

Energy monitoring and optimization made easy and accessible — powered by

Julita Corbalan BSC team leader/ EAR CTO julita.Corbalan@bsc.es julita.corbalan@eas4dc.com

Agenda

- Why Energy efficiency in DC is needed
- The EAR roadmap for the ultimate goal of energy efficient data centers
 - o <u>Data Center Monitoring and Management</u>
 - o <u>Dynamic Energy optimization</u>
 - o Node sharing support for big servers
 - o <u>Smart powercap</u>
- <u>Useful links</u>

Why do we need energy efficient Data Centers

Massive increase in power requirements

Real World Example:

o Initial power available from public grid 8 MW o 100k H100 GPUs @700W each 70 MW

Total data center power estimate ~150 MW

• Based on some sources (internet ©)...

o 2%-3% of annual increase if we have a "eco" mind improving hardware and software technologies

o 5% - 7% of annual increase if the utilization of AI, edge etc increases its utilization without the equivalent improvement in the technology efficiency

Is it only a matter of money? Do the market will regulate the "efficiency"?

- Can we avoid people using data centers, AI chats, cryptocurrencies, etc? Can we control?
 - o Not
- What can we do then????
 - O DO OUR BEST !!!

Energy "efficiency" in Data centers Gflops/Watt Hardware Time to solution PUE **Applications** Data center CO2 System Software

Energy efficient HPC/AI 2025

Throughput?

Application efficiency: Power/Energy

- What about power
 - o Much less expertise and tools since power is mostly a privileged metric
 - o Many different APIs, more standard at the CPU level but anyway complex
 - Different sources of power
- What about new use cases
 - o Workflows
 - o Node sharing
 - o Virtualization

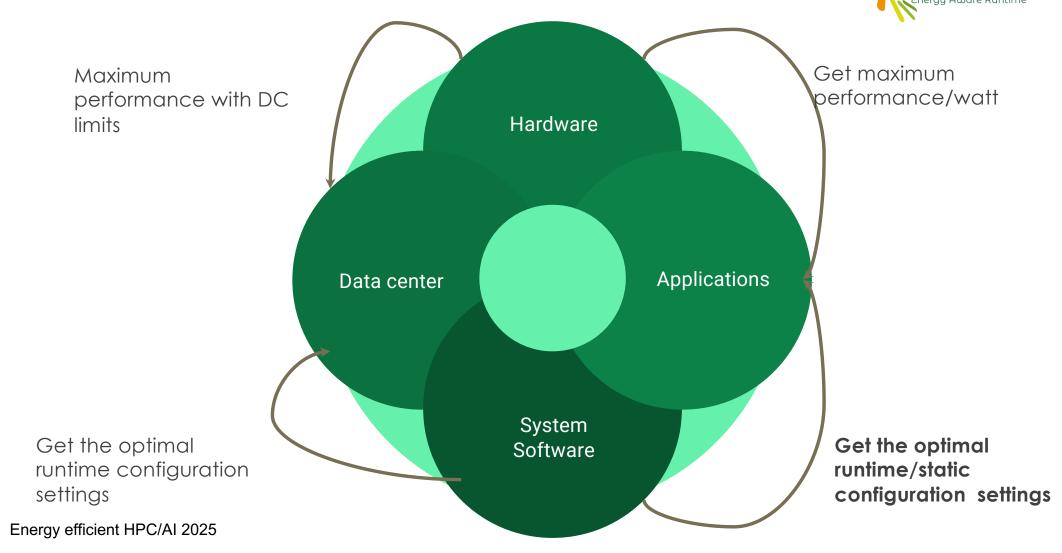
And we have not commented yet about evaluation metrics!

System software for energy efficient Data centers

- System software tools and service helping application developers to improve their codes
 - o Static optimization
 - Energy
 - Resources (num nodes)... and then energy
 - o Dynamic optimization
 - Energy
 - Resource (power/frequency) and then energy

Stakeholders perspective on Energy Optimization

- Users
 - o Motivation: scientific results, is that enough??
 - o Challenges:
 - Understand application behavior and actual impact (metrics)?
 - Limited skills/time/opportunity for optimizations (transparent)?
- Admins
 - o Motivation: keep the system running under the limits
 - o Challenges:
 - Cannot support individual users with energy optimization efforts (automation)
 - Operate the system within data center power limits (hard power capping)
- Data center management
 - o Motivation: maximize work output within CAPEX/OPEX budgets
 - o Challenges:
 - Understand the workloads running in the data center (analysis)
 - Control energy budget (energy optimization)
 - Charge users for energy consumption (accounting)



Stakeholders perspective on Energy Optimization: Main challenges

- Users
 - o Some users has expertise on resource optimisation
 - o Others not
 - o Most of them doesn't have on energy optimization
 - \circ So what is their benefit for being "energy efficient" ?? \rightarrow It must be easy!
- Admins
 - \circ For them is another tool, so another source of problems \rightarrow It must be easy!
- Data center
 - o Reduce the electricity consumption and works under the power limits \rightarrow It is a must!

It is pending to see how traditional scheduling policies (CPU hours) are replaced by KWH or Joules or GFLOPS/W targets or, energy efficiency metric, and the effect on users

Collaborative work for Energy efficient DC > EAR

Data Center monitoring

- o Computational and Non-computational devices
- o Different granularities: ms... hours
- o Different sources of data: In-band, out of band, exporters, etc
- o Different scales: few nodes/devices.... Thousand

Application monitoring

- o Different that jobs, fine grained: 1 job multiple applications
- o Metrics: CPU, GPUs, FPGAs, etc
- o Programming languages and frameworks
- o Schedulers
- o Virtualization
- o others...

Optimization

- Applications and system can be dynamically configured to adapt to the running workload
- What is a workload? It depends on the context
 - o Run vs Idle period → Select the best CPU governor. AFAIK there is nothing similar on the GPU
 - Running an application Select the best CPU/Memory/GPU frequency (and governor) resulting in the maximum performance/watt
 - o Running a workflow \rightarrow Select the best per-application configuration taking into account the whole workflow
 - o Data Center workload → Update the system optimization policy (and policy arguments) to maximize DC goals or constraints

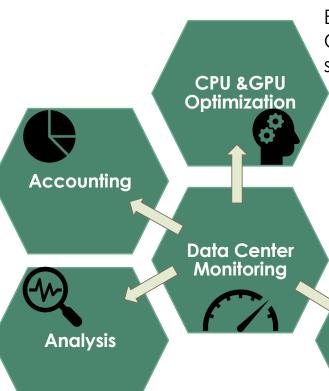
Power/thermal/Cooling management

- Optimization can be seen as a ratio, power, thermal, cooling management is about infrastructure limits
 - o Limits than cannot be exceeded
- This technology has been historically provided by Vendors since it is a "hardware" issue
- Several strategies
 - o Preventing problems → limit always set by hardware
 - o Predicting/Detecting \rightarrow There is a risk
 - o Dynamic settings → Adapting settings to the workload
 - Combining Prediction & Dynamic management

The EAR roadmap to energy efficient Data Centers

EAR and the Stakeholders

- Users
 - Automatic (easy)
 - o **Portable**, it's worth to do the effort of using EAR tools
 - o HPC and AI frameworks, programming models etc supported
- Admins
 - o It's a new tool. Yes, but very similar to existing tools (SLURM)
 - o Very few dependencies
 - o Powerful deployment and support for heterogeneous systems
- Data center management
 - o Power management
 - o Energy optimization
 - o Non-computational devices(WIP)



EAR: System software for Energy efficiency

EAR Energy Aware Runtime

Data reporting for accounting, billing, visualization and analytics

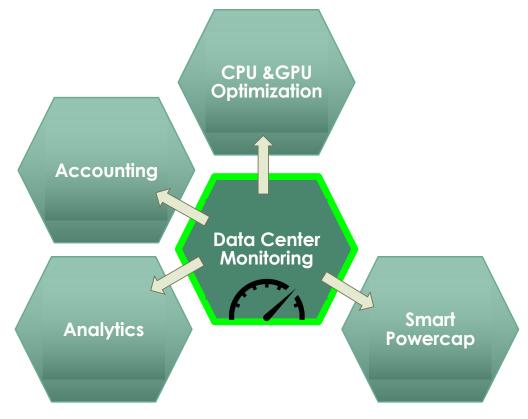
Analysis and classification of application metrics for energy and power optimization

Energy models and policies for CPU/Memory/GPU frequency selection

Application, node, cluster and Data center monitoring: Performance and Power metrics

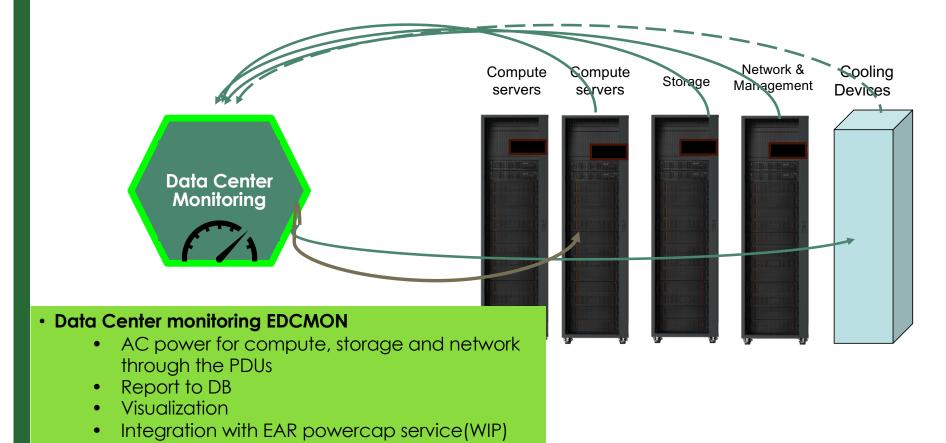
Smart Powercap

Power control to guarantee data center operational limits Data Center Monitoring and Optimization



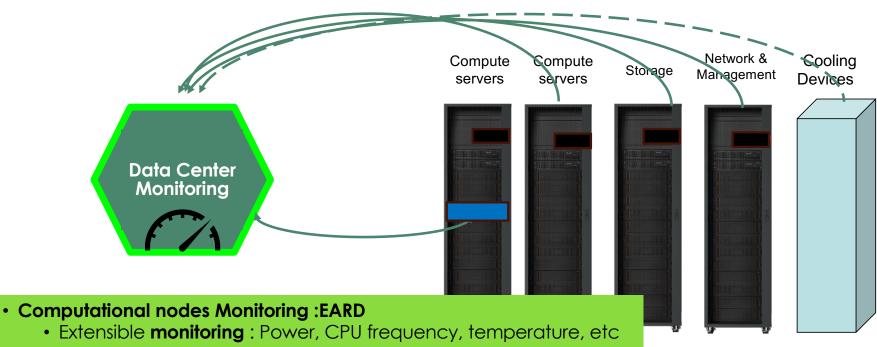
- Monitoring as source for
 - Optimizing
 - Management

- Compatible with other tools
 - Sharing data
 - European software stack



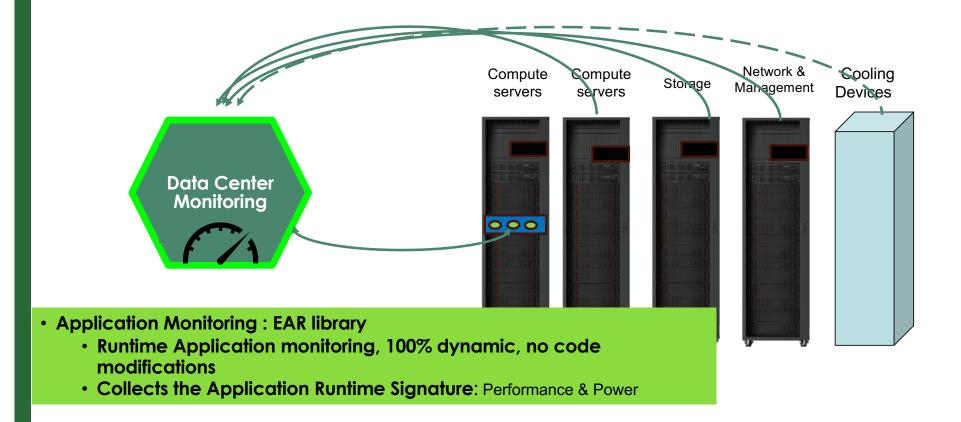
REGALE project

Rack, Node, Application Monitoring



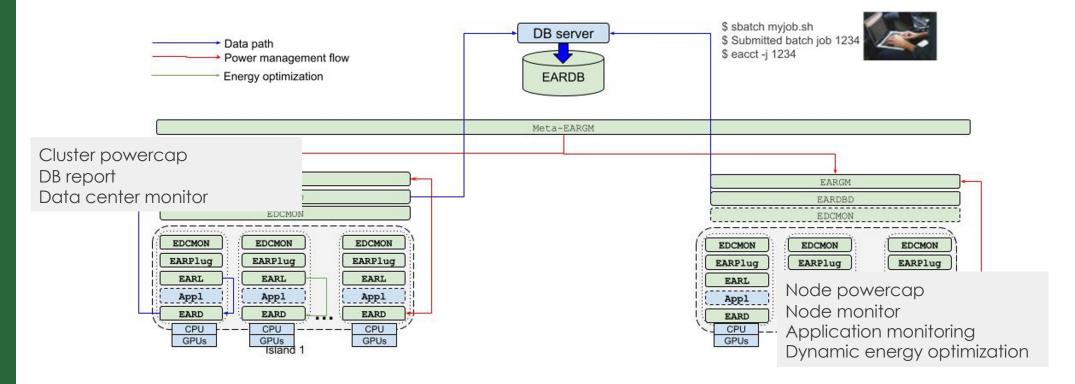
Rack, Node, Application Monitoring

20



• Multiple sources of data: inband IPMI, redfish, NVIDIA, MSR, RAPL...

- Extensible report: MariaDB, Postgres, Sysfs, Prometheus,...
- Anomalies detection for power and temperature


Rack, Node, **Application** Monitoring

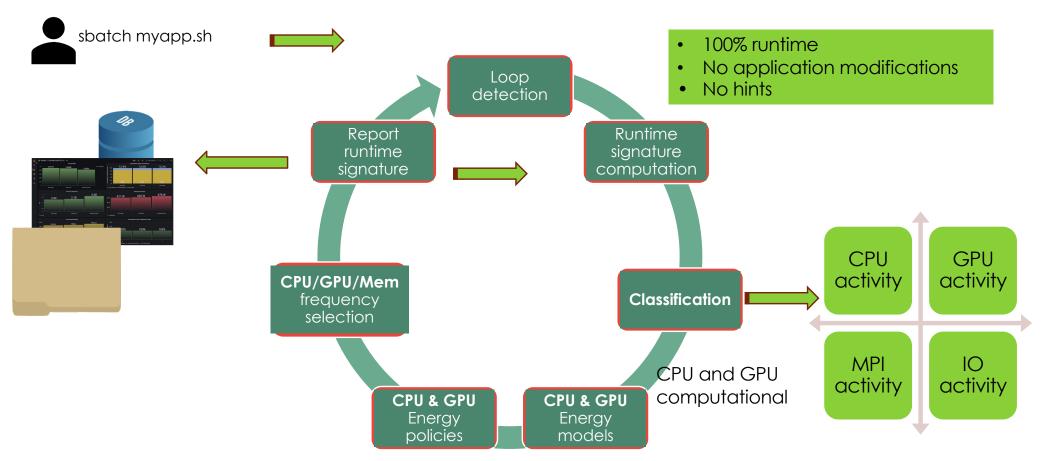
EAR architecture

- Software group of nodes
- Distributed features: Monitoring, optimization, power management, reporting
- Vendor independent

Dynamic energy optimization

Get more performance per Watt

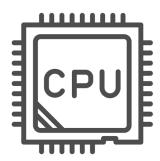
Dynamic Energy Optimization: Adapt the power consumption to the application activity

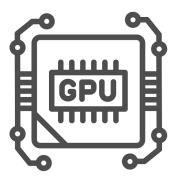

- Runtime
- **Transparent**
- Application: Adapt configuration to application "Activity"
 Cluster: Adapt configuration to Workload "Activity"

CPU & GPU **Optimization Accounting Data Center Monitoring Smart Analysis Powercap**

Application high efficiency mind-set

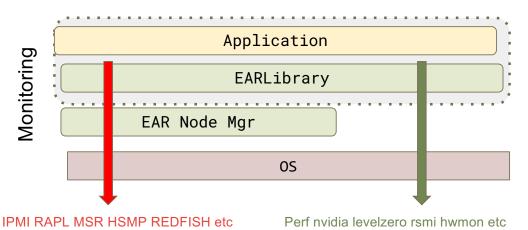
The EAR Library optimization loop

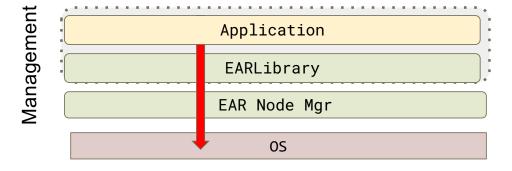



Application runtime characterization: Utilization ys "effective" utilization: The signature

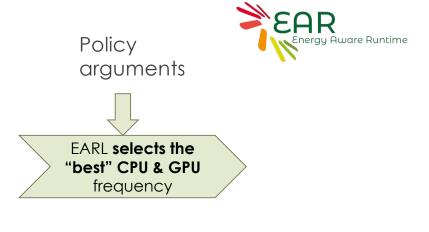
The key question is not whether the CPU or GPU is used, is **what is used for and how much does it consumes** to do the job.... And EAR knows!!!

CPU activity : CPI, Memory BW, GFlops, IO, network Power consumption: DC node power, DRAM and CPU power




GPU activity : GPU activity (tensor, nvlink etc)
Power consumption: DC node power, GPU power

What about portability?


- EAR is very portable and flexible since all the APIs for monitoring and management are implemented in two layers
 - o Generic
 - o Device/API specific
- There is always a dummy API in case one API is not supported for a new architecture

- → OS Cpufreq : userspace, intel_pstate
- → AMD HSMP with virtual list of p-states
- → GPU
 - Libnvdidia-ml, Levelzero, smi

Energy dynamic optimization

EARL computes signature (CPU & GPU)

EARL Applies energy model

Project time, power and energy

CPU and GPU Coefficients (computed at EAR installation)

Min_energy_to_solution policy (CPU and GPU): Minimizes the energy with a maximum performance

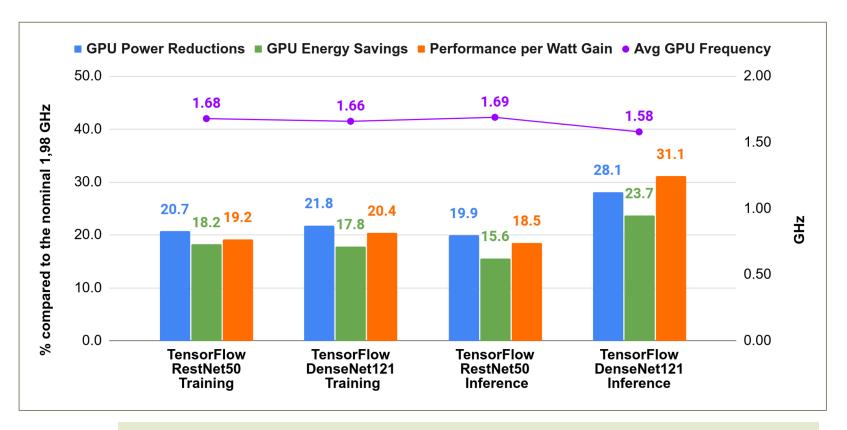
En (time) penalty defined as threshold

Results on H100 - SXM5

4x GPU

• TDP: 700 W

• Nominal Frequency: 1980 MHz

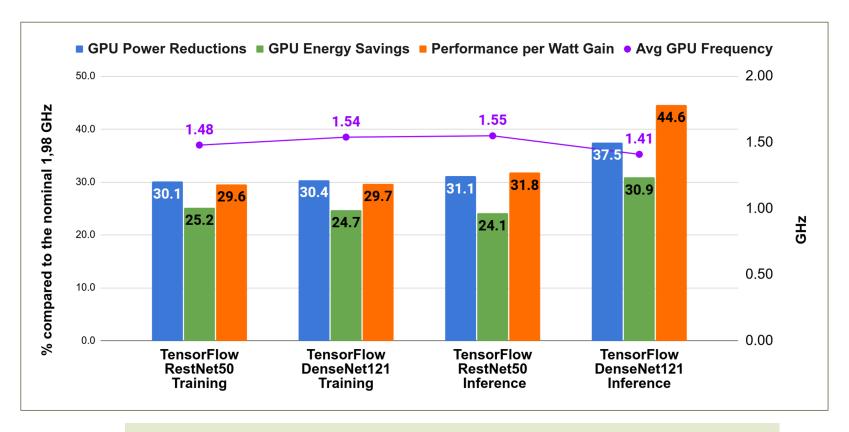


Al Applications on H100

Applications	Version	Model	# GPUS	MPI tasks	OpenMP Threads	Inputs (batch_size)
TensorFlow	2.15	Resnet 50	1	1	72	128
		DenseNet121	1	1	72	128
		VGG19	1	1	72	128
PyTorch	2.2	Resnet 50	1	1	8	256
		Resnet 50	4	4	4	256
					30	
		DenseNet121	1	1	8	128
		DenseNet121	4	4	4	128

EAR GPU optimization on Al applications (1 GPU)

TensorFlow Benchmarks: GPU Energy savings and efficiency

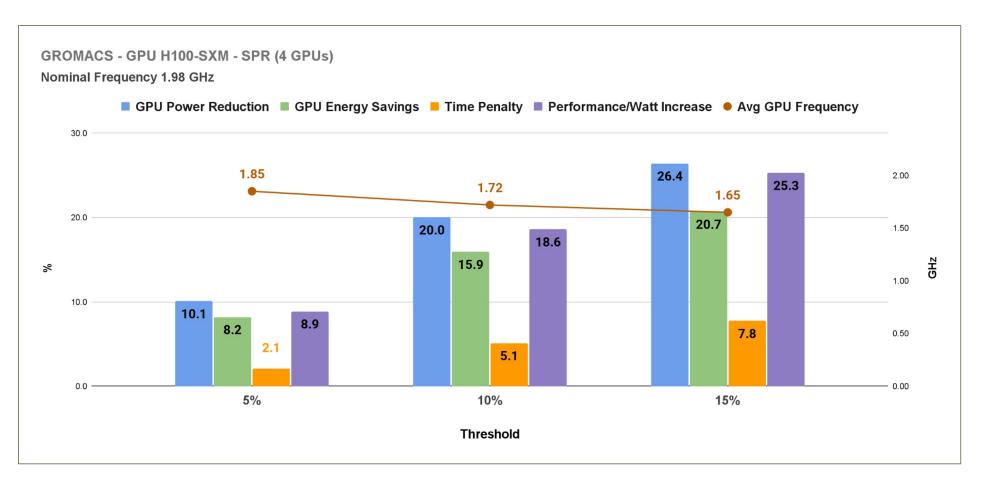


EAR Optimization with 5% policythreshold: Avg energy saving 18.8%

EAR GPU optimization on Al applications (1 GPU) > EAR

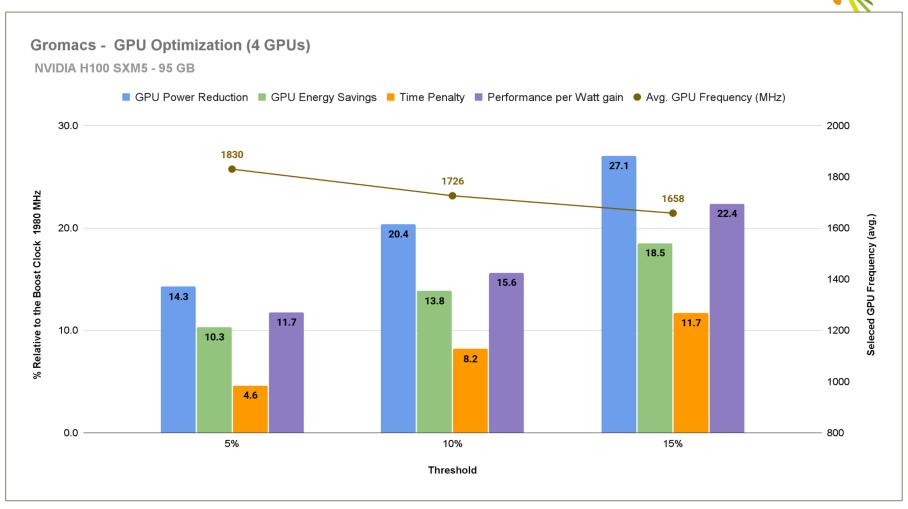
TensorFlow Benchmarks: GPU Energy savings and efficiency

EAR Optimization with 10% threshold: avg. energy saving 26.2%


Gromacs on H100 SXM5 on 4 GPUs

- Processor: Xeon Platinum 8462Y+ (S:C:T = 2:32:2)
- GPU: H100 SXM5, TDP = 700 W/GPU
- Gromacs dataset: BenchPEP-h
- GPU min_energy policy:
- Benchmark configuration:
 - 4 GPUs with 4 MPI tasks and 16 OpenMP threads

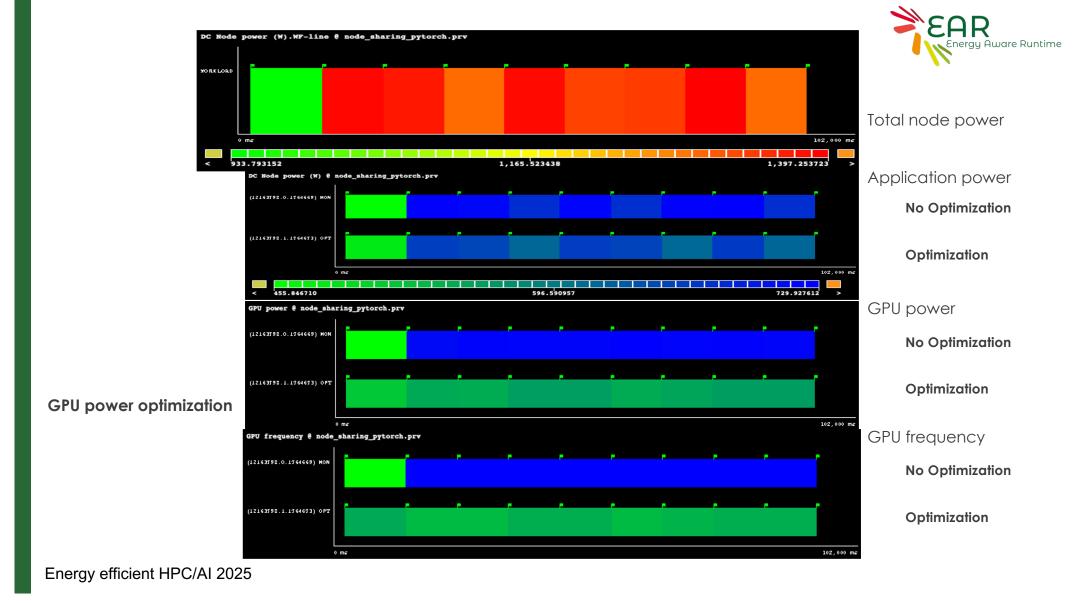
GPU savings with EAR Optimization

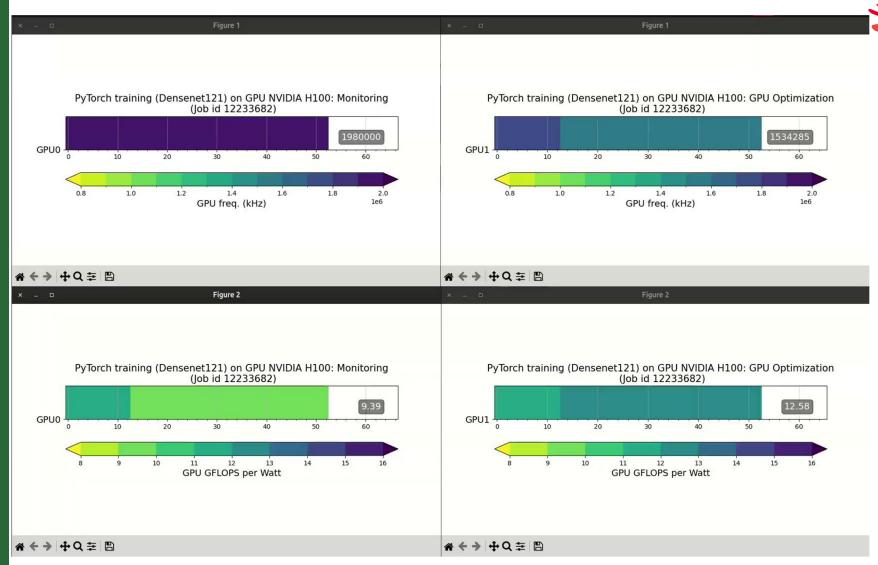

Gromacs on H100 SXM5 on 4 GPUs

- Processor: AMD EPYC 9334 (2x) 32 Cores/Socket
- GPU: H100 SXM5 (95 GB), TDP = 700 W/GPU
- Gromacs:
 - source: Nvidia NGC container
 - dataset: STMV benchmark
- GPU min_energy policy
- Benchmark configuration:
 - 4 GPUs with 2 thread-MPI tasks per GPU and 16 OpenMP threads per thread-MPI task

GPU savings with EAR Optimization

Node sharing support for big servers

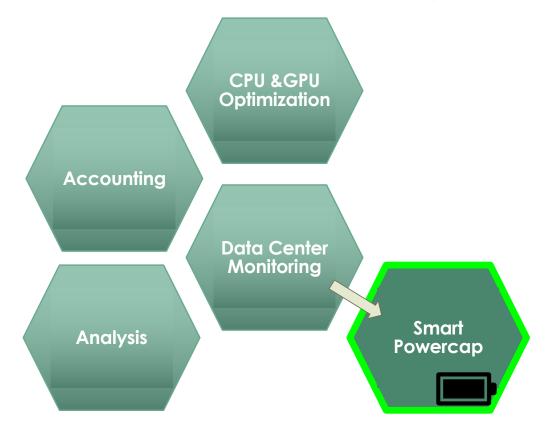

Node sharing support


- With the growing size of large CPU node such Granite Rapids from Intel and AMD
 Turin and powerful GPU nodes, the requirement of node sharing the get the
 maximum node utilization becomes more relevant
- EAR includes node sharing capabilities in order to monitor and optimize the running applications when sharing nodes
- Use cases supported are
 - o Multiple applications sharing the node monitored and managed independently
 - o Multiple applications sharing the node monitored and managed as a single entity

Node sharing example

- 2 instances of pytorch running at the same time, same node
- Each one asking for 1 GPU
 - o 1 with monitoring
 - o 1 with optimization
- EAR monitors each one independently and optimizes only one (as requested)
- Images generated with ear-job-visualization + Paraver

Energy Aware Runtime


Smart powercap

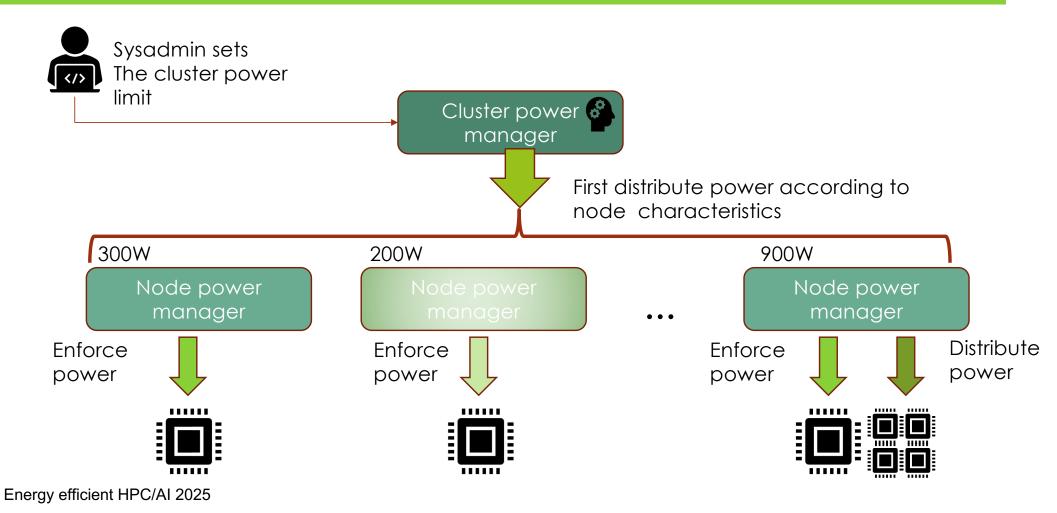
Dynamic powercap guided by application activity

Smart Powercap

EAR Energy Aware Runtime

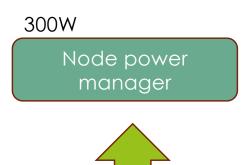
- Node powercap
 - Heterogeneous
 - Dynamic
 - Application "driven"
- Cluster powercap
 - Heterogeneous
 - Dynamic
 - Node (Application) "driven"
- Cluster high efficiency mind-set

EAR smart powercap overview



- Cluster power manager distributes power to computational nodes
 - o Hierarchical architecture for large scale clusters: 1 Meta- EARGM, N EARGMs
 - Two algorithms offered: soft (lightweight) and hard powercap
- EAR Node powercap manager enforces node power limit
 - o Extensible through plugins: CPU, GPU
 - o Dynamic intra-node power re-allocation based on application activity
- EAR library informs the EAR node powercap manager of application activity and power requirements
- Architecture
 - Software architecture: Compute nodes can be "grouped" with flexible & dynamic criteria
 - o Vendor independent

Powercap (I): Initial distribution


Cluster power manager distributes power and node power manager enforces power

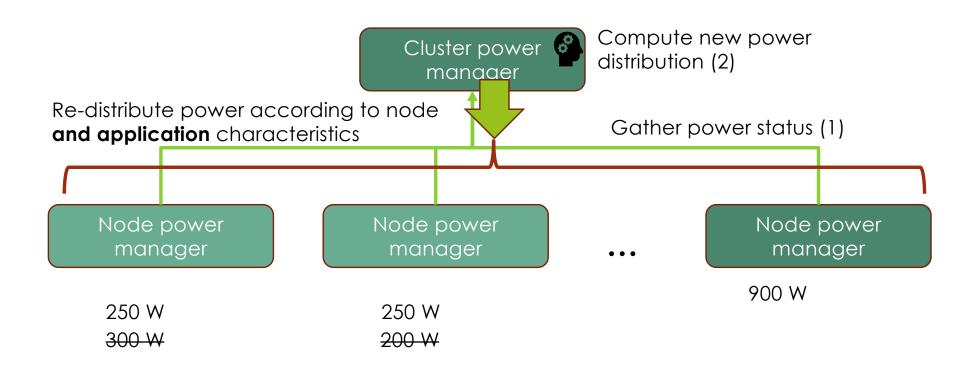
Powercap(II): Application feedback

Application (through EARlib) informs each node about its power needs

I can release power because I don't need so much power

I need more power because I will be more efficient

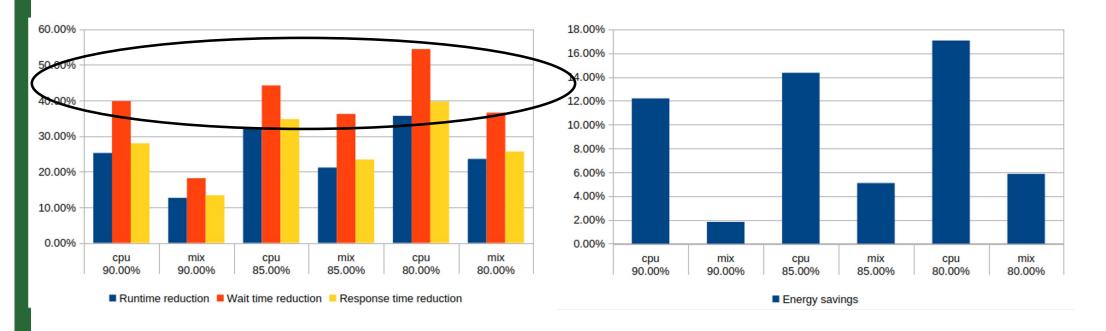
EARLib



I need more power because I will be more efficient

Powercap(III): Dynamic power reallocation

The "High Efficient Computing" mind-set


? Energy optimization seems to be against maximizing performance, but basically we look at individual applications and unlimited resources

? This is not longer true if we focus on workloads and limited systems

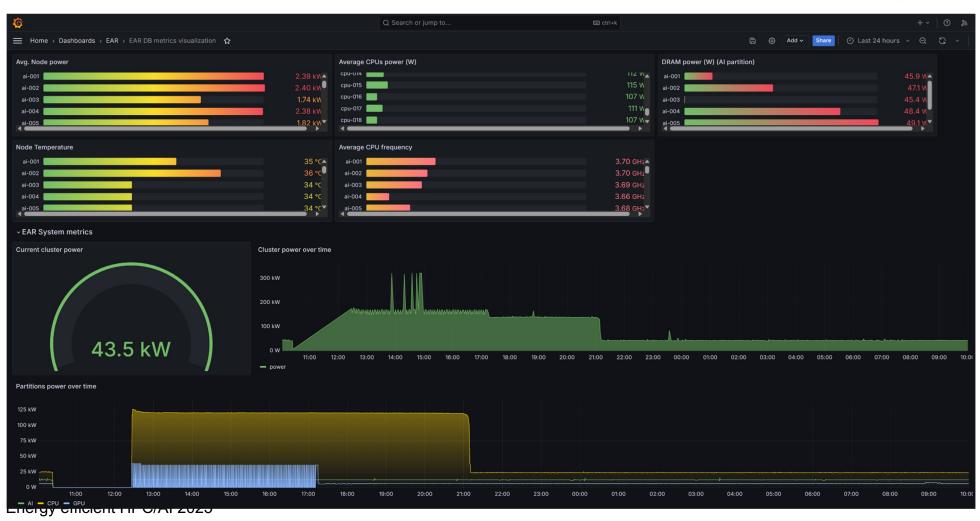
Energy/Power optimization is not a pain , it is a MUST

EAR cluster hard-powercap vs static powercap

- 10K nodes (simulation based results)
- SPR characterization CPU nodes

Reporting and visualization

- EAR CLI
- EAR visualization tools
- Grafana

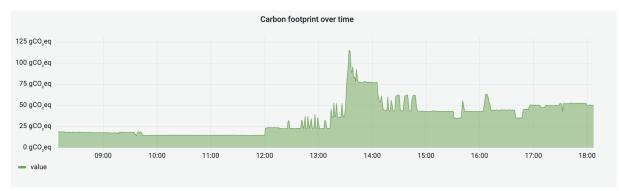

EAR command for job accounting and node monitoring: eacct and ereport

- eacct is a linux command line tool to gather job metrics
- Regular users can gather their own data and managers can gather data from all the users
- Multiple filters and flags supported, including saving all the data in csv files (runtime and application signatures

```
[julitac@int3 TENSORFLOW TEST]$ eacct -j 1460643
                APPLICATION POLICY NODES AVG/DEF/IMC(GHz) TIME POWER(W) GBS CPI ENERGY(J) GFLOPS/W IO(MBs) MPI% G-POW G-FREQ G-UTIL
JOB-STEP USER
1460643-5 julitac rfm TensorFlowSA MT 8
                                           2.86/2.20/2.12 376.57 1343.82 21.43 0.29 4048335
                                                                                              0.0000 1960.8 44.6 868.93 1.410 89%/46%
1460643-4
          julitac rfm TensorFlowSA ME
                                           2.38/2.40/2.19 374.49
                                                                 1321.24 21.71 0.30 3958278
                                                                                              0.0000 1971.8 46.7 870.58 1.410 90%/47%
         julitac rfm TensorFlowSA MO
1460643-3
                                      8 2.38/2.40/2.19 374.28
                                                               1322.08 21.90 0.30 3958678
                                                                                              0.0000 1972.7 46.2 869.99 1.410 90%/47%
1460643-2 julitac rfm TensorFlowSA MT 8
                                          2.86/2.20/2.10 383.57 1329.94 21.08 0.29 4080972
                                                                                              0.0000 1924.8 44.5 856.43 1.410 88%/45%
          julitac rfm TensorFlowSA ME
1460643-1
                                           2.38/2.40/2.19 374.41
                                                                 1321.40 21.77 0.29 3957900
                                                                                              0.0000 1972.1 46.2 871.06 1.410 90%/47%
          julitac rfm TensorFlowSA MO
                                      8 2.38/2.40/2.19 377.26
                                                                 1313.15 21.66 0.29 3963175 0.0000 1957.1 46.4 863.03 1.410 90%/46%
1460643-0
```

Data visualization with Grafana

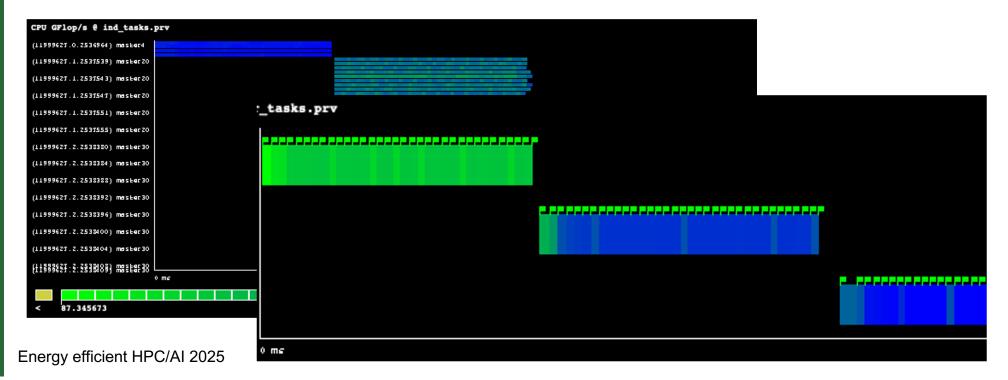
Data visualization with Grafana


Jobs data can be seen with tools such as Grafana

Job metrics: CPU frequency, CPI, Memory bandwidth, Gflops, etc

						Finished jobs						
ID	Application ↑	Policy	Node power	Avg CPU frequency	Avg Mem frequency	СРІ	GBS	GFlops	Elapsed time	MPI %	IO (MBS)	DRA
230761	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	
230759	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	
230751	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	
230749	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	4
230742	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	
230658	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.17 GHz	0.47	156	125	6 min	2	0	4
230654	bt.D.x.ear.ME	min_energy	490 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	4
230650	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	4
230598	bt.D.x.ear.ME	min_energy	488 W	2.18 GHz	2.17 GHz	0.47	156	125	6 min	2	0	4
220761	ht D v oor MO	monitoring	528 W	2 72 047	1.85.047	0.54	160	125	6 min	2	0	١

System metrics: Carbon footprint



EAR job visualizer

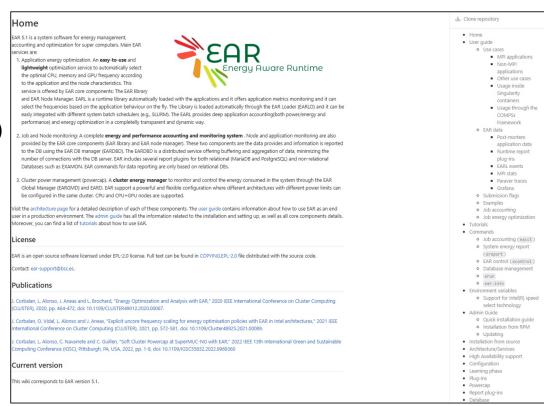
Helps the end users to understand their application behavior and their resources usage.

 Static images/Paraver traces with EAR metrics visualization for specific jobs over the time.

And then ... What's next?

EAR Energy Aware Runtime

- DYMAN: Dynamic data center cooling management
- ODISSEE
 - o Energy efficient workflows for data science (CERN)
 - New architectures support for data science (Rhea, Maverick)
- DARE: Next generation european processors (OpenChip)
- SEANERGYS: European software stack for energy management



Useful links

Further information

Energy Aware Runtime

- EAR Wiki (https://github.com/eas4dc/EAR/wiki)
- EAR GitHub repository (incl. CPU models) (https://github.com/eas4dc/EAR)
- Energy Aware Solutions (https://www.eas4dc.com/)

