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I’ve worked on a lot of things…. 

GPUs, FPGAs, cache coherency, 
vectorisation, verification, bounds 
checking, CPU architecture…

I have worked on general-purpose 
compilers

Notably pointer analysis

adopted into GCC

(actually the work of my PhD 
graduate David Pearce)

But the benefits were incremental

Who am I and what do I do?

Meanwhile I engaged with applications 
specialists

Who know they have major 
performance optimisation 
opportunities

So I got interested in automating 
domain-specific optimisations

Which grew into deep engagements with 
projects like 

Firedrake, Devito and PyFR, that 
automate the pathway from PDE to 
high-performance code for laptops 
and 
supercomputers   

Robot vision, SLAM, robot localisation



ProjectsContexts
Applications

Technologies

Tensor contractions

Vectorisation, parametric 

polyhedral tiling

Lazy, data-driven compute-

communicate

Multicore graph worklists

Sparsity in Fourier 

transforms

Tiling for unstructured-mesh 

stencils

Runtime code generation

Generalised loop-invariant 

code motion

Functional Variational 

Inference

Search-based optimisation

Processor/accelerator 

microarchitecture, co-design

MLIR

Unsteady CFD - higher-

order flux-reconstruction

Finite-volume CFD

Real-time 3D scene 

understanding

Adaptive-mesh CFD

Ab-initio computational 

chemistry (ONETEP)

Finite-element

Finite-difference

Gaussian belief 

propagation

Contour trees, Reeb 

graphs

Uncertainty in DNNs

Near-camera processing

Quantum computing

PyOP2/OP2

Unstructured-mesh stencils

GiMMiK: small matrix 

multiply

Firedrake

Finite-element

SLAMBench:

3D vision, dense SLAM

PRAgMaTIc: Unstructured 

mesh adaptation

TINTL: Fourier interpolation 

Devito: finite difference

Hypermapper:

design optimisation

RobotWeb: distributed 

localisation

SuperEight: octree SLAM

CAIN: convolutions on 

analogue SIMD focal-plane 

processor

Formula-1, UAVs, 

buildings

Aeroengine turbo-

machinery

Domestic 

robotics, 

augmented reality

Tidal turbine 

placement

Solar energy, drug 

design

Weather and 

climate

Glaciers

Energy storage

Medical imaging

Automating 

domain-

specific 

performance 

optimisations

Exploiting 

higher-level 

language to 

get better 

performance 

than low 

level code

Remote sensing 

in robot 

agriculture
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What are we doing next ?

Gaussian Belief Propagation as 
a foundation for managing 
locality, distribution, 
asynchrony and approximation 
in spatial AI

Gaussian Splatting SLAM: 
capturing manipulable 
photorealistic scenes in real 
time

Quantum circuits as a DSL

XDSL and MLIR: common compiler 
architecture ecosystem for DSLs

Instruction labelling: 
policy/prediction hints for scalable 
microarchitecture

Tensor contractions as a compiler 
IR

On-sensor vision 
computing/accelerator 
architectures and programming 
models

Compiler technology for 
simulating quantum computers
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This talk
Compiler architecture

The importance of capturing application code at the 
highest-possible level of representation

Getting the abstraction right

To capture what the code is trying to do

To capture what we need to optimise for the 
hardware

For CPUs

For GPUs

For custom accelerators
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Turing tax

Alan Turing realised we could use digital technology to 

implement any computable function

He then proposed the idea of a “universal” computing 

device – a single device which, with the right program, can 

implement any computable function without further 

configuration

“Turing Tax”, or “Turing Tariffs”: the overhead 

(performance, cost, or energy) of universality in this sense

The performance (time/area/energy) difference between a 

special-purpose device and a general-purpose one

One of the fundamental questions of computer 

architecture is to how to reduce the Turing Tax
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What about 
compilers
? 

Is there a 
Turing Tax 
for 
compilers 
too?

https://www.zermatt.ch/en/Lifts-pistes/Panokarte-Ausflugsberge/Piste-map-Winter-panorama

Compilation is like skiing

•7
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compilers
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What about 
compilers
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Is there a 
Turing Tax 
for 
compilers 
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Compilation is like skiing

•10

What about 
compilers? 

Is there a 
Turing Tax 
for 
compilers 
too?
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https://www.zermatt.ch/en/Lifts-pistes/Panokarte-Ausflugsberge/Piste-map-Winter-panorama

Compilation is like skiing

•11

What about 
compilers? 

The price you 
pay for 
coding in a 
general-
purpose 
language

When you 
could have 
used a DSL



Example DSL #1
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Many projects build on Firedrake, for 
example:

Firedrake-adjoint: extension of 
the pyadjoint algorithmic 
differentiation framework to yield 
fully automated derivation of 
adjoint PDE solvers

Irksome: Automates Runge–Kutta 
time-stepping 

AsQ: parallel-in-time

Slate: linear algebra on finite 
element tensors, for hybridisation, 
static condensation 

PCPATCH: topological 
construction of multigrid relaxation 
methods

Defcon: deflated continuation 
method for computing bifurcation 
diagrams 

Goal-oriented mesh adaptation

Integration with PyTorch and JAX

Including tools for specific application 
domains, for example:

Thetis: unstructured grid coastal 
modelling framework

IcePack: glacier flow

Gusto: dynamical cores for weather 
prediction and climate models

Firedrake/FEniCS ecosystem
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Firedrake example: Burgers equation

From the weak form of the PDE, we derive an equation to solve, that 
determines the state at each timestep in terms of the previous timestep

Transcribe into Python: u is 𝑢𝑛+1, u_ is 𝑢𝑛 :

Set up the equation and solve for the next timestep u:

At this point, Firedrake generates code to assemble a linear system, 
runs it and calls a linear solver (we use PetSC)

This is the 

helicopter ride
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Burgers equation

(UFL is also the DSL of the 

FEniCS project)

Firedrake implements the Unified Form 

Language (UFL)

Embedded in Python

This is the 

helicopter ride

Complete runnable Python script 

sets up the equation, 

specifies discretisation

Iterates multiple timesteps

Writes velocity field out for animated 

visualisation
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Burgers equation

UFL is also the DSL of the 

FEniCS project

# set up initial conditions for u and u_

Time-stepping loop:

• Solve for the state at the next 
timestep

• Save snapshot to file for 
animation
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Generated code 

to assemble the 

resulting linear 

system matrix

Executed at each 

triangle in the 

mesh

Accesses 

degrees of 

freedom shared 

with neighbour 

triangles through 

indirection map

Gather data from 
neighbouring cells using 
adjacency graph

Compute integrals using 
polynomial approximation 
of fluid state in this cell

Sum local contributions 
into global system matrix

Compute re-used 
common sub-terms
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Firedrake: single-node AVX512 performance

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 –march=native)]

Theo peak

Intel 

LINPACK

GFLOPs 

achieved for 

residual 

assembly for 

various 

element types, 

with polynomial 

degree ranging 

from 1-6

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al

IJHPCA 2020 https://arxiv.org/abs/1903.08243

Does it generate good code?  

The big story 
here:

• Five different 
PDEs

• Six different 
choices for 
polynomial 
degree

• Automatically 
compiled 

• So we see how 
performance 
varies across 
the benchmark 
suite

https://arxiv.org/abs/1903.08243


Firedrake: compiler architecture

PyOP2: stencil DSL for unstructured-mesh

Explicit access descriptors characterise 

access footprint of kernels

UFL specifies the (weak form of the) 

partial differential equation and how it is to 

be discretised

Compiler generates PyOP2 kernels and 

access descriptors

PyOP2

Non-FE loops 

over the mesh

UFL “Two-

stage” Form 

Compiler

Unified Form 

Language

Multicore 

and 

cluster

Manycore

/GPU

Future/

other
Rathgeber, Ham, Mitchell et al, ACM TOMS 2016, 

Tianjiao Sun et al 

https://arxiv.org/pdf/1903.08243.pdf

In production In advanced 

development
Some prototyping

Loo.py loop transformations

GEM: tensor 

contractions

GEM: abstract representation supports 

efficient flop-reduction optimisations

Loo.py: vectorization etc 

Distributed MPI-parallel PyOP2 

implementation 

Loo.py representation

Sequence of 

intermediate 

representations

100% Python

Runtime code 

generation, 

code-caching

https://arxiv.org/pdf/1903.08243.pdf


22

• Estuary of the River Severn: huge tidal energy 

opportunity

• Significant causes for concern over ecological 

impact

• Should we do it?  How?  Where? How much 

energy? How much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024

https://doi.org/10.1016/j.apenergy.2009.11.024
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• Estuary of the River Severn: huge tidal energy 

opportunity

• Significant causes for concern over ecological 

impact

• Should we do it?  How?  Where? How much 

energy? How much impact?

From https://thetisproject.org/

See for example:

On the potential of linked-basin tidal 

power plants: An operational and 

coastal modelling assessment

Angeloudis et al Renewable Energy

V155, Aug 2020

Map images from 

https://doi.org/10.1016/j.apenergy.2009.11.024

https://thetisproject.org/
https://doi.org/10.1016/j.apenergy.2009.11.024
https://doi.org/10.1016/j.apenergy.2009.11.024
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We can deliver domain-specific 
optimisations

We collect and automate all the 
performance techniques that are known for 
a family of problems

If we get it right…. we get
Productivity – by generating low-level 
code from a high-level specification
Performance – by automating 
optimisations
Performance portability – with multiple 
back-ends

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg

https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg 

Power tools for performance programming

By capturing domain-specific representation….

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg
https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg
https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg
https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg


Gerard Gorman Fabio Luporini

And many many more!

Another example DSL: https://www.devitoproject.org/ 

Luporini, F., Louboutin, M., Lange, 

M., Kukreja, N., Witte, P., 

Hückelheim, J., Yount, C., Kelly, 

P.H., Herrmann, F.J. & Gorman, 

G.J. Architecture and performance 

of Devito, a system for automated 

stencil computation. ACM 

Transactions on Mathematical 

Software (TOMS), 46(1) 2020

https://www.devitoproject.org/
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Devito: applications

Devito automates the finite difference method for solving 
PDEs

Widely used for fluid dynamics, wave propagation

Devito is mostly used to solve inversion problems

Use automatic differentiation of the solver

To solve for the conditions that explain the observations

“Full Waveform Inversion” (FWI)

Seismic inversion 

Understand geological structures from reflected sound 
waves 

Ultrasound imaging of the brain

Diagnose brain injuries from ultrasound transmission
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Ultrasound imaging of the brain through the skull

Devito applications largely driven by seismic inversion

Devito DSL compiler automates 
pathway from PDE to high-
performance code

To derive forward wave propagator

And reverse adjoint wave propagator

To compute gradient

With which to correct brain model 

Cueto, C., Guasch, L., Luporini, F., Bates, O., Strong, G., Agudo, O.C., Cudeiro, J., Kelly, P., Gorman, G. and 
Tang, M.X., 2022, April. Tomographic ultrasound modelling and imaging with Stride and Devito. In Medical 
Imaging 2022: Ultrasonic Imaging and Tomography (p. PC1203805).
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Devito: example

# Define the wavefield from model setup.  

u = TimeFunc(time_order=2, space_order=2)  

# Write down the acoustic wave PDE:  

pde = model.m*u.dt2 - u.laplace + model.damp*u.dt  

# Solve by time-marching:  

stencil = Eq(u.forward, solve(pde, u.forward))  

# Define source injection and receiver: 

src_term = src.inject(field=u.forward, pr=src*dt**2/model.m)  

rec_term = rec.interpolate(expr=u.forward)  

# Generate code for the timestepping operator:

op = Operator([stencil] + src_term + rec_term, 

                       subs=model.spacing_map)  

# Run code (MPI+GPU), to yield receiver values:

op(time=time_range.num-1, dt=model.critical_dt)

Acoustic wave equation, with damping:

We inject initial sound wave at source point, and 
monitor the signal at a receiver.

We derive and generate the stencil operator 
code, then run it a specified number of timesteps

Slightly simplified from: 

https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/ 

https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
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Devito: example

# Define the wavefield from model setup.  

u = TimeFunc(time_order=2, space_order=2)  

# Write down the acoustic wave PDE:  

pde = model.m*u.dt2 - u.laplace + model.damp*u.dt  

# Solve by time-marching:  

stencil = Eq(u.forward, solve(pde, u.forward))  

# Define source injection and receiver: 

src_term = src.inject(field=u.forward, pr=src*dt**2/model.m)  

rec_term = rec.interpolate(expr=u.forward)  

# Generate code for the timestepping operator:

op = Operator([stencil] + src_term + rec_term, 

                       subs=model.spacing_map)  

# Run code (MPI+GPU), to yield receiver values:

op(time=time_range.num-1, dt=model.critical_dt)

Acoustic wave equation, with damping:

We inject initial sound wave at source point, and 
monitor the signal at a receiver.

We derive and generate the stencil operator 
code, then run it a specified number of timesteps

Code at this basic level of abstraction is in production, at 

scale, running at multiple petaflops 24/7

# No-MPI
  $ python myscript.py
  # With-MPI (2 ranks)
  $ DEVITO_MPI=basic mpirun -n 2 python myscript.py 
 # MPI + GPU ready
  # …add DEVITO_PLATFORM=nvidia DEVITO_COMPILER=nvc

Slightly simplified from: 

https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/ 

https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
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Intel® Xeon® Platinum 

8180 (Skylake, 28 

cores), ICC v18.0, 

Devito v3.1

TTI (Tilted Transverse 

Isotropy), second order 

in time.  415 timesteps 

(1000ms), single 

precision.

Devito: FLOP-reduction optimisations

Fabio Luporini et al. Architecture and Performance of 

Devito, a System for Automated Stencil Computation. 

ACM Trans. Math. Softw. 46, 1, Article 6 (April 2020), 

https://doi.org/10.1145/3374916  

Space order:

4 (circles)

8 (crosses)

12 (triangles)

16 (nablas) 

https://doi.org/10.1145/3374916
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Intel® Xeon® Platinum 

8180 (Skylake, 28 

cores), ICC v18.0, 

Devito v3.1

TTI (Tilted Transverse 

Isotropy), second order 

in time.  415 timesteps 

(1000ms), single 

precision.

Devito: FLOP-reduction optimisations

Space order:

4 (circles)

8 (crosses)

12 (triangles)

16 (nablas) 

Fabio Luporini et al. Architecture and Performance of 

Devito, a System for Automated Stencil Computation. 

ACM Trans. Math. Softw. 46, 1, Article 6 (April 2020), 

https://doi.org/10.1145/3374916  

https://doi.org/10.1145/3374916


32

Intel® Xeon® Platinum 

8180 (Skylake, 28 

cores), ICC v18.0, 

Devito v3.1

TTI (Tilted Transverse 

Isotropy), second order 

in time.  415 timesteps 

(1000ms), single 

precision.

Devito: FLOP-reduction optimisations

413s

527s

Space order:

4 (circles)

8 (crosses)

12 (triangles)

16 (nablas) 

Fabio Luporini et al. Architecture and Performance of 

Devito, a System for Automated Stencil Computation. 

ACM Trans. Math. Softw. 46, 1, Article 6 (April 2020), 

https://doi.org/10.1145/3374916  

https://doi.org/10.1145/3374916
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Intel® Xeon® Platinum 

8180 (Skylake, 28 

cores), ICC v18.0, 

Devito v3.1

TTI (Tilted Transverse 

Isotropy), second order 

in time.  415 timesteps 

(1000ms), single 

precision.

Devito: FLOP-reduction optimisations

825s

Space order:

4 (circles)

8 (crosses)

12 (triangles)

16 (nablas) 

Fabio Luporini et al. Architecture and Performance of 

Devito, a System for Automated Stencil Computation. 

ACM Trans. Math. Softw. 46, 1, Article 6 (April 2020), 

https://doi.org/10.1145/3374916  

https://doi.org/10.1145/3374916
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Space order:

4 (triangles), 

8 (circles), and 

12 (squares). 

Red markers show the 

performance of spatially blocked 

vectorized kernels

Yellow markers show spatial and 

temporal blocking using autotuned 

tile parameters.

Single-socket 8-core Intel 

Broadwell E5-2673 v4 CPUs with 

AVX2, L1 (32KB), L2 (256KB) 

private to each core, 50MB shared 

L3 (Ubuntu 18.04.4, Devito v4.2.3)

Isotropic acoustic model, second-

order in time, single-precision

Devito: tiling-in-time

George Bisbas, et al. Temporal blocking of finite-difference 

stencil operators with sparse “off-the-grid” sources. IPDPS 21 

iarXiv:2010.10248

Red

Yellow

https://arxiv.org/abs/2010.10248
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DSLs – domain-specific code 
generation tools – are 
expensive to maintain

So we have been exploring 
how to build on common 
infrastructure

What am I doing?

DSLs like Firedrake and Devito

XDSL and MLIR: common compiler architecture 
ecosystem for DSLs

Tensor contractions as a compiler IR

Three DSLs mapping into a common compiler 
architecture based on MLIR dialects for 
stencils, MPI, GPU etc, implemented in XDSL 
– a Python rendering of MLIR

Lowered to MLIR then LLVM

Three different DSLs each a separate silo

Fixing the DSL ecosystem

In this work we 
restructure three stencil DSLs to 
use common MLIR dialects and 
transformations

https://xdsl.dev/
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A shared compilation stack 

for distributed-memory 

parallelism in stencil DSLs

Bisbas et al ASPLOS 2024
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SSA-based IRs

SSA + regions concept

Mix predefined IRs

Add custom IRs

Connect with MLIR/LLVM

Benefit from Python’s productivity

Open-source/CI/CD/codecov

Active contributor community 

Join us on https://xdsl.zulipchat.com/

37

Fehr, Weber, Ulmann, Lopoukhine, Lücke, Degioanni, 

Vasiladiotis, Steuwer, and Grosser. 2025. XDSL: Sidekick 

Compilation for SSA-Based Compilers. CGO’25

https://xdsl.zulipchat.com/
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Gysi et.al, Domain-Specific Multi-Level IR Rewriting for GPU: The Open 
Earth Compiler for GPU-accelerated Climate (2021), ACM TACO
https://github.com/spcl/open-earth-compiler/

The Open Earth Compiler: the ‘stencil’ dialect

Updated, ported to xDSL

Extended to multi-node

https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/


The ‘dmp’ and ‘mpi’ dialects

39

Message-passing IR

Lowered to MPI library calls

Upstreamed to MLIR!

High-level halo exchanges

Describe communication patterns

Rectangular data subsections



Lowering from ‘stencil’ to ‘mpi’

41

Colours highlight data being operated on, shape and halo information, and communication-related information. This 

shows how we can enrich the IR with relevant information to perform efficient rewrites at every level of abstraction.



Lowering from ‘stencil’ to ‘mpi’

42

Colours highlight data being operated on, shape 

and halo information, and communication-related 

information. This shows how we can enrich the 

IR with relevant information to perform efficient 

rewrites at every level of abstraction.



Lowering from ‘stencil’ to ‘mpi’
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Colours highlight data being operated on, shape 

and halo information, and communication-related 

information. This shows how we can enrich the 

IR with relevant information to perform efficient 

rewrites at every level of abstraction.



Lowering from ‘stencil’ to ‘mpi’

44

Colours highlight data being operated on, shape 

and halo information, and communication-related 

information. This shows how we can enrich the 

IR with relevant information to perform efficient 

rewrites at every level of abstraction.



The shared compilation stack for DMP in stencil DSLs
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Unlocked optimizations

Unlocked multi-node CPU

Unlocked other backends (FPGA, CUDA)

Competitive or better 

performance with an order of 1000s 

LoC saved!

Gysi et.al, Domain-Specific Multi-Level IR Rewriting for GPU: The Open Earth Compiler for GPU-
accelerated Climate (2021), ACM TACO https://github.com/spcl/open-earth-compiler/

https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/


Performance evaluation: Devito

47

Single-node AMD EPYC 7742,

8 MPI ranks x 16 OpenMP threads,

16384^2 (2D) and 1024^3 (3D)
Heat (top) and wave (bottom), 3D-7pt, multi-

node strong scaling up to 128 nodes, total of 

16384 cores.

xDSL adds support for CUDA, outperforming 

Devito’s OSS support for OpenACC, running on 

V100-SXM2-16GB (Volta).

Gysi et.al, Domain-Specific Multi-Level IR Rewriting for GPU: The Open Earth Compiler for GPU-
accelerated Climate (2021), ACM TACO https://github.com/spcl/open-earth-compiler/

https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/


Performance evaluation: PSyclone
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Single-node AMD EPYC 7742 

throughput, PSyclone target code 

compiled with Cray and GNU 

compilers against xDSL-PSyclone.

xDSL-PSyclone code matches Cray 

code and significantly outperforms 

GNU code for PW advection.

Piacsek and Williams (PW) advection and NEMO tracer advection (traadv) kernels PW advection kernel

Single-node Cirrus NVIDIA Tesla 

V100-SXM2-16GB throughput, 

PSyclone NVIDIA GPU code against 

xDSL-PSyclone GPU code.

xDSL-PSyclone significantly 

outperforms PSyclone NVIDIA for 

PW advection due to data allocation 

approach (explicit device memory 

allocation for xDSL-PSyclone).

Multi-node strong scaling of 

problem size [256,256,128], 

scaling up to 128 nodes, total 

of 16384 cores. 

Suffers scaling effects at 8 

nodes due to small global 

problem size.

Multi-node strong scaling of 

problem size [512,512,128], 

scaling up to 128 nodes, total of 

16384 cores. 

2D decomposition strategy limits 

strong scaling. 

traadv kernel

Gysi et.al, Domain-Specific Multi-Level IR Rewriting for GPU: The Open Earth Compiler for GPU-
accelerated Climate (2021), ACM TACO https://github.com/spcl/open-earth-compiler/

https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
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Productivity – by generating low-level code from a high-level 
specification
Performance – by automating optimisations
Performance portability – with multiple back-ends

Conclusions

You can 
actually 
have it all, 
today

Domain-specific compiler design is all about designing 
representations that make hard problems easy

Tensor 
contractions
Access/execute

The grand project is to build common compiler 
infrastructure that spans different domains

With MLIR
Via XDSL

DSL compilers exploit data structures Meshes
Metadata
Taming pointers
Composition
Adaptivity

DSL compilers exploit computation
Redundancy
Locality
Parallelism
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Thank you to:
EPSRC

EP/Y020499/1 On-Sensor Computer Vision
EP/W026066/1 SysGenX: Composable software generation for system-level 
simulation at Exascale
EP/W007789/1 Efficient Cross-Domain DSL Development for Exascale
EP/V001493/1 Gen X: ExCALIBUR working group on Exascale continuum 
mechanics through code generation
EP/R029423/1 PRISM: Platform for Research In Simulation Methods
EP/P010040/1 Application Customisation: Enhancing Design Quality and 
Developer Productivity
EP/K008730/1 PAMELA: a Panoramic Approach to the Many-CorE 
LAndscape - from end-user to end-device: a holistic game-changing 
approach
EP/I00677X/1 Multi-layered abstractions for PDEs
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