

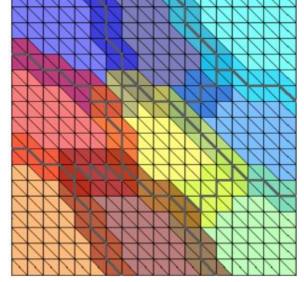
The Erlangen National High Performance Computing Center (NHR@FAU) is looking for a

Master thesis student for

Efficient Inexact Subdomain Solvers for Domain Decomposition Methods with RACE

The thesis will be supervised collaboratively by the Research division at NHR@FAU and the Numerical Analysis group at TU Delft.

Description


Partial differential equations (PDEs) are widely used in scientific and engineering problems, where discretization leads to large, sparse linear systems Ax = b. As system size increases, direct solvers become impractical due

to high memory and computation costs, so iterative methods such as Krylov subspace solvers are employed [1]. However, these methods can converge slowly for large systems, motivating the use of (domain decomposition-based) preconditioners $M^{-1} \approx A^{-1}$.

Let $\{\Omega_i\}$, $i=1,\ldots,N$ be a decomposition of our domain Ω into overlapping subregions (see image). This project focuses on overlapping Schwarz preconditioners of the form

$$M^{-1} = \sum_{i=1}^{N} R_i^T A_i^{-1} R_i,$$

where R_i restricts the i-th overlapping subdomain and $A_i = R_i A R_i^T$. Using A_i^{-1} in the preconditioner (i.e., an "exact" solver) quickly becomes the performance bottleneck. This thesis explores "inexact" solvers as a cost-effective alternative, and aims to evaluate the performance vs. accuracy tradeoff of different inexact solvers. We will use the FROSch package [2] within the Trilinos framework as the domain decomposition

preconditioner. New hardware-aware algorithms, such as cache-blocking matrix-power kernels provided by the Recursive Algebraic Coloring Engine (RACE), will be taken into account [3].

- [1] Y. Saad. Iterative Methods for Sparse Linear Systems. doi: 10.1137/1.9780898718003.
- [2] A. Heinlein, et al. FROSch: a fast and robust overlapping Schwarz domain decomposition preconditioner based on Xpetra in Trilinos. doi: 10.1007/978-3-030-56750-7_19.
- [3] C. L. Alappat, et al. Level-based Blocking for Sparse Matrices: Sparse Matrix-Power-Vector Multiplication. doi: 10.1109/TPDS.2022.3223512.

Within the master thesis, the focus will be in the following areas:

- Literature review on domain decomposition methods and inexact subdomain solvers.
- Installation of FROSch on DelftBlue (TU Delft) and/or Fritz (NHR@FAU) supercomputers.
- Interfacing FROSch with the RACE framework.
- Systematic performance evaluation of the exact vs. inexact subdomain solvers on DelftBlue and Fritz.

Working on these topics, you will have the chance to work with **state-of-the-art supercomputing technology** in a scientific environment. We foster **scientific thinking** and proper **data presentation skills**.

Required skills

- Profound knowledge of C++
- Experience using numerical libraries/frameworks (e.g., Intel MKL, BLAS, Eigen...)
- Knowledge of high-performance parallel computer architecture and code parallelization with OpenMP (MPI is a plus)
- Knowledge of basic performance modeling strategies (e.g., Roofline)
- Excellent communication skills in English

Please direct any inquiries or applications to

Dane Lacey <<u>dane.c.lacey@fau.de</u>>
Georg Hager <<u>georg.hager@fau.de</u>>
Gerhard Wellein <<u>gerhard.wellein@fau.de</u>>