idle
is not always the best strategy

DVFS-control was actually quite limited - no control over
HBM

LLM training is unaffordable (but super interesting
HPC case)

Simulators à la GraphCulon

Even dynamic features can often be modeled - e.g. MoEs

FlashAttention might require the use of statistics

Research questions
Predictability and granularity (frequency, time) of DVFS
settings

Energy efficiency for all system components -
interconnection network

Alternative forms of processing

35

M L
A c c e l e r a t o r s

R
o
b
u
s
t

M
L

S
c
a
l
a
b
l
e

M
L

