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Abstract

Zusammenfassung

Performancemodelle ermöglichen Entwicklern wichtige Einblicke in die Interaktion des
Codes mit der Hardware, auf der er ausgeführt wird, und ermöglichen ihnen zielspezifi-
sche Optimierungen vorzunehmen. Um In-Core-Performancemodelle für Out-of-Order-
Prozessoren zu entwerfen, werden architekturspezifische Leistungsmetriken wie Latenz,
Durchsatz und Portbindung einzelner Instruktionen benötigt. Für x86-Mikroarchitektu-
ren gibt es bereits Tools, mit denen diese Werte automatisch ermittelt werden können.
Die Erweiterung von Performancemodellierungstools wie dem Open Source Architec-
ture Code Analyzer (OSACA) für andere Mikroarchitekturen wie RISC-V unterstreicht
jedoch die Notwendigkeit eines plattformübergreifendes Mikrobenchmarking-Tools.

Diese Arbeit stellt WINIC (What I Need Is Cycles) vor, ein automatisches plattform-
übergreifendes Mikrobenchmarking-Tool. Im Gegensatz zu bisherigen Tools kann es
Durchsatz- und Latenzmetriken für die meisten unterstützten Instruktionen jeder 64-
Bit x86, AArch64 und RISC-V Mikroarchitektur ohne manuellen Aufwand ermitteln.
Wir behandeln die Methodik des Mikrobenchmarkings im Allgemeinen sowie die Im-
plementierung von WINIC. Anschließend zeigen wir dessen Verwendung um präzise
Leistungsmetriken für x86 zu erhalten, von denen 93% mit vorhandenen Daten über-
einstimmen, sowie Leistungsmetriken für AArch64 und RISC-V, und zeigen, wie diese
Metriken verwendet werden können, um die In-Core-Performancevorhersagen für aus-
gewählte Mikrobenchmarks zu verbessern.
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Abstract

Abstract

Performance models allow developers to gain important insights into the interaction
of their code with the hardware that executes it, and enable them to apply target-
specific optimizations. To create in-core performance models for out-of-order processors,
architecture-specific performance metrics like latency, throughput, and port binding of
individual instructions are indispensable. For x86 microarchitectures, there already ex-
ist tools to automatically obtain those values, however, the extension of performance
modeling tools like the Open Source Architecture Code Analyzer (OSACA) to support
further architectures like RISC-V emphasizes the need for a cross-platform microbench-
marking tool.

We present WINIC (What I Need Is Cycles), an automatic cross-platform microbench-
marking tool. Unlike previous tools, it can obtain throughput and latency metrics for
most supported instructions of any 64-bit x86, AArch64, and RISC-V microarchitecture
without the need of manual effort. We cover the methodology of microbenchmarking
in general as well as the implementation of WINIC. Then we show that it can be used
to obtain accurate results for x86, 93% of which match existing data, as well as perfor-
mance metrics for AArch64 and RISC-V, and show how these metrics can be used to
improve the in-core performance predictions on selected micro-kernels.
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Introduction

1 Introduction

1.1 Motivation

Optimizing large-scale scientific applications is critical for reducing their cost and energy
consumption. Performance modeling plays a vital role in understanding the interaction
between the code and the hardware that executes it. Performance modeling methods
can be broadly divided into two categories: black-box and white-box models [1]. Black-
box performance prediction tools like Ithemal [2] use a machine learning model trained
on instruction sequences and measured throughput values to give an estimate of the
performance; they do not, however, reveal if and how potential performance gains can
be achieved. White-box models help to gain these insights as they try to provide the
reasons for their predictions.

The Open Source Architecture Code Analyzer (OSACA) [3, 4] is a white-box static anal-
ysis tool for small loop kernels on specific microarchitectures. It provides a throughput
analysis as well as detection of critical path and loop-carried dependencies (LCDs).
OSACA supports x86 and AArch64, and support for RISC-V is currently under devel-
opment. To make accurate predictions, OSACA needs the latency, throughput, and port
usage of each instruction on the target architecture. Additionally, this data must be in a
unified format, and if new microarchitectures are released, regular efforts must be made
to obtain the new data to keep OSACA useful. There are two major sources from which
the performance metrics can be obtained: the CPU manufacturer’s documentation or
microbenchmarking. Documentation is often not machine-readable, in different formats
for each CPU manufacturer, or not publicly available at all. Therefore, benchmarking
is the more versatile option.

There are already several microbenchmarking tools mentioned in Section 1.3, but none
of them are suitable for obtaining all performance metrics needed for OSACA. Ta-
ble 1 compares the capabilities of some existing tools. Important features are the sup-
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nanoBench iBench asmbench llvm-exegesis CQA WINIC
x86 3 3 3 3 3 3

AArch64 7 3 3 3 3 3

RISC-V 7 7 7 3 7 3

throughput 3 3 3 3 3 3

latency 3 3 3 3 3 3

per-operand latency 3 3 7 7 3 3

port usage 3 7 7 3∗ 7 7

automatic 3 7 7 3 3 3

user-space 3 3 3 3 ?‡ 3

memory instructions 3 3 3† 3 ?‡ 7

Table 1: Capabilities of existing microbenchmarking tools compared to WINIC. ∗ in-
dicates only x86 support, † that only simple load/store instructions are sup-
ported, and ‡ the lack of documentation for this category.

ported architectures (x86, AArch64, RISC-V) and metrics (latency, per-operand latency,
throughput, port usage), as well as automatic benchmark generation and a user-space
mode.

1.2 Scope of Work

This work is an attempt to create a versatile microbenchmarking tool, designed to com-
plement OSACA. It should automatically measure throughput, latency, and port usage
on x86, AArch64, and RISC-V platforms, and do so for future microarchitectures, pos-
sibly featuring new ISA extensions, without needing major adjustments. Furthermore,
since it will be used on HPC systems, we want it to run in user-space. This prevents
us from measuring privileged instructions; however, since our focus lies on scientific
kernels, those are mostly irrelevant.

To keep the scope of work suitable for a bachelor’s thesis, we excluded (a) the task of
obtaining the port mapping and (b) the benchmarking of instructions accessing memory,
however, WINIC is designed in a way that should allow those features to be added in
the future.

2
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1.3 Related Work

1.3.1 Performance-Modeling Tools

There are a variety of basic-block throughput prediction tools, which can be broadly
classified into ML-based black-box models and white-box models such as analytical
models or simulators. For a comparison of efficiency and accuracy of many existing
tools using the BHive [5] benchmark suite on Intel CPUs, see [6].

IACA [7] is Intel’s proprietary static analysis tool. It provides throughput analysis for
Intel Core CPUs up until the Skylake microarchitecture. Its development was discon-
tinued in 2019.

llvm-mca [8] uses LLVM’s scheduling models to predict the throughput of a basic block.
It simulates the execution and provides an IACA-style report. In contrast to most
other tools which are focused on x86, due to its integration in the LLVM ecosystem, it
supports a variety of architectures including AArch64 and RISC-V.

uiCA [9] is a simulation-based throughput predictor for Intel CPUs. As it is based on
a very complex model constructed from extensive reverse engineering efforts, it yields
very accurate results, but supports only Intel microarchitectures.

Facile [6] is an analytical model that evaluates multiple components of the front end
and the back end separately, identifying which of these components is the bottleneck
for a basic block. It achieves very accurate throughput predictions while still providing
useful insights for manual optimization.

CQA (Code Quality Analyzer) [10], in addition to throughput prediction, evaluates loop
code quality and reports potential issues such as missed vectorization opportunities, the
use of expensive instructions, or data dependencies. It also suggests potential fixes such
as changing compiler flags or directives.

Ithemal [2] uses a deep neural network trained on data obtained through measurements
to accurately predict the throughput of basic blocks on different microarchitectures.
Due to its nature as a black-box model, it is only of limited use for manual performance
engineering, as throughput values alone cannot explain the code’s interaction with the
hardware.
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GRANITE [11] is another machine-learning-based throughput predictor using a Graph
Neural Network. The paper reports an improvement in accuracy over Ithemal of ap-
proximately 1.7 percentage points.

1.3.2 Microbenchmarking Tools

Analytical models such as IACA or OSACA and simulators such as uiCA offer very high
interpretability, but they strongly depend on knowledge of the microarchitecture and
can lack accuracy if this knowledge is incomplete. This is where microbenchmarking
tools play an important role, as they provide the instruction-specific metrics on which
these models are based.

iBench [12] is a tool for measuring the latency and throughput of single instructions
purely based on runtime and instruction count. It can execute loop kernels manually
written by the user and report the number of clock cycles elapsed per instruction.
Currently, it only provides templates for x86 and AArch64. WINIC is based on iBench,
but adds support for RISC-V and generates the benchmark kernels automatically.

nanoBench [13] is a microbenchmarking tool for x86. It executes benchmarking kernels
and then uses the RDMSR and RDPMC instructions to read core-local performance counters,
which store the number of core cycles or of µops dispatched on a specific port. Those
values are then used to determine throughput, latency, and port usage of the executed
instructions. Since the performance counters used are exclusive to x86, it does not meet
our requirements. A database with results for recent Intel and AMD microarchitectures
is available at uops.info [14].

llvm-exegesis [15] is a microbenchmarking tool for x86, AArch64, RISC-V, MIPS and
PowerPC. It can automatically generate and execute benchmarks for latency, through-
put, and port usage; however, it cannot measure latencies per operand, which will be
covered in Section 2.3. Furthermore, it has no automatic mitigation of implicit depen-
dencies in throughput benchmarks, covered in Section 3.2.1.

asmbench [16] is a benchmarking toolkit for x86 and AArch64. It uses the LLVM
just-in-time (JIT) compilation via the llvmlite Python binding to generate and execute
benchmarks.
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1.4 Outline

This work is structured as follows: In Chapter 2, we discuss the design and performance
metrics of modern processor cores relevant to this work. Chapter 3 goes into detail
about the design and usage of WINIC, in particular, the automated benchmarking
of per-operand latencies. Chapter 4 evaluates the metrics obtained with WINIC by
comparing them to existing data, and Section 4.3 shows how these metrics can be used
to improve OSACA’s predictions. Finally, in Chapter 5, we summarize the thesis and
give an outlook on future work.
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2 Background

2.1 Static Performance Analysis

White-box static analysis methods evaluate assembly code snippets (basic blocks) us-
ing a given static model of a processor’s performance characteristics. A model gives
insights into possible optimizations by including a set of performance characteristics of
the processor while making assumptions about those outside the scope of the model.

The Roofline model [17], for example, uses the operational intensity, i.e. the floating-
point operations carried out per byte of data, of a piece of code to assess whether
the performance on a given system is bound by the transfer of data to the cores (the
memory bandwidth) or the operations done on this data. It assumes data transfer and
execution can happen in parallel and ignores both caching and in-core resource conflicts,
potentially limiting the achievable throughput of operations for the given kernel. The
Execution-Cache-Memory (ECM) model [18] expands on this by taking caching into
account, modeling non-overlapping data transfers, and having a more detailed in-core
component.

2.2 Port Model

Figure 1 shows part of the structure of a Sandy Bridge core as an example of an out-of-
order processor architecture. The instructions are decoded into one or multiple micro-
operations (µops), each of which is assigned to one of the ports by the out-of-order
scheduler. A port groups functional units into one logical unit that can receive a maxi-
mum of one µop per cycle. It is common for one port to have multiple types of functional
unit, and for one type of functional unit to be present on multiple ports. This allows
for parallel execution of multiple instructions of the same kind. The Sandy Bridge core
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Out-of-Order Scheduler

AVX BOOLEAN

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

STOREALU

AVX DIV

AVX MUL

ALU ALU AGU AGU

LOAD LOADAVX ADD BRANCH

AVX SHUF

AVX BLEND

Cache

Micro-Operation Queue
In-Order

Out-of-Order

Figure 1: Schematic showing the out-of-order part of a Sandy Bridge core based on
[19].

has three ports with an ALU, so it can execute three instructions that use that unit in
parallel.

2.3 Latency

For the following sections, it is vital to differentiate instructions with the same name but
different operand types. Therefore, aligning with [3], we will use the term instruction
form to refer to an assembly instruction in combination with its operand types, while
using the term instruction when referencing an instance of an instruction form, e.g. in
an assembly file, or a machine instruction the CPU executes. We will denote instruction
forms as follows: Mnemonic (Types...).
The minimum time from issue to retirement is referred to as the latency of an instruction
form. When an instruction is issued, all operands that get written by the instruction are
locked to ensure that no other instructions that may run concurrently can modify them.
Once the computation is finished, they are freed again and can be used by subsequent
instructions. However, on some instruction forms, some operands may be freed earlier
than others. For example, on x86 BTS (r16, r16) uses the second operand as an index
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to select a bit in the first operand, stores it in the CF flag, and then sets it to 1. On
AMD’s Zen 4 microarchitecture it has a latency of 2 cycles, but the CF flag is already
set and can be used by other instructions after 1 cycle. This is why the latency of the
instruction form itself is not sufficient for an accurate performance prediction in some
cases. In the following, we will call the latency between one read and one write operand
of an instruction form a sub-latency of the instruction form. Section 3.3 covers how
WINIC measures those sub-latencies.

2.4 Throughput

The number of independent instances of an instruction that can be executed per clock
cycle is called the throughput of that instruction. It can be limited by the number of
ports that can execute it or the throughput of the sequential part of the pipeline. To
maintain the same unit for throughput and latency, it is common to specify reciprocal
throughput (cycles/instruction). In the following, when mentioning throughput values,
reciprocal throughput is implied unless stated otherwise.

2.5 OSACA

OSACA is an in-core performance modeling tool. This means that it assumes all memory
accesses are L1 cache hits and focuses only on the in-core execution of an assembly
kernel. Furthermore, it is assumed that the out-of-order scheduling works perfectly
and the front end does not limit the throughput. Under those assumptions, there are
two main factors that can limit the performance of a loop kernel. The first is the
throughput of the port with the highest port pressure, so the one with the longest
accumulated execution time per loop iteration. Second, the total performance can
be limited by data dependencies between instructions. As long as there are only data
dependencies between instructions of one loop iteration, their latencies can be hidden as
instructions of the next iteration can be executed in parallel if the reorder buffer is large
enough to hold the full loop. Dependencies across different loop iterations (loop-carried
dependencies), however, impose another lower bound on the overall runtime. OSACA
additionally provides the critical path—the longest chain of dependent instructions—as
a lower bound for the kernel.
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line 0 1 5 2 3 2D 3D 4 CP LCD Instruction
44 .LBB0_8:
45 0.50 0.50 0.50 0.50 4.0 movsd (%rsi,%rcx,8), %xmm1
46 1.00 0.50 0.50 0.50 0.50 5.0 mulsd (%rdx,%rcx,8), %xmm1
47 1.00 3.0 addsd %xmm0, %xmm1
48 0.50 0.50 1.00 0.0 movsd %xmm1, (%rax,%rcx,8)
49 0.33 0.33 0.33 1.0 incq %rcx
50 0.00 0.00 1.00 cmpq $rcx, %rdi
51 * jne .LBB0_8

sum 1.33 1.33 1.33 1.50 1.50 1.00 1.00 1.00 12 1.0

Figure 2: OSACA output example: for each instruction it shows the port pressure, its
contribution to the critical path and loop-carried dependencies if present.
All throughput values are reciprocal throughput, so lower is better.

Figure 2 shows an example of an OSACA output on the following kernel:

1 double a[N], b[N], c[N], d;
2

3 for(int i=0; i<N; ++i) {
4 a[i] = b[i] + c[i] * d;
5 }

Listing 1: The STREAM triad.

It was compiled using Clang 20.1.0 with flags -O3 -fno-unroll-loops, and analyzed1

for the Sandy Bridge architecture. Looking at the output, the port(s) with the highest
port pressure (indicated by the sum in the last line) are ports 2 and 3, with 1.5 cycles,
and the loop-carried dependency (column “LCD”) is 1 cycle. Therefore, the overall
performance is bound by the saturation of ports 2 and 3, which, according to Figure 1,
are the ports having a LOAD unit. The critical path (colkum “CP”) is reported to be
12 cycles. Note that the jne instruction is marked with an *, which means OSACA
assumes its throughput to be 0, as it will be fused with the cmpq. In summary, this
output shows how the code interacts with the hardware of this specific architecture, and
helps to identify the bottleneck.

1Available at https://godbolt.org/z/oe4YPj6ns
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3 Methodology

3.1 Platform-Independent Approach

To obtain reproducible performance metrics of a single instruction, it has to be executed
repeatedly until a steady state is reached, and external overhead by the loop code is
overcome. In addition, an isolated benchmark environment is important to minimize
interference of other processes. There are several options to obtain reliable performance
metrics from these measurements. Nanobench [13] queries internal performance coun-
ters of the CPU which report the number of instructions retired since the start of the
measurement, as well as the instructions retired per port. However, the counters for
port occupation are only available on Intel CPUs, and while AArch64 and RISC-V pro-
vide performance counters to obtain the total number of instructions retired, to reduce
platform-specific code as much as possible, we decided to rely purely on the total run-
time of the loop instead. The number of cycles per instruction can be calculated using
the total runtime, number of instructions executed, and the clock frequency.

This is the same approach used by iBench [12]. WINIC can be seen as an extension
of iBench, generating the loop body for throughput and latency benchmarks for every
instruction form supported automatically.

3.2 Measuring Throughput

To measure the throughput of an instruction form, a loop body with a sequence of
those instructions has to be generated in a way that allows the CPU to parallelize them
as much as possible. Therefore, dependencies between individual instructions must be
avoided. The trivial way to do this is to choose different registers for each operand
of each instruction. However, since the number of registers available is limited, this
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sometimes leads to very short sequences, which can have a negative impact on the
accuracy of the measurements as it increases the loop overhead. To generate more
independent instructions, WINIC reuses registers for operands that are read but not
written by the instruction form. For example, VADDPD (r128, r128, r128) on x86 writes
to the first register operand and reads from the second and third operands. WINIC
generates the following loop body, reusing registers where possible:

1 vaddpd xmm0, xmm1, xmm2
2 vaddpd xmm3, xmm1, xmm2
3 vaddpd xmm4, xmm1, xmm2
4 vaddpd xmm5, xmm1, xmm2
5 vaddpd xmm6, xmm1, xmm2
6 vaddpd xmm7, xmm1, xmm2
7 vaddpd xmm8, xmm1, xmm2
8 vaddpd xmm9, xmm1, xmm2
9 vaddpd xmm10, xmm1, xmm2

10 vaddpd xmm11, xmm1, xmm2
11 vaddpd xmm12, xmm1, xmm2
12 vaddpd xmm13, xmm1, xmm2

Listing 2: The benchmark kernel generated by WINIC to measure the throughput of
VADDPD (r128, r128, r128).

Note that disjoint registers were chosen for the second and third operand within a
single instruction. This is because instruction forms can have semantics that allow for
optimizations if two operands are the same, e.g. an VPXOR (XMM, XMM, XMM) will always
have the result 0 if the second and third operand are identical. Modern processors can
detect such cases and skip part of the pipeline to speed up execution, which would render
the measurements useless. We chose 12 as the target number of instructions to generate,
as this proved to yield reliable results while keeping the loop body of manageable size
for manual adjustments. However, WINIC will not fail if there are not enough registers
to meet this target, but will instead generate as many instructions as possible.

3.2.1 Implicit Dependencies

Since instruction forms can have side effects, such as writes to a flag register, some will
still have dependencies on themselves regardless of the registers chosen. In order to
measure the throughput anyway, WINIC uses another instruction form to break those
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dependencies. The ADC instruction forms on x86 are an example of this, as they read
and write the carry-flag. Even if choosing different registers for all instructions in the
loop, they would still have an implicit dependency on each other. WINIC detects this
and automatically inserts a TEST between each of the ADCs:

1 adc rax, 7
2 test rcx, rdx
3 adc rsi, 7
4 test rcx, rdx
5 adc r9, 7
6 test rcx, rdx
7 adc r10, 7
8 test rcx, rdx
9 adc r11, 7

10 test rcx, rdx
11 adc rbx, 7
12 test rcx, rdx
13 adc r14, 7
14 test rcx, rdx
15 adc r15, 7
16 test rcx, rdx
17 adc r12, 7
18 test rcx, rdx
19 adc r13, 7
20 test rcx, rdx

Listing 3: Benchmark kernel generated to measure the throughput of ADC (r64, i32).

Each TEST writes to the flags but does not depend on any ADC or TEST preceding it,
assuming the registers are chosen correctly. Therefore, it breaks the dependency and
allows for multiple ADCs to be executed in parallel. The instruction form used for this
has to write to the register causing the dependency and not introduce any other explicit
or implicit dependencies into the benchmark kernel. Based on those constraints, WINIC
dynamically chooses the instruction form to break the dependency.

Adding those breaking instructions can affect the measurements. If the interleaved
instruction form uses the same resources as the measured one, its throughput has to be
subtracted from the measured result. However, since WINIC currently has no way of
determining if this is the case, it instead reports a range within which the throughput
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must lie. In case of the ADC benchmark, the measured throughput TPm on Zen 4 is 0.5
cycles. If there is a resource conflict, this result is incorrect. In the best-case scenario,
both instruction forms use the exact same ports, so the throughput of the ADC instruction
form can be calculated as TPADC = TPm - TPTEST. Since TEST has a throughput of
0.25 cycles, we can infer that TPADC lies between 0.25 and 0.5 cycles.

3.3 Measuring Latency

As discussed in Section 2.3, we have to measure all sub-latencies of an instruction form
individually. For this, we classify the sub-latencies according to the types of the source
operand and the destination operand. We call the combination of those the type of the
sub-latency and denote it as (type(source)→ type(destination)).

3.3.1 Measuring Symmetric Latency

We will call a sub-latency type symmetric if the source operand and the destination
operand have the same type. The VADDPD (r128, r128 r128) instruction form has two
symmetric sub-latencies of type (r128→ r128) as it writes to the first operand and
reads from both the second and third operands. For the first sub-latency, WINIC
generates this kernel:

1 vaddpd xmm0, xmm0, xmm1
2 vaddpd xmm0, xmm0, xmm1
3 vaddpd xmm0, xmm0, xmm1
4 vaddpd xmm0, xmm0, xmm1
5 vaddpd xmm0, xmm0, xmm1
6 vaddpd xmm0, xmm0, xmm1
7 vaddpd xmm0, xmm0, xmm1
8 vaddpd xmm0, xmm0, xmm1
9 vaddpd xmm0, xmm0, xmm1

10 vaddpd xmm0, xmm0, xmm1
11 vaddpd xmm0, xmm0, xmm1
12 vaddpd xmm0, xmm0, xmm1

Listing 4: The benchmark kernel generated by WINIC to measure the sub-latency of
VADDPD (r128, r128, r128) from the second operand to the first operand.
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It uses the same register for the two operands involved, introducing a read-after-write
dependency between the instructions, which limits the throughput of the kernel to the
sub-latency of this read-write operand pair. The other registers are chosen in such a
way that no additional dependencies are introduced.

3.3.2 Measuring Asymmetric Latency

To measure asymmetric sub-latencies a different approach is needed. For example, a
sub-latency of type (r64→ flags) cannot be measured alone; however, one can measure
a combination of two instruction forms with sub-latencies of type (r64→ flags) and
(flags→ r64) by interleaving them and thus creating a latency chain. This leaves one
with some latency Lcombined and no information on which instruction form contributed
how much to the combined result. To narrow down the ranges of the individual latencies,
we first group all asymmetric sub-latency measurements by their types. For a pair of
complementary types (a→ b) and (b→ a) all combinations of instructions from those
types can be measured. We then systematically measure those combinations until we
find the one with the minimal combined latency Lcombined, min. The two instruction forms
determined this way are then used to measure all other instruction forms with sub-
latencies of the two types. For type pairs where Lcombined, min is 2 cycles, it can be
inferred that both instruction forms have a sub-latency of 1 cycle, as we assume every
instruction needs at least 1 cycle to be executed, and the other sub-latencies of the two
types can be determined exactly. This is the case for around 90% of all latency values
on Zen 4, so only around 10% remain ranges. Section 5.2 will give an outlook on how
this possibly could be improved.

An example of an instruction form with asymmetric sub-latencies is BTS (r16, r16)
on Zen 4. It reads and writes the first register operand, reads the second register
operand and writes the CF flag, therefore, it has four sub-latencies of types (r16→ r16)
and (r16→ flags). To measure the sub-latencies of type (r16→ flags), another in-
struction form is needed. When doing a full run on Zen 4, WINIC finds the pair
ADC (r16, r16) and ADC (r16, i16) with sub-latencies of types (r16→ flags) and
(flags→ r16) that have Lcombined = 2 cycles. WINIC infers that both have a latency of
1 cycle, and uses them as helpers for other instruction forms, such as BTS (r16, r16).
It then generates the following loop to measure the sub-latency of BTS (r16, r16) from
the second register operand to the flags:
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1 bts dx, ax # read ax, write flags
2 adc ax, cx # read flags, write ax
3 bts dx, ax
4 adc ax, cx
5 ...
6 bts dx, ax
7 adc ax, cx

Listing 5: Shortened benchmark kernel generated for BTS (r16, r16) to measure the
sub-latency from the second register operand to the flags.

There is a read-after-write dependency on the ax register between each ADC and the next
BTS. The latency this dependency introduces is known to be 1 cycle, as discussed before.
Between each BTS and the next ADC, there is an implicit read-after-write dependency,
as BTS writes to the flags and ADC reads them. The latency this dependency introduces
is the sub-latency we are interested in. The measurements reveal that, on Zen 4, it is
only 1 cycle, whereas the sub-latencies of type (r16→ r16) are 2 cycles.

3.4 LLVM

To automatically generate the benchmarking kernels with all correction mechanisms
described above, a lot of meta-information is needed:

• A list of all supported instruction forms

• An operand list and side effects per instruction form

• Type and applicable values for each operand

• Information on how to generate syntactically correct assembly code from the above

LLVM [20] was chosen for this, as it can serve as a single source for all of this information.
LLVM is a ”collection of modular and reusable compiler and toolchain technologies” [20],
including the Clang compiler, the LLDB debugger, implementations of the C and C++

standard libraries, and many more. It supports a wide variety of architectures, making
it ideal for this purpose. LLVM’s internal data structures for storing this information
are the same for all architectures, so it was possible to implement the loop generation
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logic in a fully architecture-independent way. Furthermore, LLVM is open source, well
maintained and is continuously updated to support new microarchitectures.

To generate the kernel in Listing 3, for example, WINIC interacts with LLVM like
this:

• It looks up the operand list.

• For each register operand, it looks up all registers of the correct type for that
operand.

• It generates the desired number of instructions, using LLVM’s MCInst data struc-
ture and populates register and immediate operands, keeping track of the registers
used to avoid dependencies.

• It detects the implicit dependency on the flags based on the list of implicit register
usages LLVM provides for the instruction form and searches for a dependency-
breaking instruction form.

• It generates suitable breaking MCInsts and interleaves them.

• It uses LLVM’s MCInstrPrinter to generate valid assembly from the MCInsts.

3.5 Executing Benchmarks

The generated kernels are embedded in a target-specific template that provides a func-
tion label, the loop logic, and code to save and restore callee-saved registers. The result
is assembled to a shared library, which is then loaded and provides the generated func-
tion with the loop count as its only argument. Finally, the function is executed and its
runtime measured. Every benchmark is run in a subprocess to recover from faults or
unwanted side effects executing arbitrary instructions can result in. To ensure repro-
ducibility when assembling the benchmarks, a fixed version of Clang is used, which is
built alongside LLVM during the setup process.
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3.6 Improving Accuracy

The total execution time of the benchmark function contains overhead from the loop
itself, as well as the saving and restoring of registers. To improve the accuracy of the
measurements, WINIC does a second benchmark with the loop body unrolled twice.
Using the two results, the overhead can be removed:

TUnrolled − TSingle = (2 ∗ TLoop + TOverhead)− (TLoop + TOverhead)

= TLoop
(3.1)

Some instructions can be executed efficiently if the operands meet certain criteria. The
CPU may, for example, diverge from the normal execution path for a multiplication
if one of the operands is zero. To avoid such optimizations, all registers used get ini-
tialized to ”uncritical” values (neither zero or one). This adds to the overhead of the
function but, since this overhead is identical for the normal and the unrolled variant, it
is corrected by the method described above.

On some x86 architectures, there is a performance penalty when transitioning between
AVX and SSE instructions [21]. The penalty occurs if a register previously used by
an SSE instruction is used by an AVX instruction, and vice versa. Since it is not
guaranteed to occur both when running the normal and the unrolled benchmark, it
cannot be corrected using Equation (3.1) reliably. To prevent a potential transition
at the first loop iteration of the benchmark, an additional init function gets called
just before the benchmark function. It executes all instructions in the kernel to be
benchmarked once, thereby setting the AVX/SSE state of all vector registers used.

3.7 Usage

The command line interface of WINIC has the following format:

winic -f <frequency> [options] MODE [mode options]

Before running WINIC, the clock frequency must be set to a fixed value and supplied via
the -f or --frequency option. The winic command is always used with one of three
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modes (TP, LAT, MAN), representing the throughput mode, latency mode, and manual
mode, respectively. The following options are available for all modes:

• -h or --help prints the help message.

• -d and --debug enables debug messages.

• -c/--cpu and -m/--march only have to be used if LLVM cannot detect the CPU
model or the microarchitecture on its own.

3.7.1 Throughput and Latency Mode

TP and LAT modes are used to automatically generate and execute throughput or
latency benchmarks, respectively. Without further arguments, they will go through all
instruction forms LLVM knows for the architecture and generate a timestamped YAML
database with the results as well as a report file. To alter WINICs behavior, both modes
share the same set of options:

• -i or --instruction executes benchmarks only for the specified list of LLVM
instruction forms. The WINIC repository contains reference files to find the LLVM
name for an instruction form.

• --minOpcode and --maxOpcode can be used to limit the range of opcodes to
measure. This is mainly useful for benchmarking and development.

• --noReport disables the generation of report files.

• -o or --output changes the path of the YAML output file. If it already exists,
all results obtained in the run will overwrite the existing ones in the file, and all
other entries will be left untouched. If set to /dev/null no output is generated.

• --x87FP enables x87 floating point instruction forms. They are disabled by de-
fault, as they are deprecated and emulated on some platforms, which can signifi-
cantly increase the total runtime.
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3.7.2 Manual Mode

The manual mode can be used to execute arbitrary custom benchmark kernels.

The following mode options are required to execute the correct function and calculate
the cycles per instruction:

• -p or --path specifies the assembly file.

• --funcName specifies the name of the function to be executed in that file.

• -n or --nInst specifies the number of instructions in the loop body.

Optionally, --initName can be used to specify a function to be executed before the
benchmark function, as described in Section 3.6.

By default, when measuring a single instruction form, WINIC dumps the assembly file
generated. A common workflow therefore is to do a single instruction from run, then
edit the dumped file and execute it again using the manual mode.

3.7.3 Output

In latency and throughput mode, WINIC produces a YAML file with the results. For the
BTS (r16, r16) instruction form covered in Section 3.3.2, the output looks like this:
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1 - llvmName: BTS16rr
2 name: bts
3 operands:
4 - class: register
5 name: GR16
6 read: true
7 write: true
8 - class: register
9 name: GR16

10 read: true
11 write: false
12 latency: 2
13 operandLatencies:
14 - sourceOperand: '0'
15 targetOperand: '0'
16 latencyMax: 2
17 latencyMin: 2
18 - sourceOperand: '1'
19 targetOperand: '0'
20 latencyMax: 2
21 latencyMin: 2
22 - sourceOperand: '0'
23 targetOperand: EFLAGS
24 latencyMax: 1
25 latencyMin: 1
26 - sourceOperand: '1'
27 targetOperand: EFLAGS
28 latencyMax: 1
29 latencyMin: 1
30 throughput: 1
31 throughputMin: 1
32 throughputMax: 1

Listing 6: YAML output for BTS (r16, r16).

As discussed before, it has four sub-latencies. Each of those has a source and target
operand field, which are indices that point to an entry in the operand list or register
names for implicit operands such as the EFLAGS register. WINIC was able to deter-
mine an exact throughput value, as throughputMin is equal to throughputMax. The
output format is similar to the one that OSACA uses to allow easy integration into its
database.

During the benchmarking process, WINIC dynamically selects helper instruction forms,
as discussed in Sections 3.2.1 and 3.3.2. This is logged in a report file as follows:
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1 -----BTS16rr-----
2 BTS16rr(1(Class<GR16>) -> 0(Class<GR16>)) [2.01;2.01]
3 Successful, latency: 2.01
4 BTS16rr(2(Class<GR16>) -> 0(Class<GR16>)) [2.01;2.01]
5 Successful, latency: 2.01
6 BTS16rr(1(Class<GR16>) -> impl(Reg<EFLAGS>)) [1;1.01]
7 Dependencies:
8 ADC16ri(impl(Reg<EFLAGS>) -> 0(Class<GR16>))
9 ADC16ri8(1(Class<GR16>) -> impl(Reg<EFLAGS>))

10 Combined result: 2.01 cycles
11 BTS16rr(2(Class<GR16>) -> impl(Reg<EFLAGS>)) [1;1.01]
12 Dependencies:
13 ADC16ri(impl(Reg<EFLAGS>) -> 0(Class<GR16>))
14 ADC16ri8(1(Class<GR16>) -> impl(Reg<EFLAGS>))
15 Combined result: 2.01 cycles

Listing 7: Report for latency benchmarks of BTS (r16, r16).

The third and fourth measurements have two dependencies, ADC16ri and ADC16ri8,
which were selected as helpers for the types (EFLAGS→ r16) and (r16→ EFLAGS). The
measurement can now be reproduced by supplying those along with the BTS instruction
form:

winic -f <frequency> LAT -i BTS16rr ADC16ri ADC16ri8
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4 Results

4.1 Testing Environment

The results covered in this chapter were obtained on three systems listed in Table 2.

x86-64 AArch64 RISC-V

H
W

CPU Model AMD EPYC 9654 Nvidia Grace Banana Pi F3
Microarchitecture Zen 4 Neoverse V2 Spacemit X60/K1
Base Frequency 2.4GHz 3.1GHz 1.6GHz
Fixed Frequency 1.5GHz 3.2GHz 1.6GHz

SW

Compiler GCC 13.3.0 GCC 13.3.0 GCC 15.1.1
OS Ubuntu 24.04 Ubuntu 24.04 ArchLinux (rolling)
Linux kernel 6.8.0-63-generic 6.8.0-78-generic 6.1.15

R
ES Obtained TP values 6087 3540 453

Obtained LAT values 12372 5967 729

Table 2: Hardware, software, and number of results for our three test systems.

WINIC1 currently uses LLVM and Clang at version 20.1.5 on all platforms. For every
instruction form, multiple (sub-latency) values can be obtained, but no more than one
throughput value. This means that the number of throughput values also indicates the
total number of instruction forms WINIC was able to measure on the given platform.
At the time of writing, there was no single version of the GCC compiler available on
all three systems, which is why we used a different version on the RISC-V system.
The measurements for this chapter were done using the WINIC repository at commit
6341e1a.

1Available at https://github.com/RRZE-HPC/WINIC
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4.2 Comparison to Existing Data

WINIC produces a large number of measurements, as shown in Table 2, which makes
it difficult to evaluate their quality. Only for x86 processors, uops.info [14] provides a
comprehensive database of latency and throughput values obtained using Nanobench
[13]. We therefore compare WINIC and uops.info to obtain an estimate of the quality
of the results.

LLVM and uops.info store instruction forms in different formats, so matching an LLVM
instruction form to an entry in the uops.info database is not trivial. The main two
difficulties are:

• There are some cases where the databases disagree; for example, for IMUL (R8)
LLVM marks AL as being read and written to, whereas uops.info marks it as read-
only. In those cases, the script to compare the results cannot match the instruction
forms.

• The script can find multiple matches for one LLVM instruction form, e.g. because
uops.info differentiates between R8l and R8h registers, but LLVM does not. In
the following, the results are considered the same if all matching uops results have
the same throughput or latency values as the WINIC result.

Figure 3 visualizes the results on Zen 4 taking all of this into account. It shows that
for both throughput and latency, around 95% of the values can be matched to one or
more uops results. Around 93% of those are identical to the values from uops.info.
As explained in Sections 3.2.1 and 3.3.2, WINIC can sometimes only determine ranges
instead of exact results. On Zen 4, this occurred for 2% of the throughput values and
11% of the latency values.

4.3 Case Study

Now we will look at a loop kernel for which the new sub-latency values can improve the
accuracy of OSACA’s prediction.

Fused-multiply-add operations in a streaming 1D-fasion as well as in multiple dimensions
are common in a variety of scientific applications; among others, they can be found in
stencil codes and linear algebra kernels (e.g. AXPY, GEMM). For simplicity, we look
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Figure 3: Comparison of the results with uops.info: Values are considered to be the
same if the uops value lies in the determined range with an additional toler-
ance of 10%.

at a slightly modified Schönauer-DAXPY-kernel. To observe the effect of sub-latency
values, we adjust it so that the fused-multiply-add cannot be vectorized because of a
read-after-write dependency. The full example including the OSACA output is available
on the Compiler Explorer2.

1 double a[N], b[N], c[N];
2

3 for(int i=1; i<N; ++i) {
4 a[i] = a[i-1] + b[i] * c[i];
5 }

Listing 8: A variant of the Schönauer-DAXPY-kernel with a read-after-write depen-
dency.

The above kernel was compiled for Neoverse-V2 using the Clang compiler at version
20.1.0 with flags -mcpu=grace, -O3, and -fno-unroll-loops. The resulting assembly
code looks like this:

2https://godbolt.org/z/bzrr99fK8
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1 ldr d1, [x20, x8]
2 ldr d2, [x0, x8]
3 fmadd d0, d1, d2, d0
4 str d0, [x19, x8]
5 add x8, x8, #8
6 cmp x8, #1, lsl #12
7 b.ne .LBB0_3

Listing 9: The compiled assembly code for the kernel in Listing 8.

Figure 4 shows OSACA’s report on this kernel. The throughput prediction would be 1
cycle, as that is the throughput of the ports with the highest port pressure (ports 12,
13 and 14). However, the LCD report reveals that the loop is expected to be bound
by the loop-carried dependency of the FMADD instruction, which reads and writes d0
every iteration. FMADD (FPR64, FPR64, FPR64) has a latency of 4 cycles, so a minimum
of 4 cycles per loop iteration is needed. However, when benchmarking this kernel on an
NVIDIA GH200 chip, we measure only 2 cycles per iteration. To investigate why, we
use WINIC to measure the sub-latencies of the FMADD as follows:

1 winic -f 3.2 LAT -i FMADDDrrr
2 FMADDDrrr(1(Class<FPR64>) -> 0(Class<FPR64>)) [4.01;4.01]
3 FMADDDrrr(2(Class<FPR64>) -> 0(Class<FPR64>)) [4.01;4.01]
4 FMADDDrrr(3(Class<FPR64>) -> 0(Class<FPR64>)) [2.01;2.01]
5 FMADDDrrr(impl(Reg<FPCR>) -> 0(Class<FPR64>)) [ERROR_NO_HELPER]

Listing 10: WINIC output for measuring the latency of FMADDrrr on AArch64.

The output shows that FMADD has four sub-latencies. Measuring the last one fails, as it
is of asymmetric type and therefore would need a helper instruction form3 as described
in Section 3.3.2. The other measurements reveal the reason for the mismatch between
the OSACA prediction and the empirical result. While the other sub-latencies are 4
cycles, the one relevant to the loop-carried dependency is only 2 cycles. Once OSACA
3WINIC can, in fact, not measure this specific sub-latency as no instruction form of the AArch64
instruction set has a sub-latency of type (FPR64→ FPCR). This is because FPCR (floating point control
register) controls floating point rounding modes, overflow behavior, etc., and can only be set by the
MSR (FPCR, r64) (Move to Special Register) instruction form. This being said, for the missing sub-
latency value to affect performance, one would need a loop kernel where the floating point behavior
is altered every iteration, which is highly unlikely. Therefore, this value can be considered irrelevant.
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line 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CP LCD Instruction
35 0.33 0.33 0.33 4.0 ldr d1, [x20, x8]
36 0.17 0.16 0.66 ldr d2, [x0, x8]
37 0.25 0.25 0.25 0.25 4.0 4.0 fmadd d0, d1, d2, d0
38 0.50 0.50 0.50 0.50 0.0 str d0, [x19, x8]
39 0.17 0.49 0.17 0.17 add x8, x8, #8
40 0.33 0.33 0.33 cmp x8, #1, lsl #12
41 0.50 0.50 b.ne .LBB0_3

sum 0.50 0.50 0.50 0.49 0.50 0.50 0.25 0.25 0.25 0.25 1.01 1.00 1.00 0.50 0.50 8.0 4.0

Figure 4: OSACA output for the kernel in Listing 8: Marked in red, the performance is
expected to be limited to 4 cycles/iteration by the loop-carried dependency
on the fmadd instruction.

line 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CP LCD Instruction
35 0.33 0.33 0.33 4.0 ldr d1, [x20, x8]
36 0.17 0.16 0.66 ldr d2, [x0, x8]
37 0.25 0.25 0.25 0.25 4.0 2.0 fmadd d0, d1, d2, d0
38 0.50 0.50 0.50 0.50 0.0 str d0, [x19, x8]
39 0.17 0.49 0.17 0.17 add x8, x8, #8
40 0.33 0.33 0.33 cmp x8, #1, lsl #12
41 0.50 0.50 b.ne .LBB0_3

sum 0.50 0.50 0.50 0.49 0.50 0.50 0.25 0.25 0.25 0.25 1.01 1.00 1.00 0.50 0.50 8.0 2.0

Figure 5: Updated OSACA output for the kernel in Listing 8: Marked in red, the
performance is now correctly predicted to be 2 cycles/iteration due to the
new sub-latency values.

can handle the new sub-latency values, it will be able to provide an accurate prediction
for this and other similar cases. Figure 5 shows the output with the new value.
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5 Conclusion

5.1 Summary

This work provides a platform-independent microbenchmarking tool running in user-
space. WINIC can automatically benchmark throughput and latency of all instruction
forms available in LLVM on x86, AArch64, and RISC-V. Furthermore, it can break
dependencies for throughput benchmarks if needed. We showed that WINIC can be
used to automatically obtain sub-latency values for AArch64 instruction forms, which,
to our knowledge, no other tool was capable of before. For x86, the results align with
existing data by 93%, which gives confidence in the approach and the accuracy of the
measurements.

5.2 Future Work

The next step for WINIC’s development is to implement support for instruction forms
with memory access, followed by an algorithm to measure port usage. Due to its inte-
gration with LLVM, it is technically possible to expand WINIC to architectures beyond
the ones currently supported without major changes to the codebase.

The current algorithm used to measure latencies between asymmetric operand pairs
described in Section 3.3.2 leaves room for improvement, as it allows for cases where
only a latency range can be determined. Currently, only latency chains of length 2
are constructed and measured. Building longer chains and representing the results in
a system of linear equations in the form of L1 + L2 + . . . + Ln = Lmeasured might yield
exact results for all instruction forms involved, assuming that the system has a unique
solution after including enough measurements. Future work might investigate this or
other approaches to eliminate latency ranges.
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