

Inference in the Age of Reasoning Models

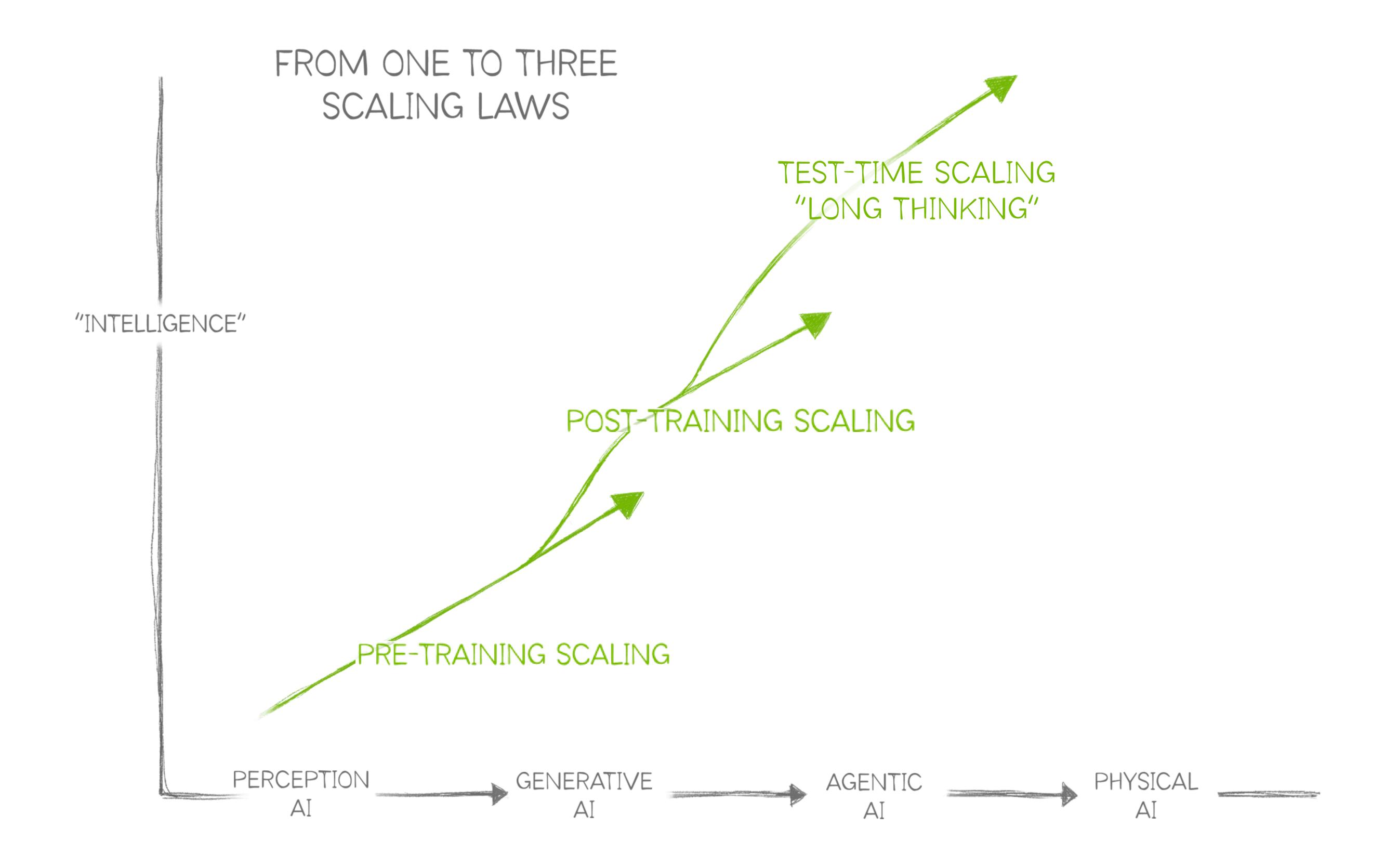
Dr. Séverine Habert

Senior Solutions Architect

Frédéric Parienté

Director, Solutions Architecture and Engineering

Al Scaling Laws Drive Exponential Demand for Compute

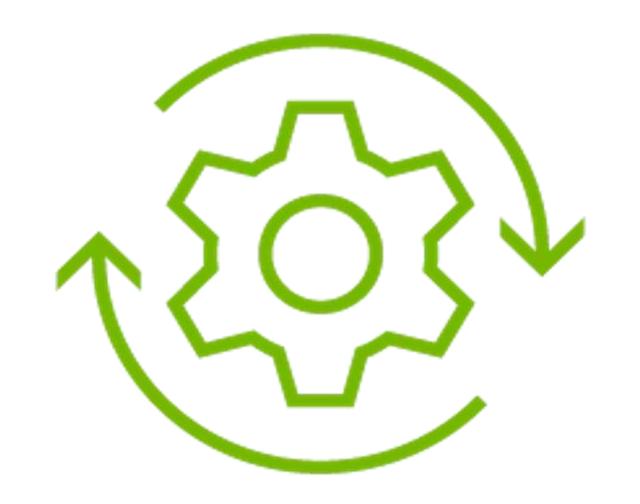


Inference Compute Requirements Scaling Exponentially

Fueled by reasoning models and Al agents

Larger Models

Hundreds of billions of parameters

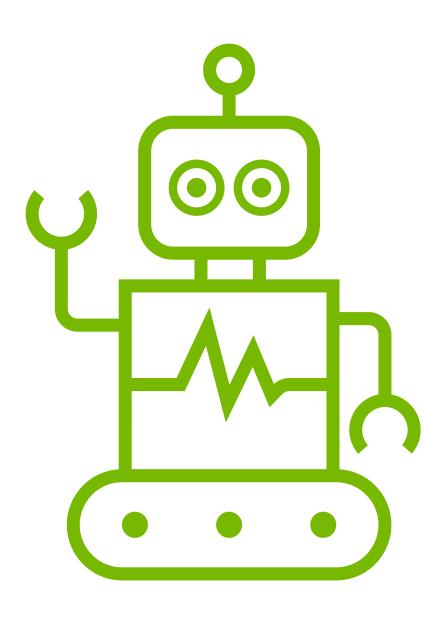


Long Thinking Time

100x more thinking tokens

Larger Context

Millions of input tokens



Agents

One user prompt involves multiple model executions

Two Stages of LLM Execution

Prefill vs Decoding and the use of KV-cache

- **Prefill** = time to first token
 - Loading the user prompt into the system
 - Populate KV-cache for all the tokens from the prompt.
- Decoding = inter-token latency
 - Generating the response token by token
 - Reuse KV-cache to generate the next token

LLM inference is made of

prefill

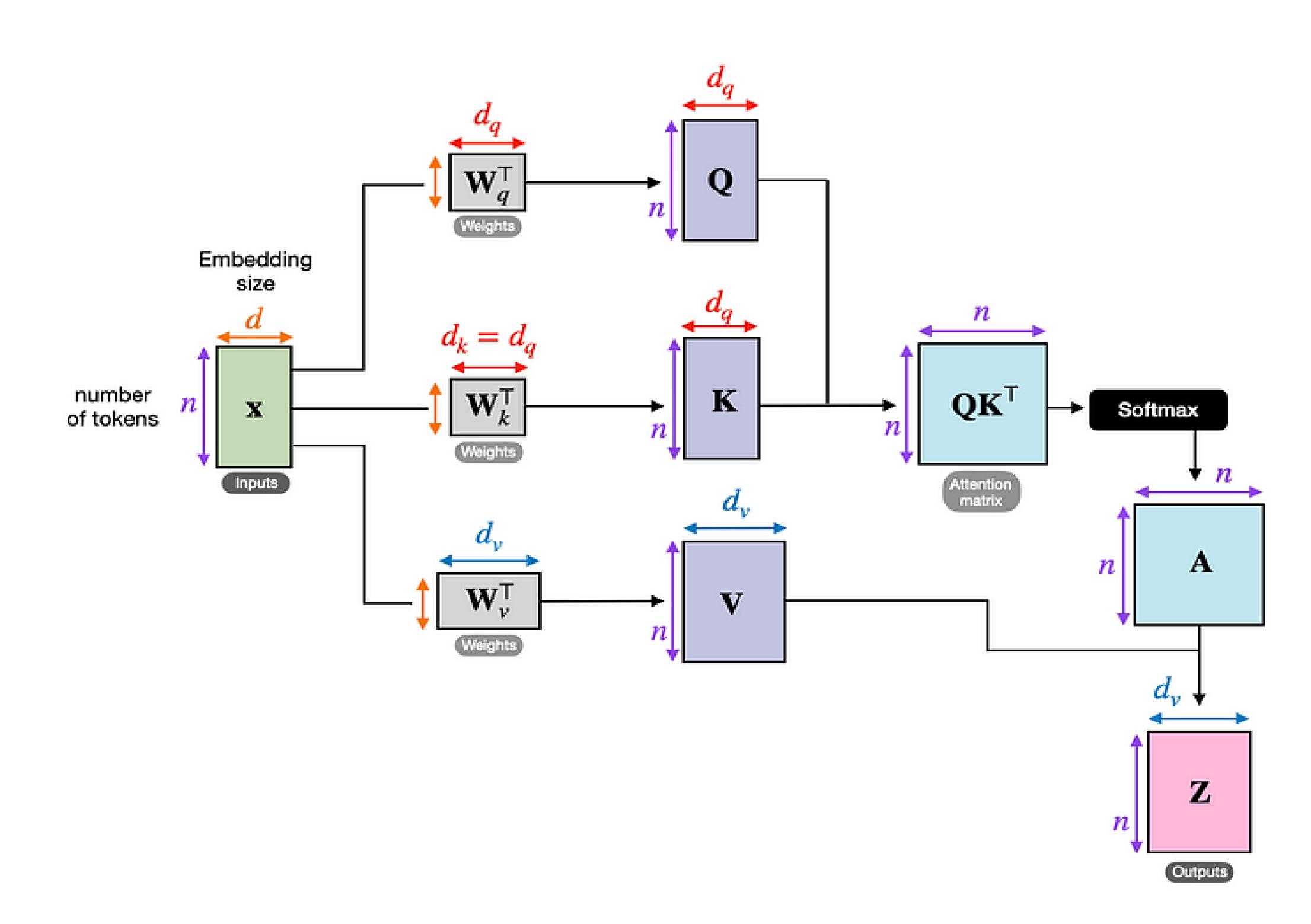
followed

by

decode

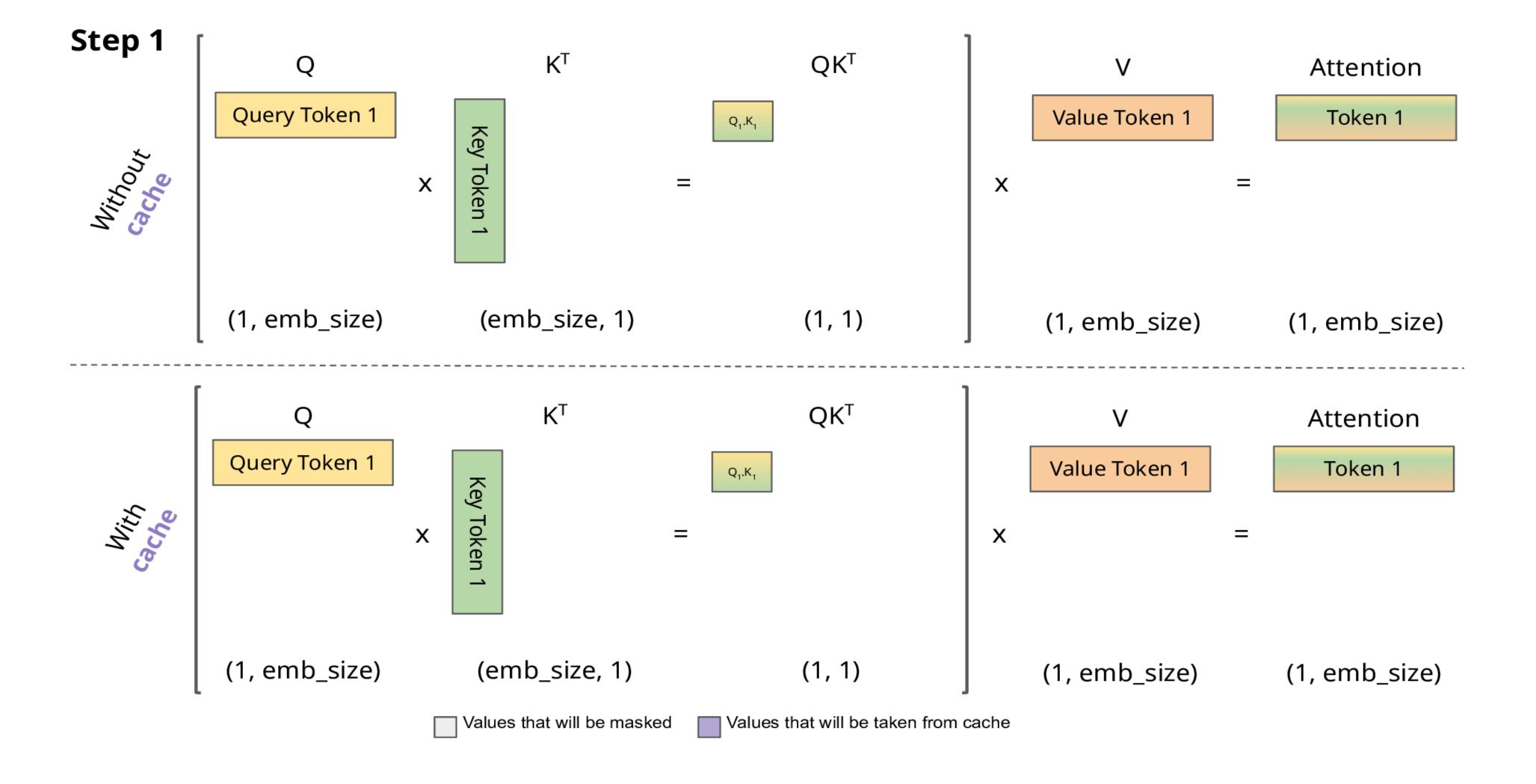
KV-cache

A look at the attention layer



$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

KV-cache



Prefix caching

KV cache reuse

KV cache are stored and can be used when generating different responses to the prompts that contain similar prefix

Prompt (round 1) Prompt (round 2) Cached **Human:** What's AI? **Human:** What's AI? **LLM:** AI is technology that simulates human intelligence, LLM Result (round 1) **LLM:** AI is technology that like Siri or Google Maps. simulates human intelligence, **Human:** Cool, thanks! like Siri or Google Maps. LLM Result (round 2) Turn 1 (A) Turn 2 (Q) Turn 2 (A) Chat History **Chat History** Turn 3 (Q) Turn 3 (A) Turn 4 (A) **Chat History** Turn 4 (Q)

Multi-turn conversation

System prompt

Request A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. User: Hello!

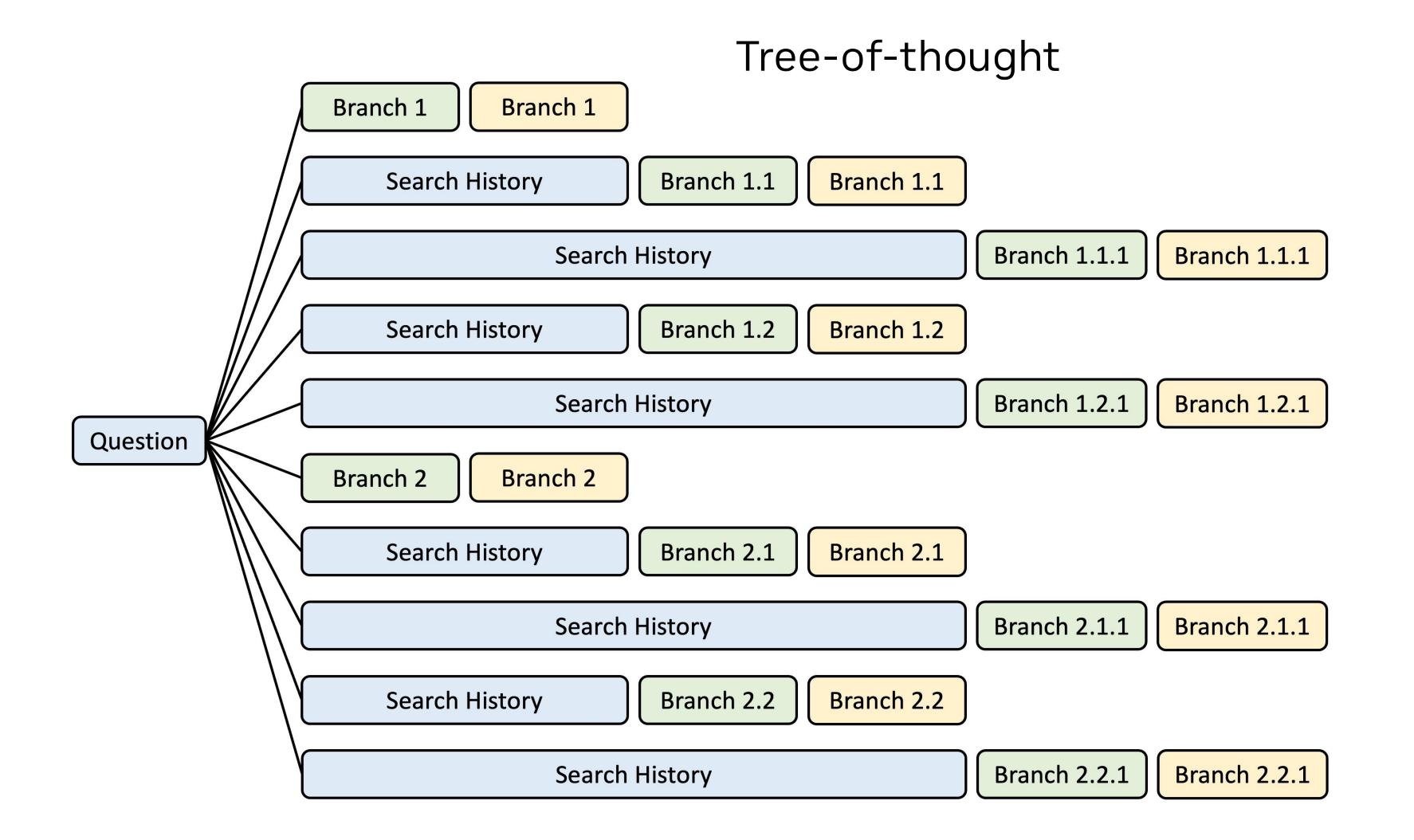
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. User: How are you?

Request C A chat between a curious user and an artificial intelligence assistant. The assistant speaks French. User: Bonjour!

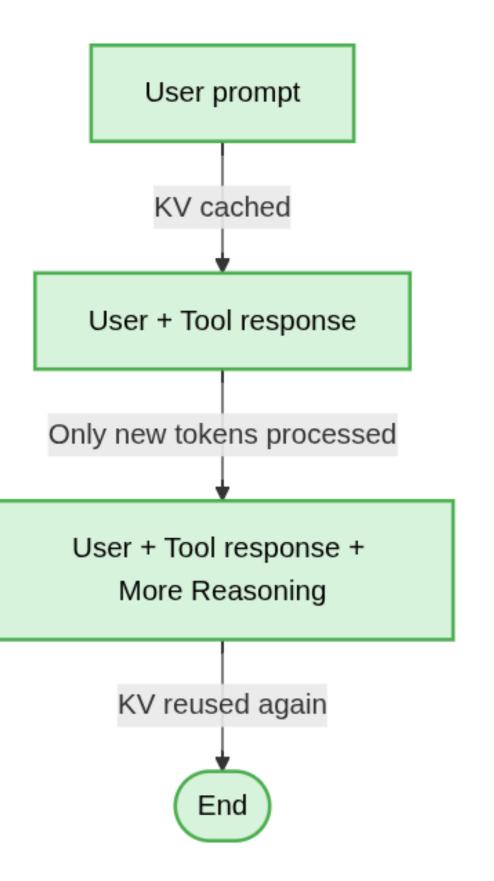
Prefix caching

KV cache reuse

KV cache are stored and can be used when generating different responses to the prompts that contain similar prefix

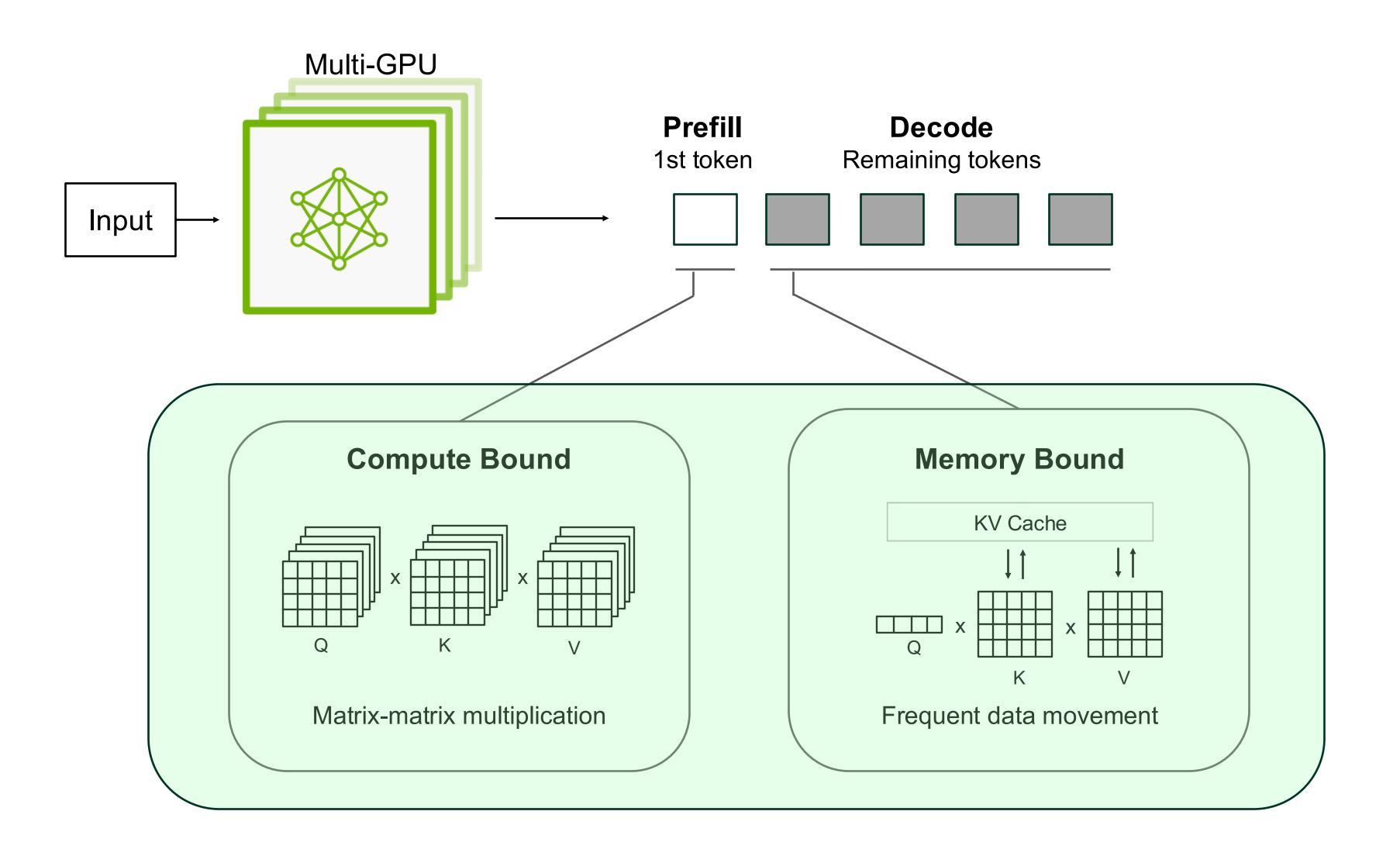


Agent reuse after tool usage



LLM inference

The effect of monolithic inference



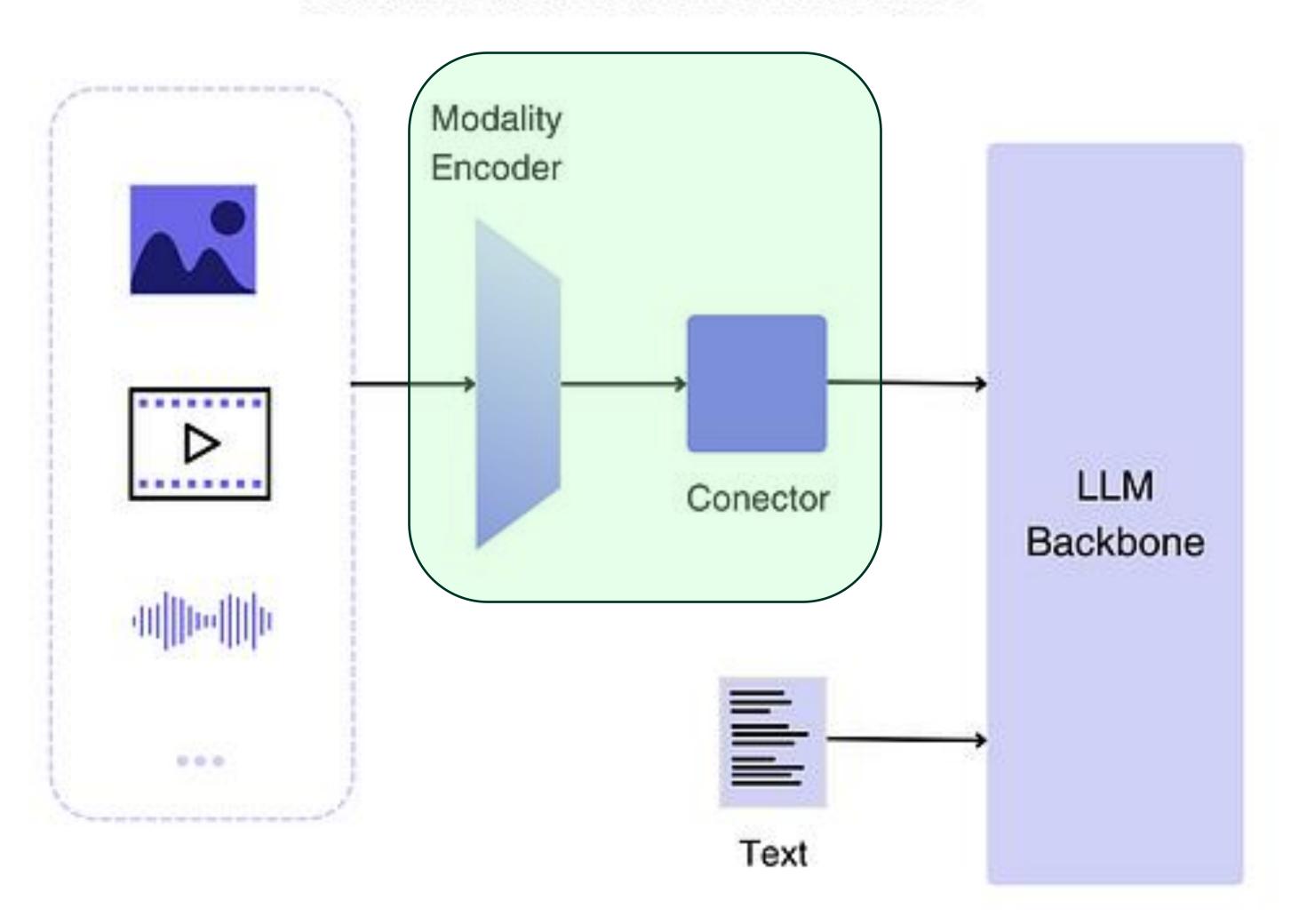
Share same parallelism strategy

Multimodality

Diverse elements require separate optimizations

- Beyond the LLM backbone, multimodal models have image or video encoders
- Encoders are compute bound.

Multimodal Model Architecture



Estimating the size of the KV Cache

```
Total size of KV cache in bytes = 2 * size of(precision) * n_{layers} * d_{model} * seqlen * batch
2 = two \ matrices \ of \ K \ and \ V
precision = bytes/parameter (FP16 = 2bytes)
n_{layers} = layers \ in \ the \ model
d_{model} = Dimension \ of \ the \ embeddings
seqlen = length \ of \ context \ in \ tokens \ (input \ prompt + generated \ output)
batch = batch \ size
```

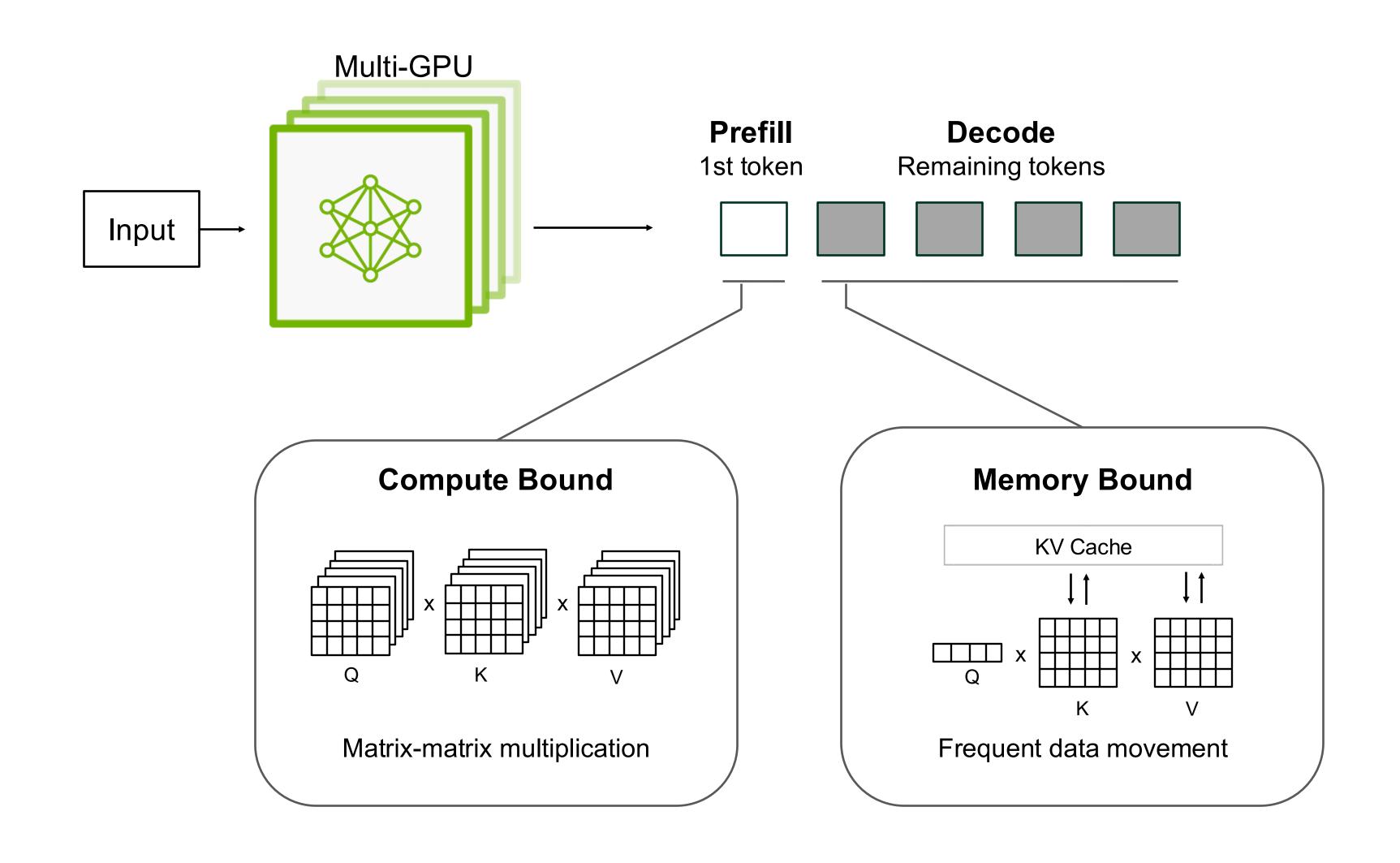
Example of a KV Cache size for LLaMa2 7B model in FP16 and a batch size of 1

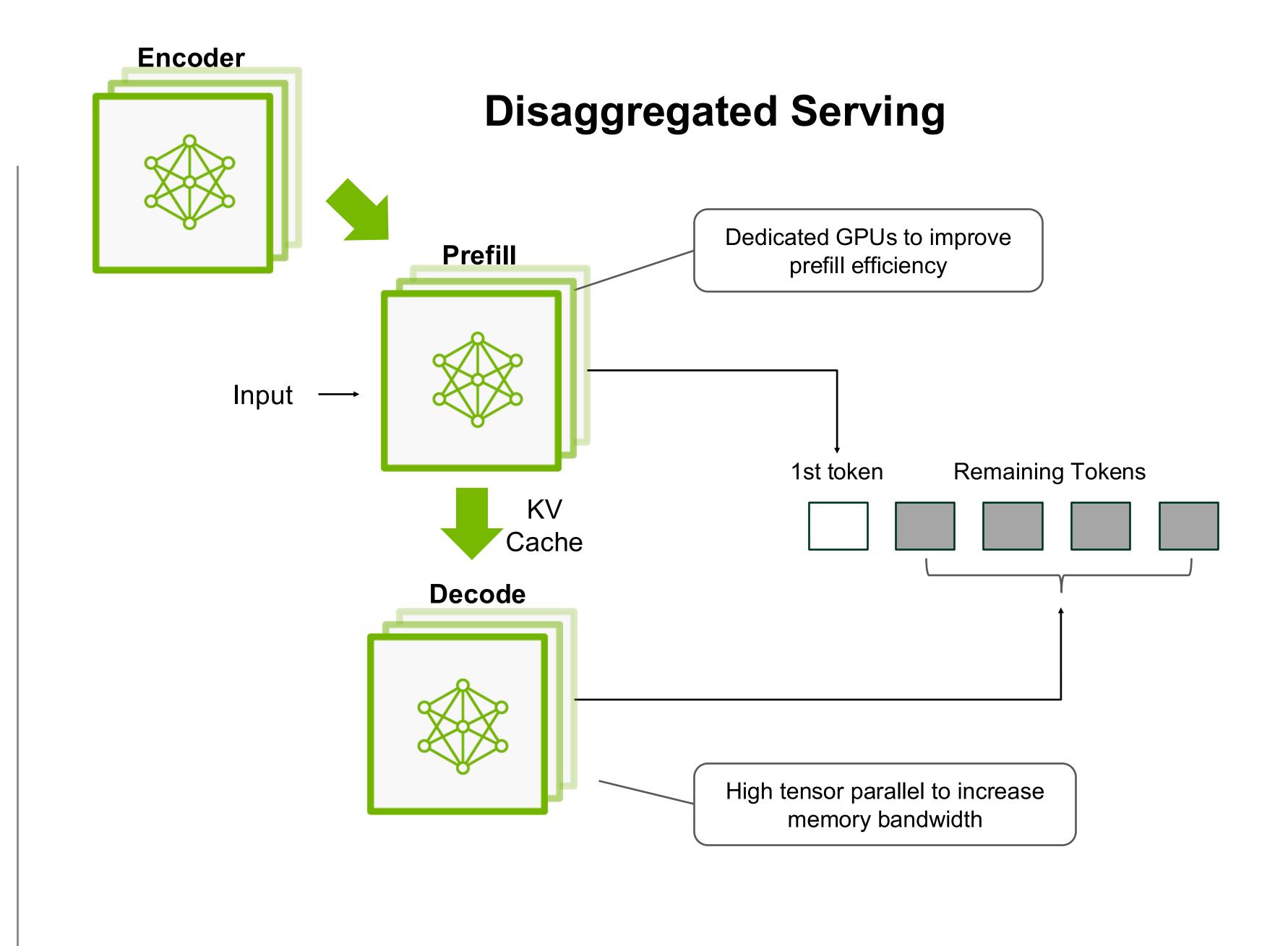
$$2 * 2 * 4096 * 32 * 4096 * 1 = 2GB$$

New Inference Optimization Techniques to Boost Inference

Disaggregated serving separates prefill and decode allowing each to be optimized independently

Traditional Serving

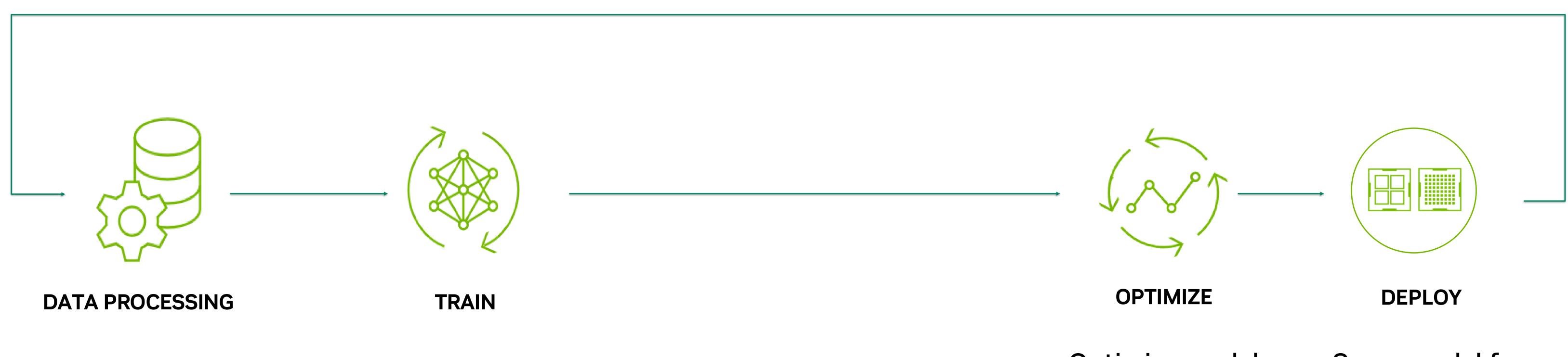




More flexibility to optimize cost and user experience

Inferencing in the End-to-end Al Workstream

Al Training Al Inference



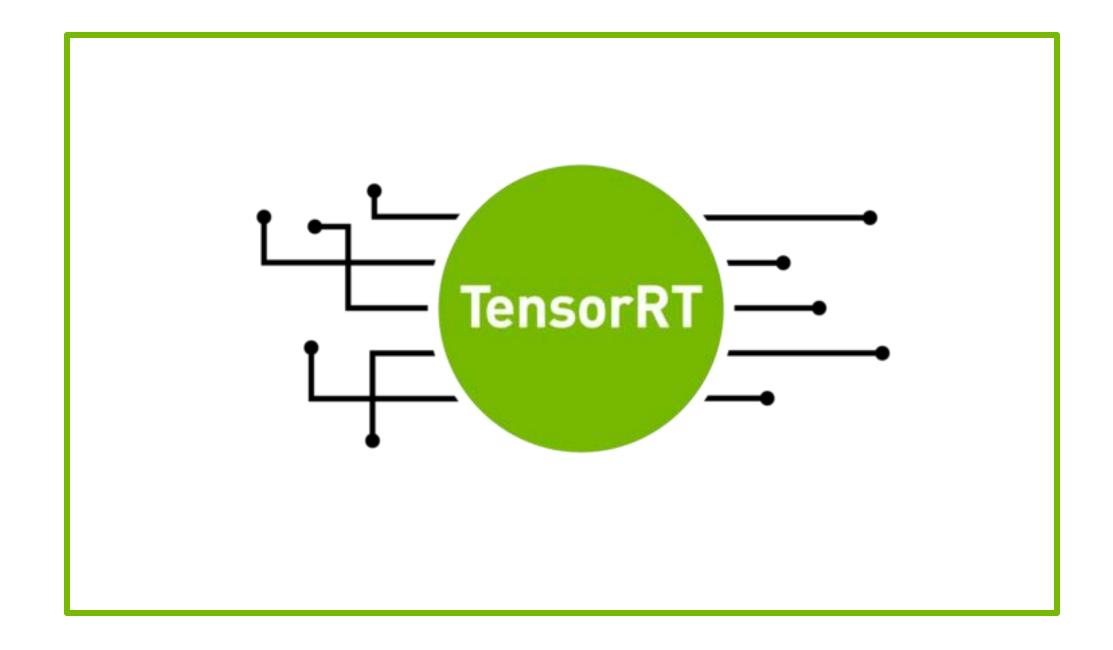
Collect, cleanse and transform training data set

Select model and fine tune for desired accuracy

Optimize model for target HW accelerator

Serve model for optimal user experience & TCO

Inference Engines ecosystem



TensorRT-LLM in the DL Compiler Ecosystem

TensorRT-LLM builds on TensorRT Compilation

TensorRT-LLM

- Inference runtime & compiler specifically designed for LLMs
- LLM specific optimizations:
 - KV Caching & Custom MHA Kernels
 - Inflight batching, Paged KV Cache (Attention)
 - Multi-GPU, Multi-Node
 - Grammar support
 - & more
- ONLY for LLMs

TensorRT

- General purpose Deep Learning Inference Compiler
 - Graph rewriting, constant folding, kernel fusion
 - Optimized GEMMs & pointwise kernels
 - Kernel Auto-Tuning
 - Memory Optimizations
 - & more
- All Al Workloads

TensorRT-LLM

LLM specific optimizations:

- KV Caching
- Multi-GPU, Muti-Node
- Custom MHA optimizations
- Paged KV Cache (Attention)
- etc...

TensorRT

General Purpose Compiler

- Optimized GEMMs & general kernels
- Kernel Fusion
- Auto Tuning
- Memory Optimizations
- Multi-stream execution

KV Cache & Attention Techniques

(Sliding) Window Attention, & Streaming LLM

- Allow for longer (sometimes unlimited) sequence length
 - Reduces KV Cache Memory usage
 - Avoids OOM Errors
- (Sliding) Windowed Attention evict tokens based on arrival
 - Significantly reduces memory usage
 - Can negatively impact accuracy or require recomputing KV
- Streaming-LLM allows for unlimited sequence length
 - Does not evict Attention Sinks (important elements)
 - KV Cache stays constant size
 - Does not require recompute & does not impact accuracy
 - Particulary beneficial for multi-turn (ie. chat) usecases

Attention KV Cache Usage (Less is Better) Windowed Dense Sliding Window StreamingLLM Free Prev. Tokens Curr. Token Attn. Sync

Optimized Attention

Custom Implementations for Attention

- Custom optimized CUDA kernels for Attention
 - Similar to FlashAttentionV2
- Optimized for A100 & H100 & B200
- Kernels for Encoder & Decoder, as well as context & prefill
- Supports MHA, MQA, GQA

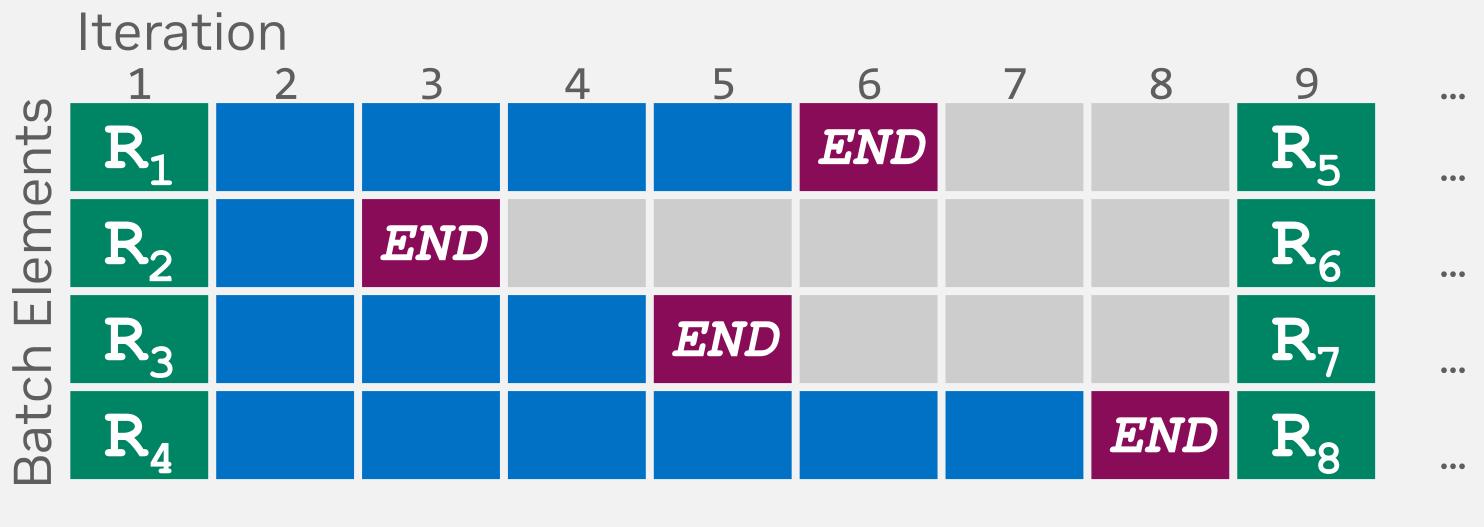


Inflight Batching

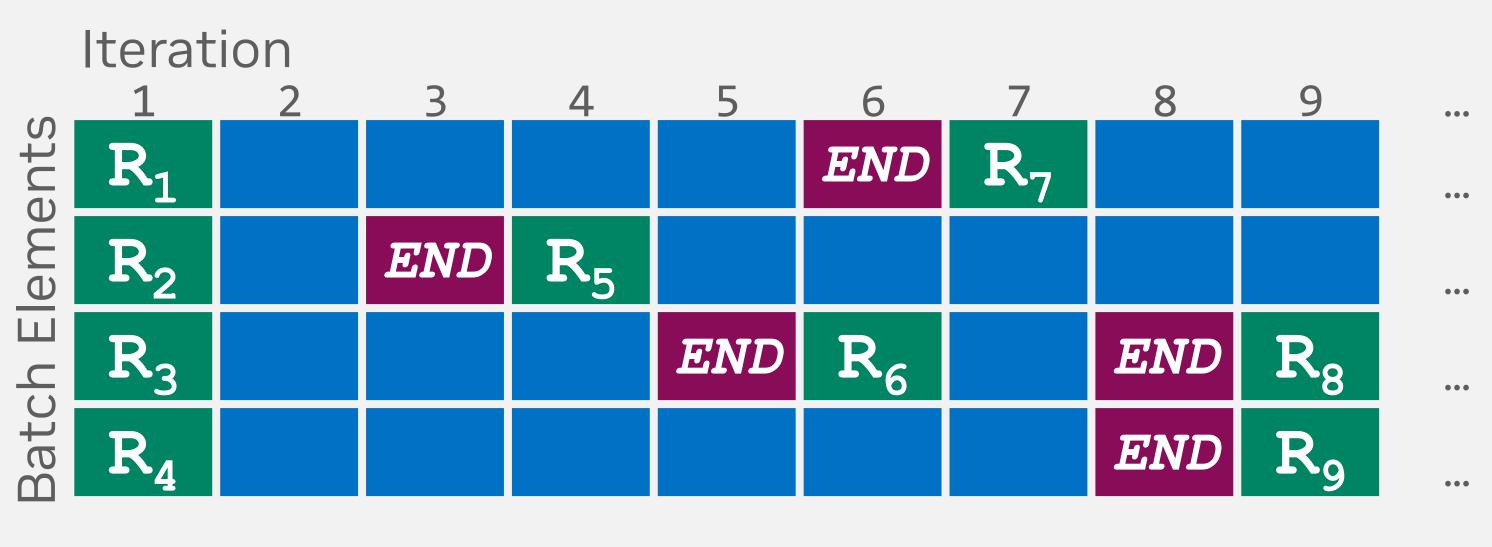
Maximizing GPU Utilization during LLM Serving

TensorRT-LLM provides custom Inflight Batching to optimize GPU utilization during LLM Serving

- Replaces completed requests in the batch
 - Evicts requests after EoS & inserts a new request
- Improves throughput, time to first token, & GPU utilization
- Integrated directly into the TensorRT-LLM Triton backend
- Accessible though the TensorRT-LLM Batch Manager



Static Batching



Inflight Batching

KV Cache Optimizations

Paged & Quantized KV Cache

Paged KV Cache improves memory consumption & utilization

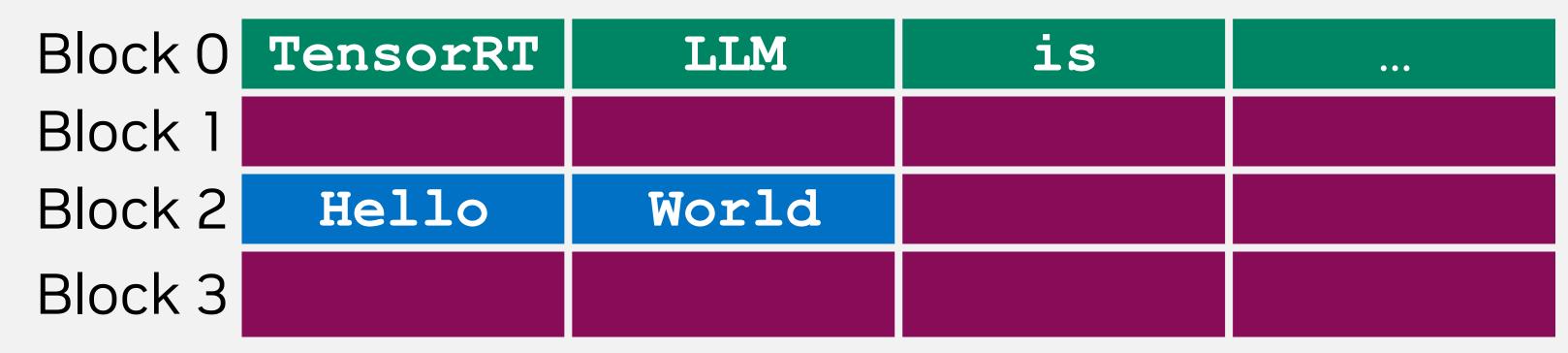
- Stores keys & values in non-contiguous memory space
- Allows for reduced memory consumption of KV cache
- Allocates memory on demand

Quantized KV Cache improves memory consumption & perf

- Reduces KV Cache elements from 16b to 8b (or less!)
- Reduces memory transfer improving performance
- Supports INT8 / FP8 KV Caches

Both allow for increased peak performance

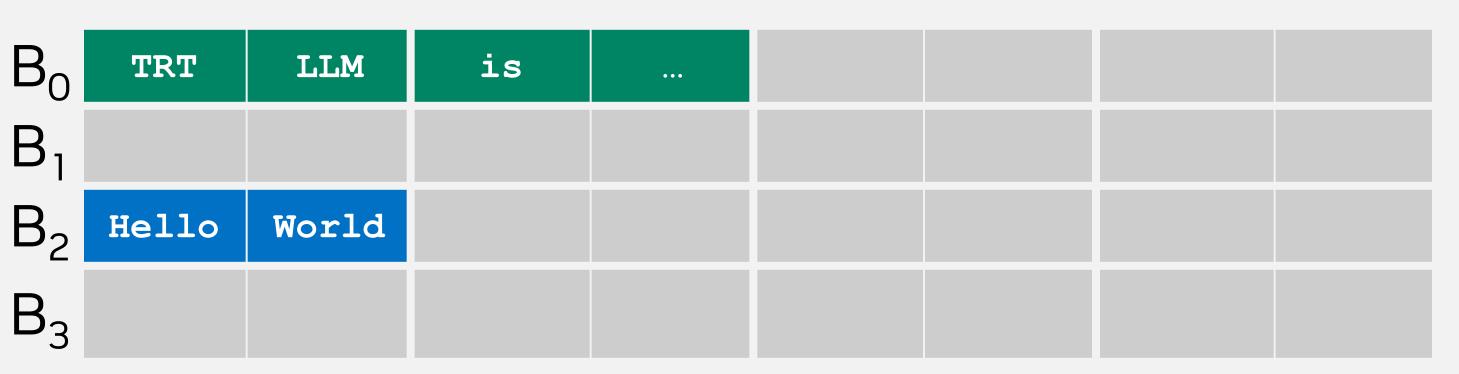
TensorRT-LLM optimizes inference on NVIDIA GPUs ...



Traditional KV Caching

B_0	TensorRT	LLM	is	•••
B_1				
B_2	Hello	World		
B_3				

Paged KV Cache

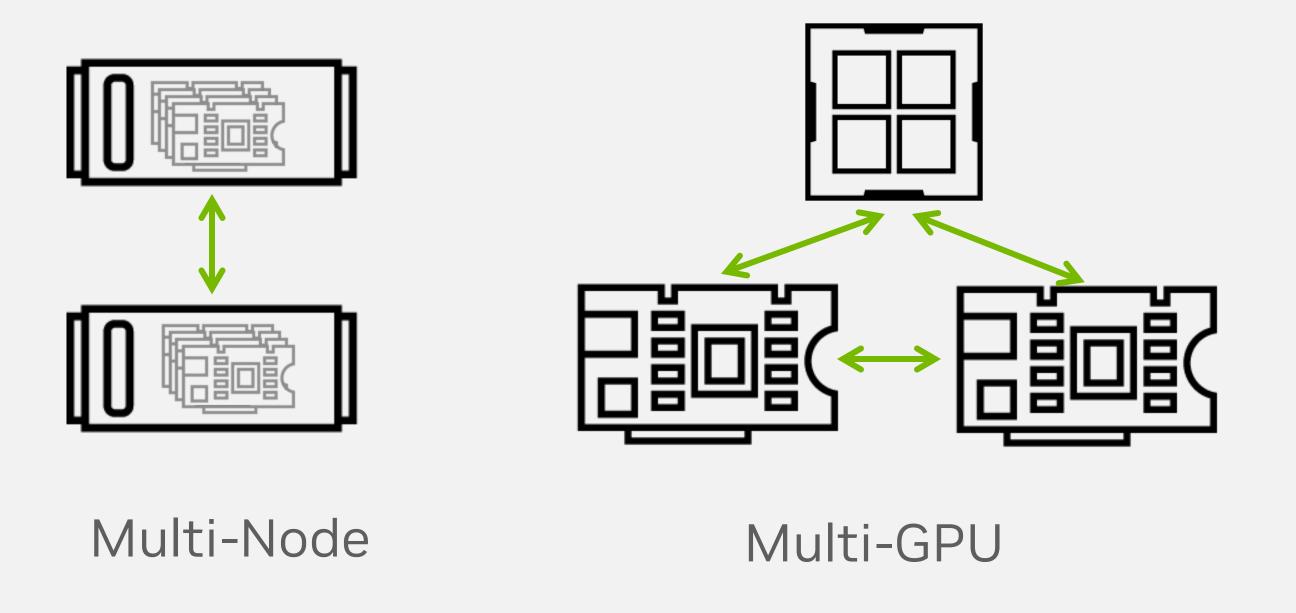


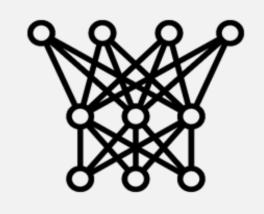
Quantized Paged KV Cache

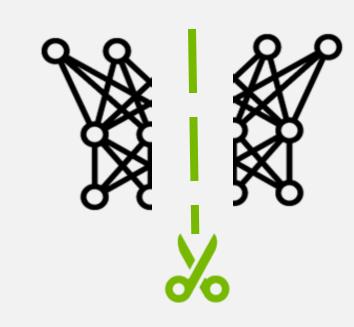
Multi-GPU Multi-Node

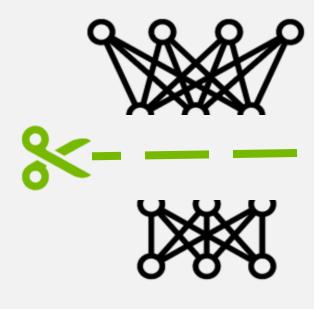
Sharding Models across GPUs

- Supports Tensor & Pipeline parallelism
- Allows for running very large models (tested up to 530B)
- Supports multi-GPU (single node) & multi-node
- TensorRT-LLM handles communication between GPUs
- Examples are parametrized for sharding across GPUs









No Parallelism

Tensor Parallel

Pipeline Parallel

NVIDIA Dynamo Platform

The Operating System for Al Factories

NVIDIA Dynamo Platform

NVIDIA Dynamo

Distributed and Disaggregated
Generative Al Serving

NVIDIA Dynamo Triton

(formerly Triton Inference Server)

Standardized Model Deployment Across Every Al Workload

NVIDIA NIM

Fastest and Easiest Way to Deploy NVIDIA Dynamo Platform in Production

NVIDIA Dynamo Triton (formerly Triton Inference Server)

Deploy models from all popular frameworks across GPUs and CPUs

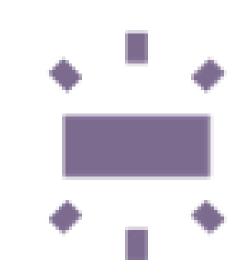
Any Framework

Supports Multiple Framework Backends Natively e.g., TensorFlow, PyTorch, TensorRT, XGBoost, ONNX, Python, TensorRT-LLM, vLLM & More

Any Query Type

Optimized for Real Time, Batch, Streaming, Ensemble Inferencing

Any Platform



X86 CPU | Arm CPU | NVIDIA GPUs | MIG

Linux | Windows | Virtualization

Public Cloud, Data Center and Edge/Embedded (Jetson)

DevOps & MLOps



Integration With Kubernetes, KServe, Prometheus & Grafana

Available Across All Major Cloud Al Platforms

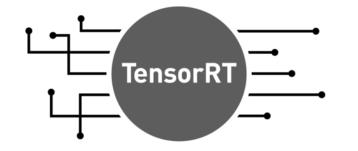
Performance & Utilization

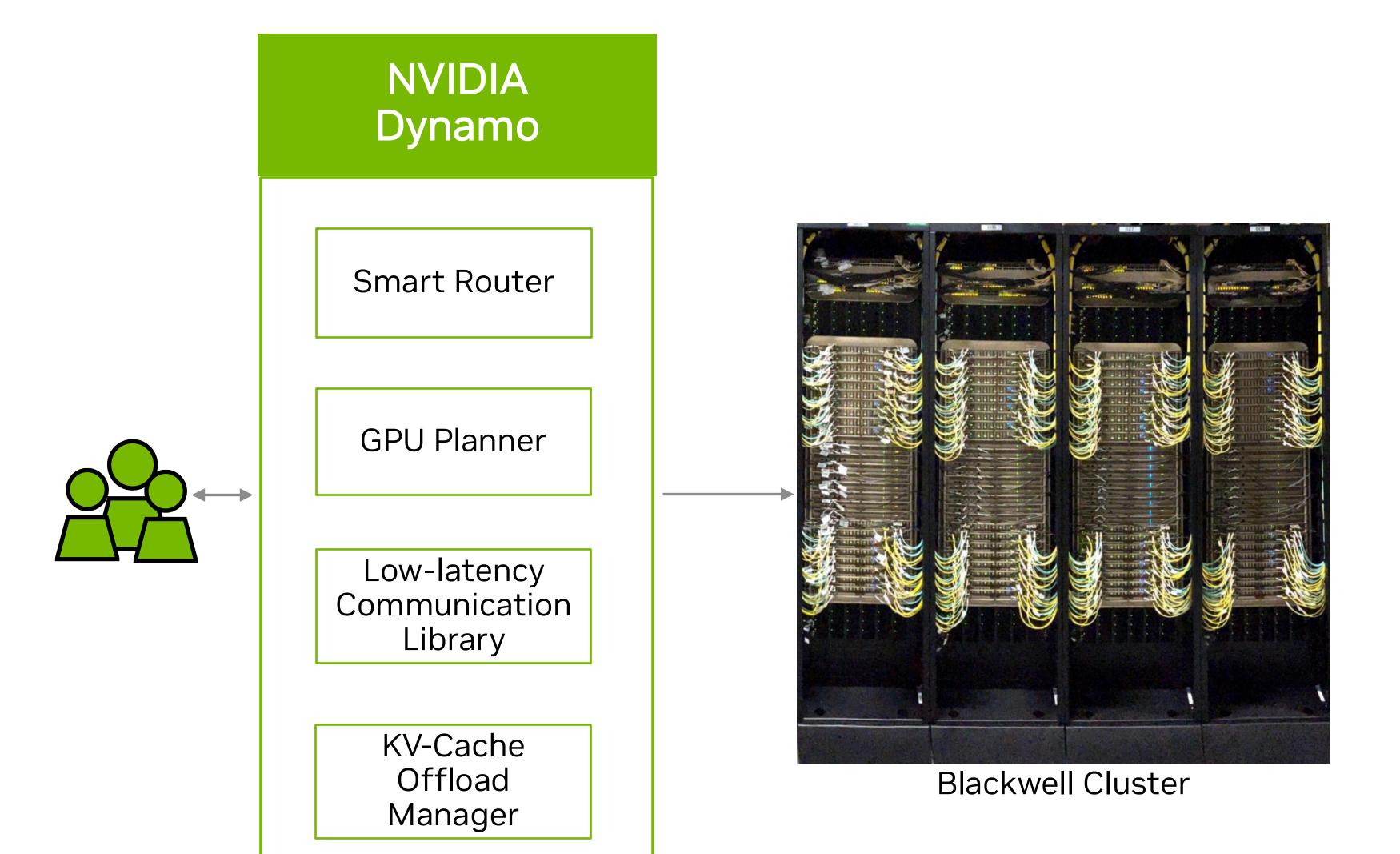
Model Analyzer for Optimal Configuration

Optimized for High GPU/CPU Utilization, High Throughput & Low Latency

Announcing NVIDIA Dynamo

Al Inference Software for Reasoning Inference at Scale

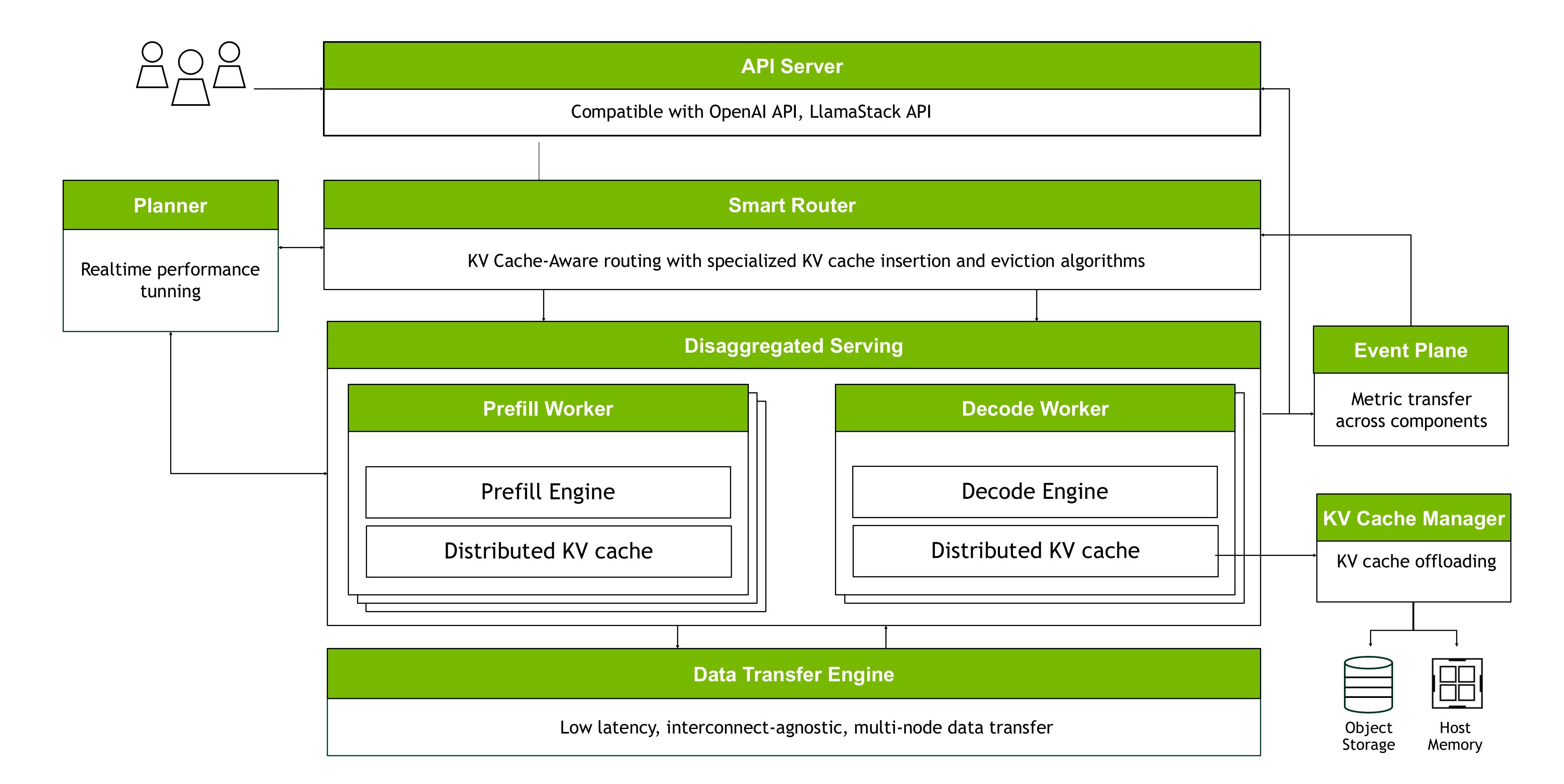




GPU Scale for a single query

Throughput & Revenue Llama Models On Hopper²

Architecture and Components



Benefits of disaggregation on multiple nodes

Benchmark on multiple nodes

Key result:

- disaggregated consistently outperforms aggregated
- Up to 2× throughput per GPU improvement

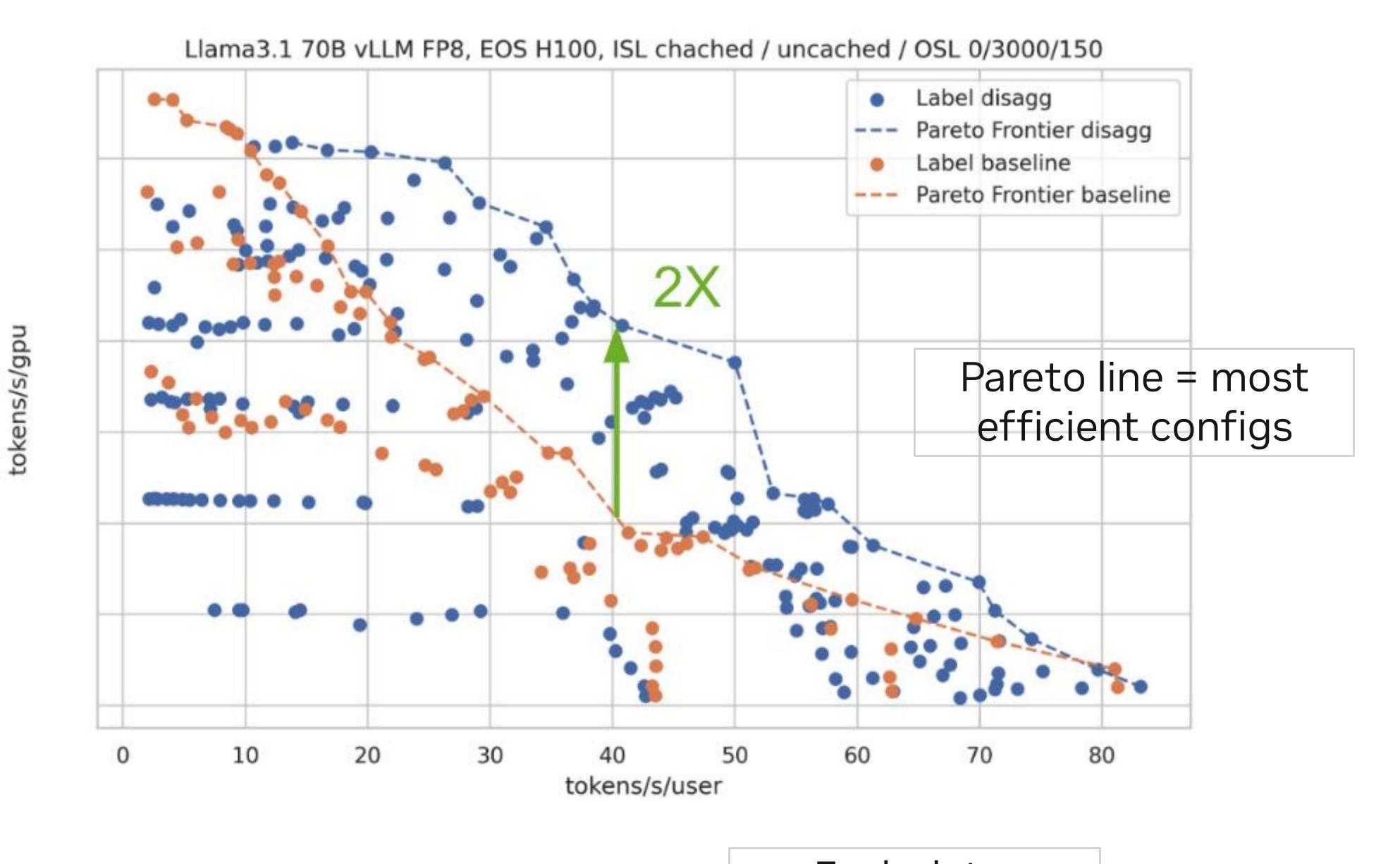
Config insights:

- Aggregated best: TP8 DP2
- Disaggregated best: prefill TP2 DP4, decode TP8

Prefill favors more data parallelism for batch efficiency

Decode favors higher tensor parallelism for GPU utilization

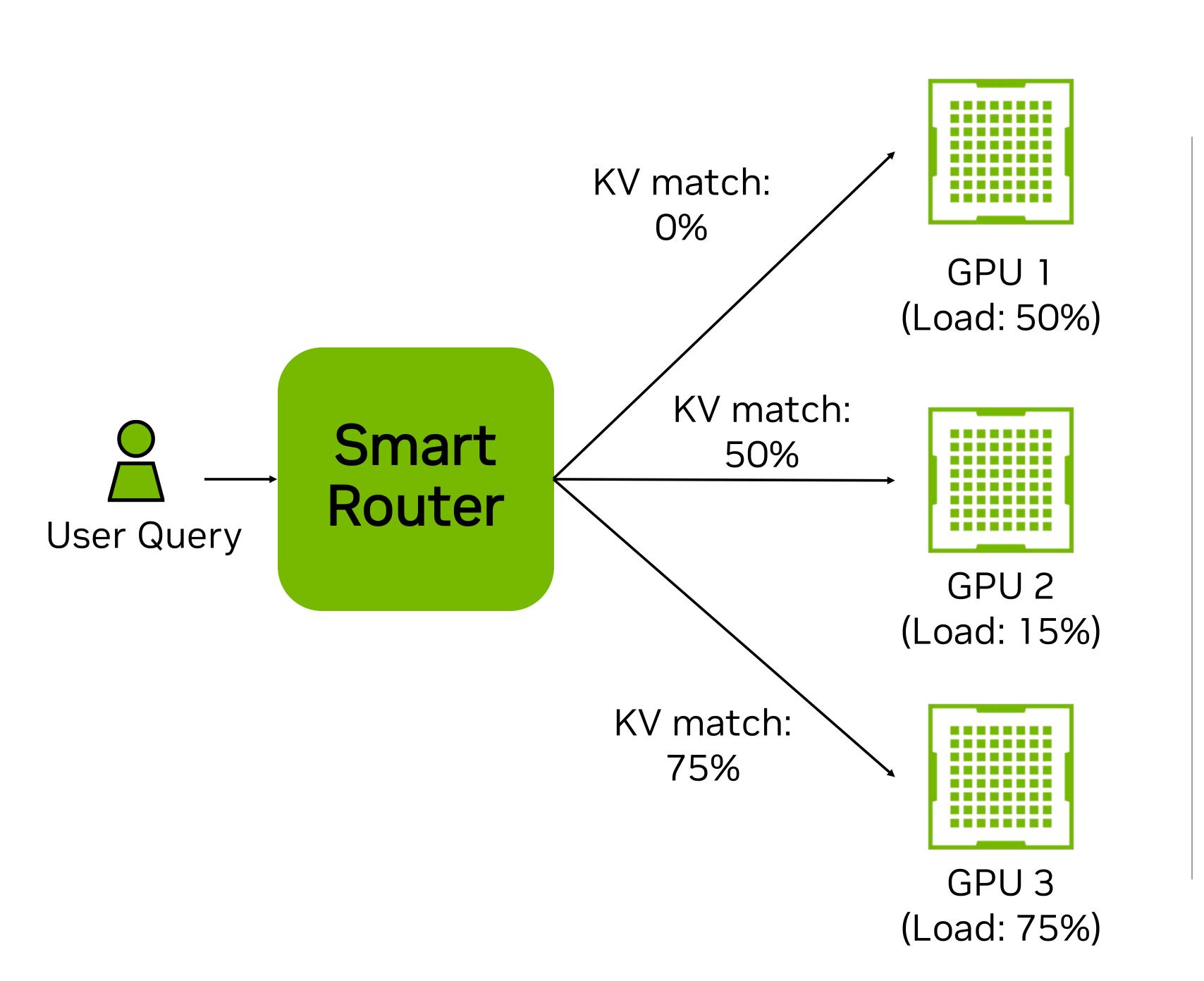
Two Nodes



Each dot =
different config
(TP, PP, DP)

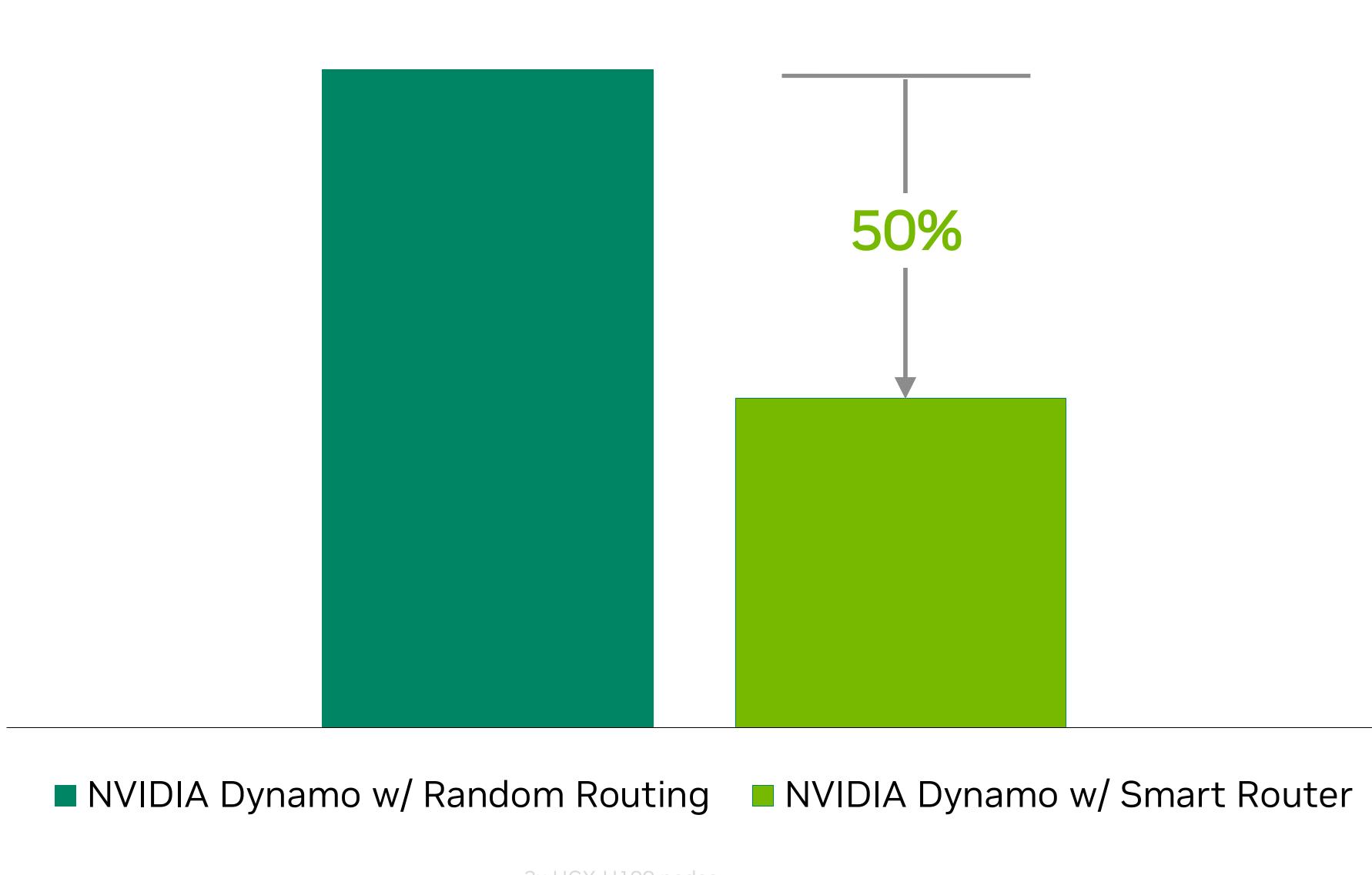
NVIDIA Dynamo: Smart Router

Reducing costly re-computation of KV cache



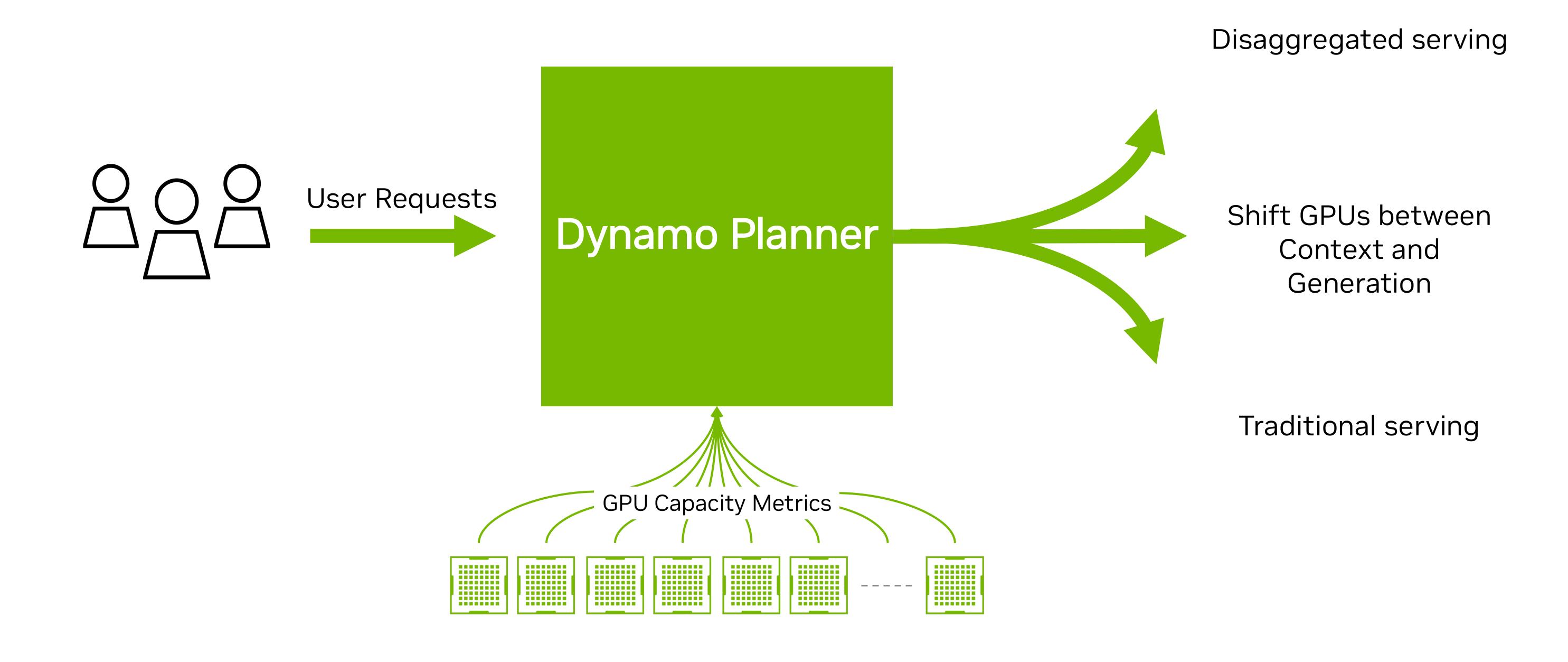
DeepSeek-R1 Distill Llama 70B | NVIDIA HGX-H100 (Lower is Better)

Avg. Request Latency



NVIDIA Dynamo: GPU Planner

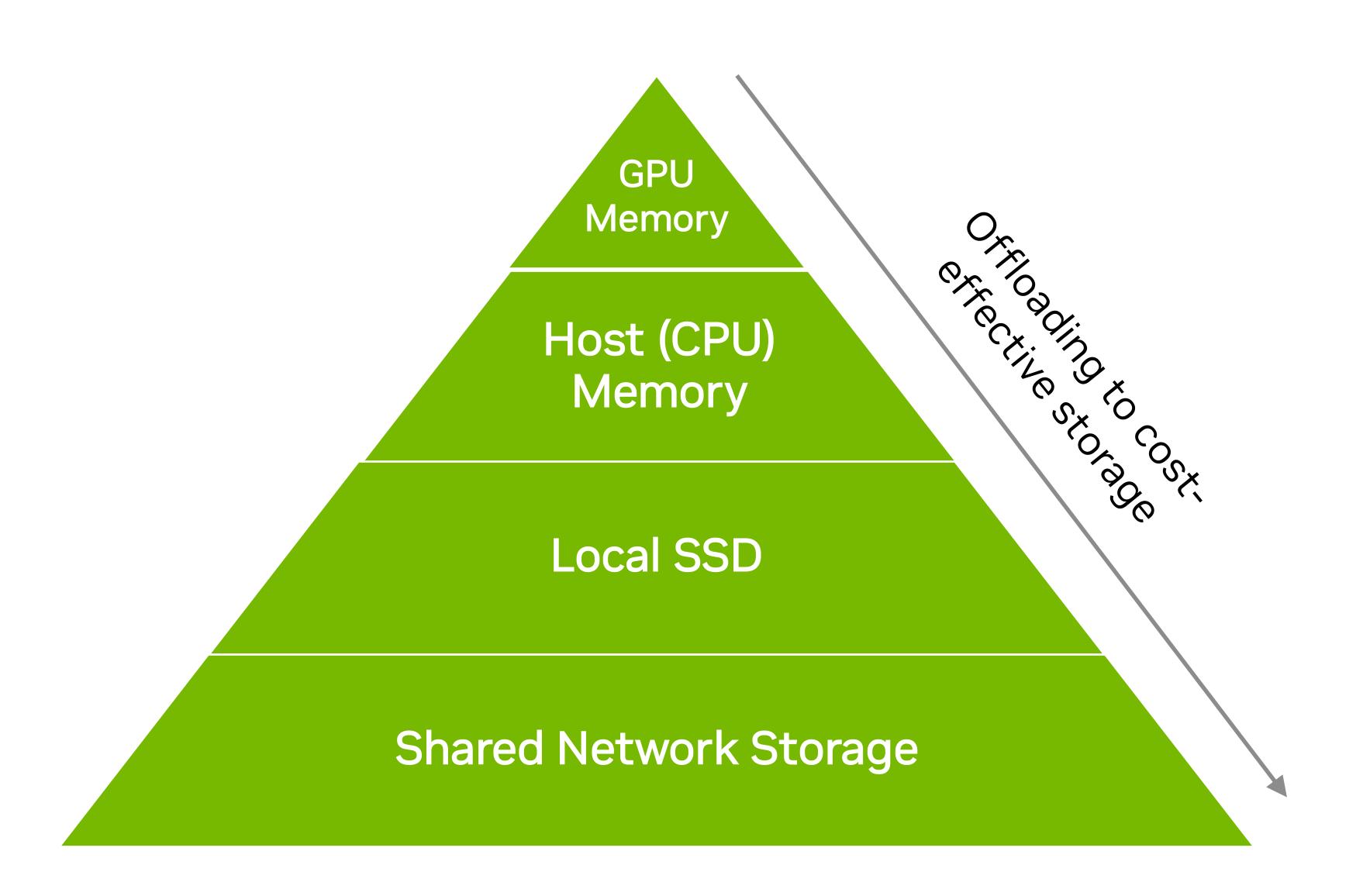
Optimizing GPU resources for distributed inference

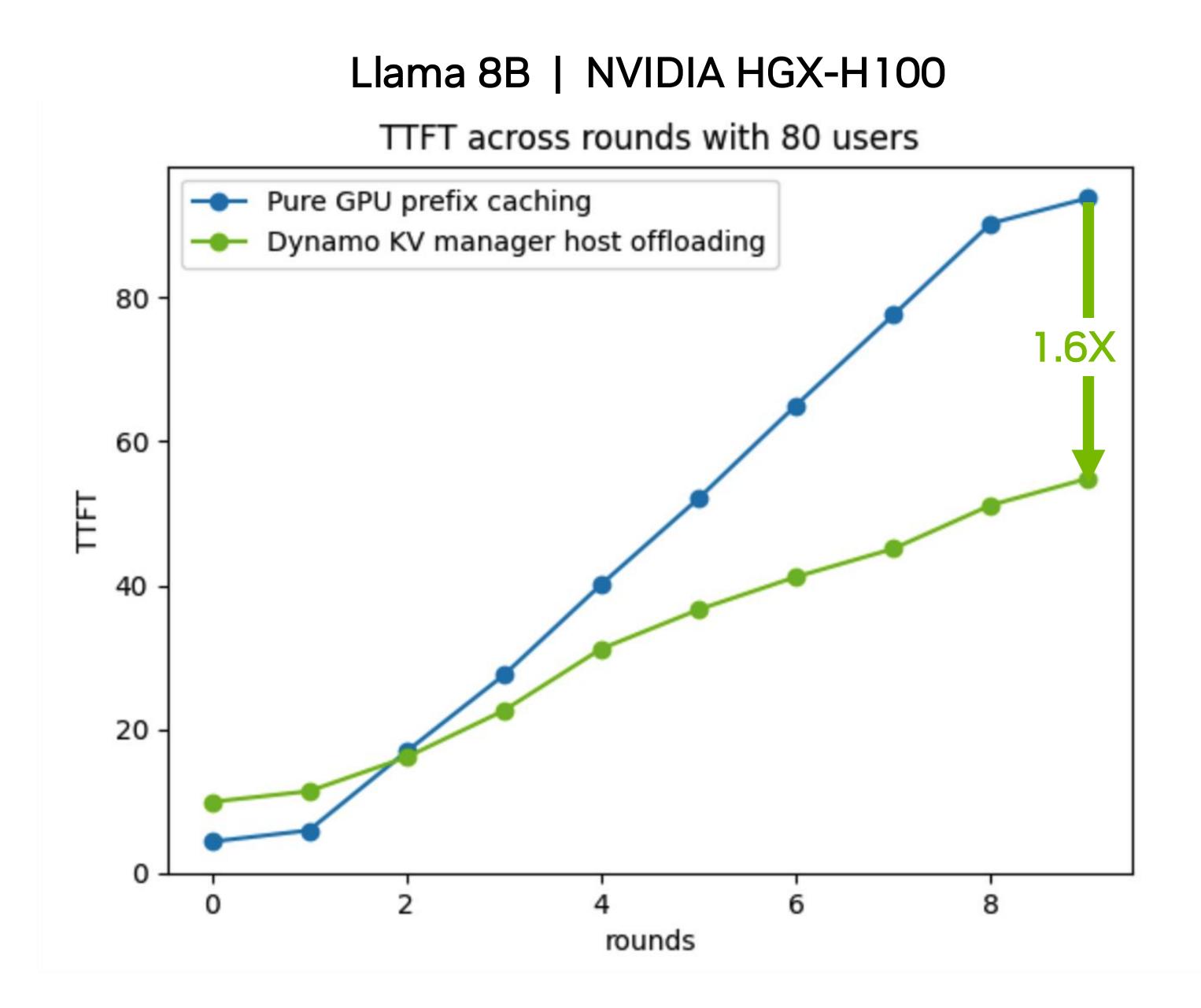


Efficient Resource Allocation | Adjust to Fluctuating Demand | Lower Inference Costs

NVIDIA Dynamo: KV Cache Manager

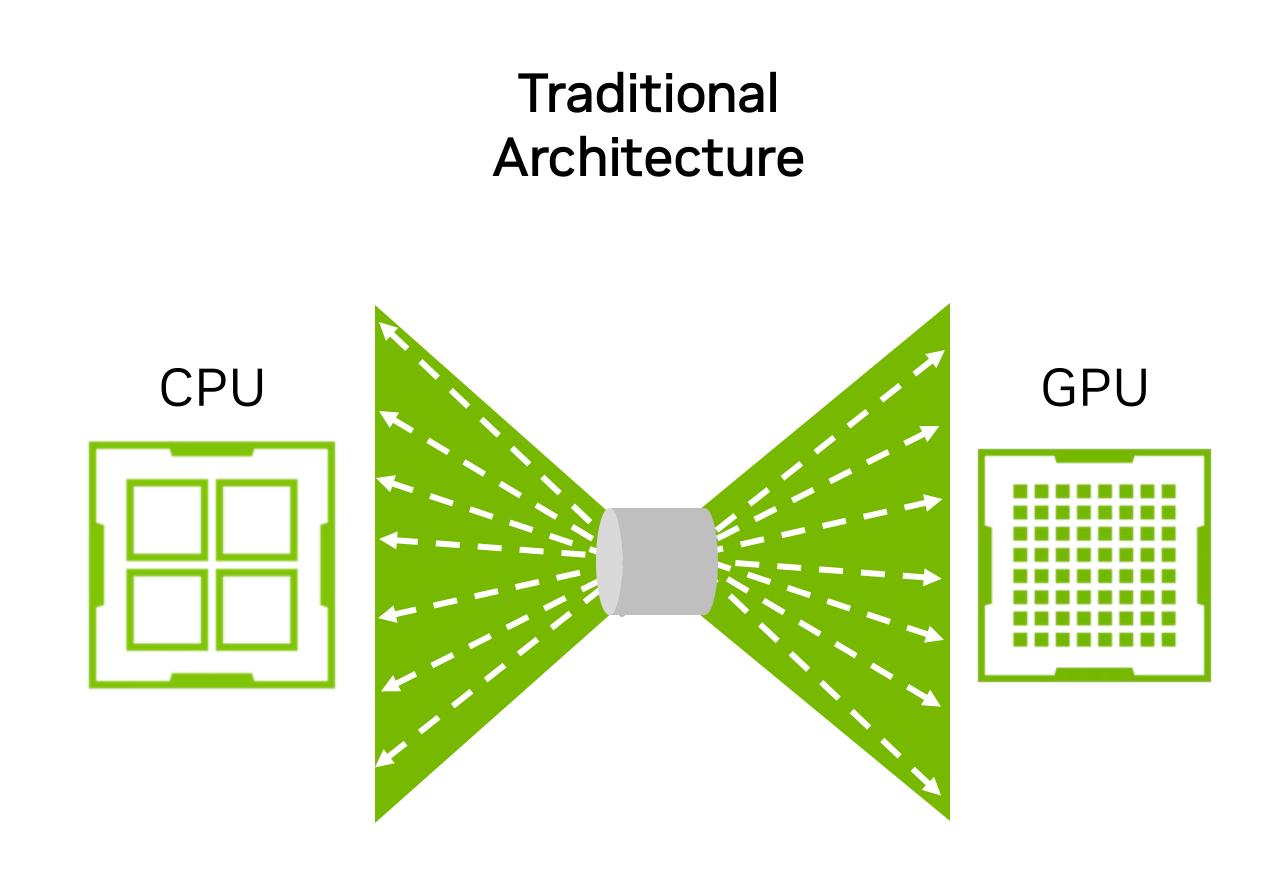
Offloading KV cache to cost-effective storage





Grace Blackwell NVLink-C2C is Ideal For Inference

Avoids KV Cache re-computation by offloading to CPU memory



PCIe bottlenecks CPU-GPU communication

NVIDIA Grace Blackwell Superchip Architecture

GPUs

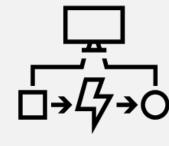
Grace CPU

7x faster CPU-GPU KV Cache Transfers

NVIDIA Dynamo Breakthrough Features

A modular generative Al inference server designed for distributed and disaggregated serving

NVIDIA Dynamo



Distributed Inference Serving

Seamlessly scale LLMs from a single GPU to thousands of GPUs

GPU Planning & Scheduling

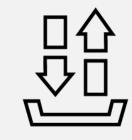
Meet changing demand patterns w/o over or under provisioning of resources

Smart Request Router

Free up GPU resources by reducing re-computations for similar requests

Low-latency Inference
Data Transfer Library

Accelerate GPU-to-GPU communication to enhance user experience



KV Cache Manager

Preserve GPU memory by offloading context (KV\$) to cheaper storage

Demo with Al perf

Al Configurator

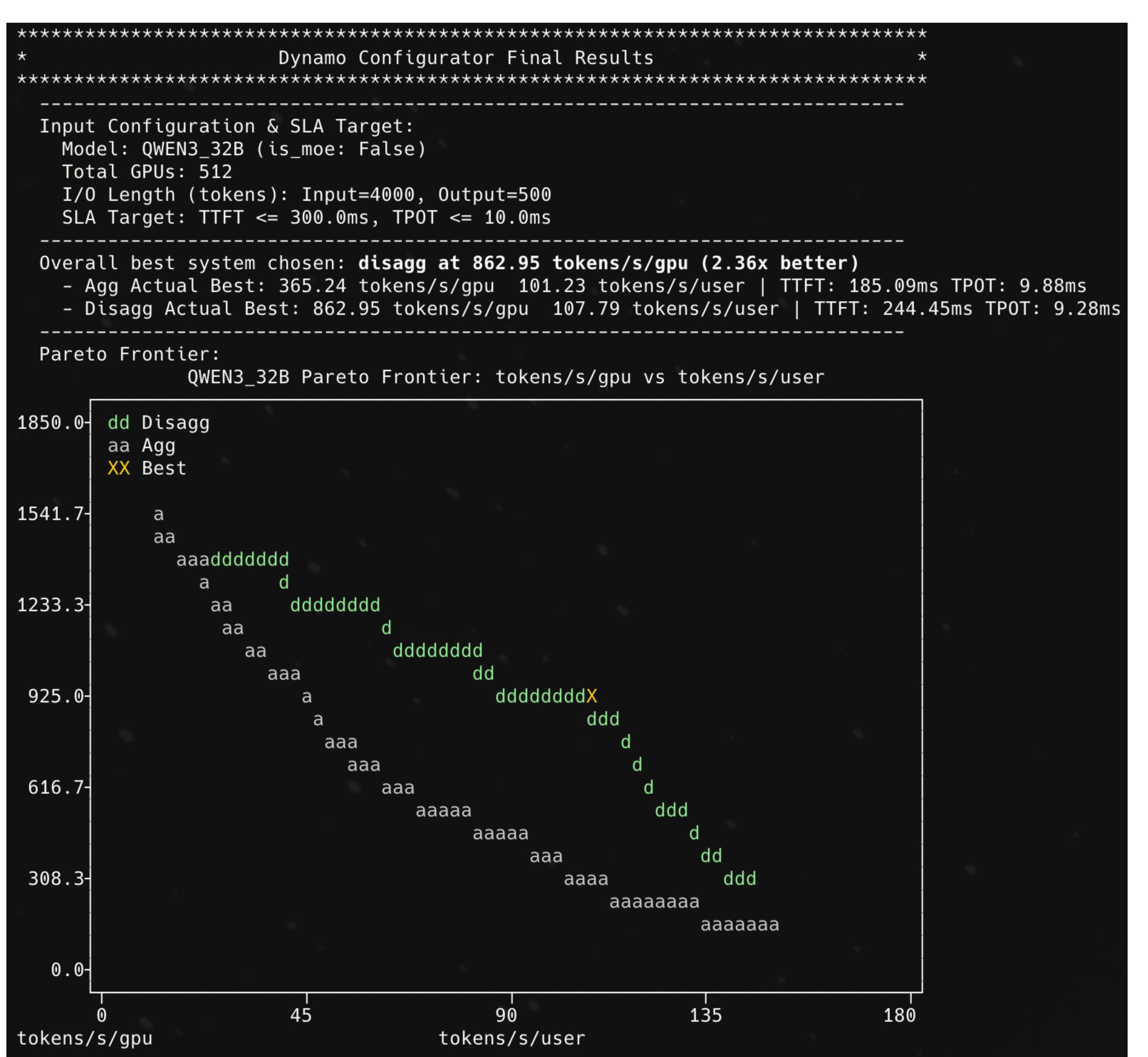
AlConfigurator for DisAgg vs Agg Performance

pip install aiconfigurator

aiconfigurator cli

-model QWEN3_32B

-system h200_sxm -total_gpu 512



Key Takeaways

Summary

NVIDIA enables scalable, efficient LLM inference through:

- KV caching and prefix reuse to reduce compute.
- Disaggregated serving to optimize prefill and decode separately.
- TensorRT-LLM and NVIDIA Dynamo for high-performance, distributed inference.

