
1

Compiler architecture: the discipline and

abstractions

 to exploit application domains

 to target accelerators

 to feed microarchitecture
Paul Kelly

Group Leader, Software Performance Optimisation, Department of Computing

Imperial College London
Joint work with Luke Panayi, Martin Berger, Rohan Gandhi, Jim Whittaker, Vassilios Chouliaras, Andrei Sburlan, Avaneesh Deleep,

George Bisbas, Edward Stow, Jacky Wong, David Ham, Fabio Luporini, Lawrence Mitchell, Graham Markall, Mike Giles, Gerard Gorman, Florian Rathgeber, Luigi

Nardi, Carlos Cueto, Lluis Guasch, Fabio Luporini, Oscar Bates, George Strong, Oscar Calderon Agudo, Javier Cudeiro, Gerard Gorman. and Meng-Xing Tang,

Hidenobu Matsuki, Riku Murai, Andrew J. Davison, David Pearce, Piotr Dudek, Tobias Grosser and many more

2

I’ve worked on a lot of things….

GPUs, FPGAs, cache coherency,
vectorisation, verification, bounds
checking, CPU architecture…

I have worked on general-purpose
compilers

Notably pointer analysis

adopted into GCC

(actually the work of my PhD
graduate David Pearce)

But the benefits were incremental

Who am I and what do I do?

Meanwhile I engaged with applications
specialists

Who know they have major
performance optimisation
opportunities

So I got interested in automating
domain-specific optimisations

Which grew into deep engagements with
projects like

Firedrake, Devito and PyFR, that
automate the pathway from PDE to
high-performance code for laptops
and
supercomputers

Robot vision, SLAM, robot localisation

ProjectsContexts
Applications

Technologies

Tensor contractions

Vectorisation, parametric

polyhedral tiling

Lazy, data-driven compute-

communicate

Multicore graph worklists

Sparsity in Fourier

transforms

Tiling for unstructured-mesh

stencils

Runtime code generation

Generalised loop-invariant

code motion

Functional Variational

Inference

Search-based optimisation

Processor/accelerator

microarchitecture, co-design

MLIR

Unsteady CFD - higher-

order flux-reconstruction

Finite-volume CFD

Real-time 3D scene

understanding

Adaptive-mesh CFD

Ab-initio computational

chemistry (ONETEP)

Finite-element

Finite-difference

Gaussian belief

propagation

Contour trees, Reeb

graphs

Uncertainty in DNNs

Near-camera processing

Quantum computing

PyOP2/OP2

Unstructured-mesh stencils

GiMMiK: small matrix

multiply

Firedrake

Finite-element

SLAMBench:

3D vision, dense SLAM

PRAgMaTIc: Unstructured

mesh adaptation

TINTL: Fourier interpolation

Devito: finite difference

Hypermapper:

design optimisation

RobotWeb: distributed

localisation

SuperEight: octree SLAM

CAIN: convolutions on

analogue SIMD focal-plane

processor

Formula-1, UAVs,

buildings

Aeroengine turbo-

machinery

Domestic

robotics,

augmented reality

Tidal turbine

placement

Solar energy, drug

design

Weather and

climate

Glaciers

Energy storage

Medical imaging

Automating

domain-

specific

performance

optimisations

Exploiting

higher-level

language to

get better

performance

than low

level code

Remote sensing

in robot

agriculture

4

What are we doing next ?

Gaussian Belief Propagation as
a foundation for managing
locality, distribution,
asynchrony and approximation
in spatial AI

Gaussian Splatting SLAM:
capturing manipulable
photorealistic scenes in real
time

Quantum circuits as a DSL

XDSL and MLIR: common compiler
architecture ecosystem for DSLs

Instruction labelling:
policy/prediction hints for scalable
microarchitecture

Tensor contractions as a compiler
IR

On-sensor vision
computing/accelerator
architectures and programming
models

Compiler technology for
simulating quantum computers

5

This talk
Compiler architecture

The importance of capturing application code at the
highest-possible level of representation

Getting the abstraction right

To capture what the code is trying to do

To capture what we need to optimise for the
hardware

For CPUs

For GPUs

For custom accelerators

6

Turing tax

Alan Turing realised we could use digital technology to

implement any computable function

He then proposed the idea of a “universal” computing

device – a single device which, with the right program, can

implement any computable function without further

configuration

“Turing Tax”, or “Turing Tariffs”: the overhead

(performance, cost, or energy) of universality in this sense

The performance (time/area/energy) difference between a

special-purpose device and a general-purpose one

One of the fundamental questions of computer

architecture is to how to reduce the Turing Tax

7

7

What about
compilers
?

Is there a
Turing Tax
for
compilers
too?

https://www.zermatt.ch/en/Lifts-pistes/Panokarte-Ausflugsberge/Piste-map-Winter-panorama

Compilation is like skiing

•7

8

8

https://www.zermatt.ch/en/Lifts-pistes/Panokarte-Ausflugsberge/Piste-map-Winter-panorama

Compilation is like skiing

•8

What about
compilers
?

Is there a
Turing Tax
for
compilers
too?

9

9

https://www.zermatt.ch/en/Lifts-pistes/Panokarte-Ausflugsberge/Piste-map-Winter-panorama

Compilation is like skiing

•9

What about
compilers
?

Is there a
Turing Tax
for
compilers
too?

10

10

https://www.zermatt.ch/en/Lifts-pistes/Panokarte-Ausflugsberge/Piste-map-Winter-panorama

Compilation is like skiing

•10

What about
compilers?

Is there a
Turing Tax
for
compilers
too?

11

11

https://www.zermatt.ch/en/Lifts-pistes/Panokarte-Ausflugsberge/Piste-map-Winter-panorama

Compilation is like skiing

•11

What about
compilers?

The price you
pay for
coding in a
general-
purpose
language

When you
could have
used a DSL

Example DSL #1

13

Many projects build on Firedrake, for
example:

Firedrake-adjoint: extension of
the pyadjoint algorithmic
differentiation framework to yield
fully automated derivation of
adjoint PDE solvers

Irksome: Automates Runge–Kutta
time-stepping

AsQ: parallel-in-time

Slate: linear algebra on finite
element tensors, for hybridisation,
static condensation

PCPATCH: topological
construction of multigrid relaxation
methods

Defcon: deflated continuation
method for computing bifurcation
diagrams

Goal-oriented mesh adaptation

Integration with PyTorch and JAX

Including tools for specific application
domains, for example:

Thetis: unstructured grid coastal
modelling framework

IcePack: glacier flow

Gusto: dynamical cores for weather
prediction and climate models

Firedrake/FEniCS ecosystem

14

Firedrake example: Burgers equation

From the weak form of the PDE, we derive an equation to solve, that
determines the state at each timestep in terms of the previous timestep

Transcribe into Python: u is 𝑢𝑛+1, u_ is 𝑢𝑛 :

Set up the equation and solve for the next timestep u:

At this point, Firedrake generates code to assemble a linear system,
runs it and calls a linear solver (we use PetSC)

This is the

helicopter ride

15

Burgers equation

(UFL is also the DSL of the

FEniCS project)

Firedrake implements the Unified Form

Language (UFL)

Embedded in Python

This is the

helicopter ride

Complete runnable Python script

sets up the equation,

specifies discretisation

Iterates multiple timesteps

Writes velocity field out for animated

visualisation

16

Burgers equation

UFL is also the DSL of the

FEniCS project

set up initial conditions for u and u_

Time-stepping loop:

• Solve for the state at the next
timestep

• Save snapshot to file for
animation

17

Generated code

to assemble the

resulting linear

system matrix

Executed at each

triangle in the

mesh

Accesses

degrees of

freedom shared

with neighbour

triangles through

indirection map

Gather data from
neighbouring cells using
adjacency graph

Compute integrals using
polynomial approximation
of fluid state in this cell

Sum local contributions
into global system matrix

Compute re-used
common sub-terms

19

Firedrake: single-node AVX512 performance

[Skylake Xeon Gold 6130 (on all 16 cores, 2.1GHz, turboboost off, Stream: 36.6GB/s, GCC7.3 –march=native)]

Theo peak

Intel

LINPACK

GFLOPs

achieved for

residual

assembly for

various

element types,

with polynomial

degree ranging

from 1-6

A study of vectorization for matrix-free finite element methods, Tianjiao Sun et al

IJHPCA 2020 https://arxiv.org/abs/1903.08243

Does it generate good code?

The big story
here:

• Five different
PDEs

• Six different
choices for
polynomial
degree

• Automatically
compiled

• So we see how
performance
varies across
the benchmark
suite

https://arxiv.org/abs/1903.08243

Firedrake: compiler architecture

PyOP2: stencil DSL for unstructured-mesh

Explicit access descriptors characterise

access footprint of kernels

UFL specifies the (weak form of the)

partial differential equation and how it is to

be discretised

Compiler generates PyOP2 kernels and

access descriptors

PyOP2

Non-FE loops

over the mesh

UFL “Two-

stage” Form

Compiler

Unified Form

Language

Multicore

and

cluster

Manycore

/GPU

Future/

other
Rathgeber, Ham, Mitchell et al, ACM TOMS 2016,

Tianjiao Sun et al

https://arxiv.org/pdf/1903.08243.pdf

In production In advanced

development
Some prototyping

Loo.py loop transformations

GEM: tensor

contractions

GEM: abstract representation supports

efficient flop-reduction optimisations

Loo.py: vectorization etc

Distributed MPI-parallel PyOP2

implementation

Loo.py representation

Sequence of

intermediate

representations

100% Python

Runtime code

generation,

code-caching

https://arxiv.org/pdf/1903.08243.pdf

22

• Estuary of the River Severn: huge tidal energy

opportunity

• Significant causes for concern over ecological

impact

• Should we do it? How? Where? How much

energy? How much impact?

https://doi.org/10.1016/j.apenergy.2009.11.024

https://doi.org/10.1016/j.apenergy.2009.11.024

23

• Estuary of the River Severn: huge tidal energy

opportunity

• Significant causes for concern over ecological

impact

• Should we do it? How? Where? How much

energy? How much impact?

From https://thetisproject.org/

See for example:

On the potential of linked-basin tidal

power plants: An operational and

coastal modelling assessment

Angeloudis et al Renewable Energy

V155, Aug 2020

Map images from

https://doi.org/10.1016/j.apenergy.2009.11.024

https://thetisproject.org/
https://doi.org/10.1016/j.apenergy.2009.11.024
https://doi.org/10.1016/j.apenergy.2009.11.024

24

We can deliver domain-specific
optimisations

We collect and automate all the
performance techniques that are known for
a family of problems

If we get it right…. we get
Productivity – by generating low-level
code from a high-level specification
Performance – by automating
optimisations
Performance portability – with multiple
back-ends

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg

https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg

Power tools for performance programming

By capturing domain-specific representation….

https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg
https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg
https://commons.wikimedia.org/wiki/File:Victorinox_Swiss_Army_Knife_-_Climber_(15554551505).jpg
https://commons.wikimedia.org/wiki/File:Makita_DJV181.jpg

Gerard Gorman Fabio Luporini

And many many more!

Another example DSL: https://www.devitoproject.org/

Luporini, F., Louboutin, M., Lange,

M., Kukreja, N., Witte, P.,

Hückelheim, J., Yount, C., Kelly,

P.H., Herrmann, F.J. & Gorman,

G.J. Architecture and performance

of Devito, a system for automated

stencil computation. ACM

Transactions on Mathematical

Software (TOMS), 46(1) 2020

https://www.devitoproject.org/

26

Devito: applications

Devito automates the finite difference method for solving
PDEs

Widely used for fluid dynamics, wave propagation

Devito is mostly used to solve inversion problems

Use automatic differentiation of the solver

To solve for the conditions that explain the observations

“Full Waveform Inversion” (FWI)

Seismic inversion

Understand geological structures from reflected sound
waves

Ultrasound imaging of the brain

Diagnose brain injuries from ultrasound transmission

27

Ultrasound imaging of the brain through the skull

Devito applications largely driven by seismic inversion

Devito DSL compiler automates
pathway from PDE to high-
performance code

To derive forward wave propagator

And reverse adjoint wave propagator

To compute gradient

With which to correct brain model

Cueto, C., Guasch, L., Luporini, F., Bates, O., Strong, G., Agudo, O.C., Cudeiro, J., Kelly, P., Gorman, G. and
Tang, M.X., 2022, April. Tomographic ultrasound modelling and imaging with Stride and Devito. In Medical
Imaging 2022: Ultrasonic Imaging and Tomography (p. PC1203805).

28

Devito: example

Define the wavefield from model setup.

u = TimeFunc(time_order=2, space_order=2)

Write down the acoustic wave PDE:

pde = model.m*u.dt2 - u.laplace + model.damp*u.dt

Solve by time-marching:

stencil = Eq(u.forward, solve(pde, u.forward))

Define source injection and receiver:

src_term = src.inject(field=u.forward, pr=src*dt**2/model.m)

rec_term = rec.interpolate(expr=u.forward)

Generate code for the timestepping operator:

op = Operator([stencil] + src_term + rec_term,

 subs=model.spacing_map)

Run code (MPI+GPU), to yield receiver values:

op(time=time_range.num-1, dt=model.critical_dt)

Acoustic wave equation, with damping:

We inject initial sound wave at source point, and
monitor the signal at a receiver.

We derive and generate the stencil operator
code, then run it a specified number of timesteps

Slightly simplified from:

https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/

https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/

29

Devito: example

Define the wavefield from model setup.

u = TimeFunc(time_order=2, space_order=2)

Write down the acoustic wave PDE:

pde = model.m*u.dt2 - u.laplace + model.damp*u.dt

Solve by time-marching:

stencil = Eq(u.forward, solve(pde, u.forward))

Define source injection and receiver:

src_term = src.inject(field=u.forward, pr=src*dt**2/model.m)

rec_term = rec.interpolate(expr=u.forward)

Generate code for the timestepping operator:

op = Operator([stencil] + src_term + rec_term,

 subs=model.spacing_map)

Run code (MPI+GPU), to yield receiver values:

op(time=time_range.num-1, dt=model.critical_dt)

Acoustic wave equation, with damping:

We inject initial sound wave at source point, and
monitor the signal at a receiver.

We derive and generate the stencil operator
code, then run it a specified number of timesteps

Code at this basic level of abstraction is in production, at

scale, running at multiple petaflops 24/7

No-MPI
 $ python myscript.py
 # With-MPI (2 ranks)
 $ DEVITO_MPI=basic mpirun -n 2 python myscript.py
 # MPI + GPU ready
 # …add DEVITO_PLATFORM=nvidia DEVITO_COMPILER=nvc

Slightly simplified from:

https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/

https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/
https://slimgroup.github.io/Devito-Examples/tutorials/01_modelling/

30

Intel® Xeon® Platinum

8180 (Skylake, 28

cores), ICC v18.0,

Devito v3.1

TTI (Tilted Transverse

Isotropy), second order

in time. 415 timesteps

(1000ms), single

precision.

Devito: FLOP-reduction optimisations

Fabio Luporini et al. Architecture and Performance of

Devito, a System for Automated Stencil Computation.

ACM Trans. Math. Softw. 46, 1, Article 6 (April 2020),

https://doi.org/10.1145/3374916

Space order:

4 (circles)

8 (crosses)

12 (triangles)

16 (nablas)

https://doi.org/10.1145/3374916

31

Intel® Xeon® Platinum

8180 (Skylake, 28

cores), ICC v18.0,

Devito v3.1

TTI (Tilted Transverse

Isotropy), second order

in time. 415 timesteps

(1000ms), single

precision.

Devito: FLOP-reduction optimisations

Space order:

4 (circles)

8 (crosses)

12 (triangles)

16 (nablas)

Fabio Luporini et al. Architecture and Performance of

Devito, a System for Automated Stencil Computation.

ACM Trans. Math. Softw. 46, 1, Article 6 (April 2020),

https://doi.org/10.1145/3374916

https://doi.org/10.1145/3374916

32

Intel® Xeon® Platinum

8180 (Skylake, 28

cores), ICC v18.0,

Devito v3.1

TTI (Tilted Transverse

Isotropy), second order

in time. 415 timesteps

(1000ms), single

precision.

Devito: FLOP-reduction optimisations

413s

527s

Space order:

4 (circles)

8 (crosses)

12 (triangles)

16 (nablas)

Fabio Luporini et al. Architecture and Performance of

Devito, a System for Automated Stencil Computation.

ACM Trans. Math. Softw. 46, 1, Article 6 (April 2020),

https://doi.org/10.1145/3374916

https://doi.org/10.1145/3374916

33

Intel® Xeon® Platinum

8180 (Skylake, 28

cores), ICC v18.0,

Devito v3.1

TTI (Tilted Transverse

Isotropy), second order

in time. 415 timesteps

(1000ms), single

precision.

Devito: FLOP-reduction optimisations

825s

Space order:

4 (circles)

8 (crosses)

12 (triangles)

16 (nablas)

Fabio Luporini et al. Architecture and Performance of

Devito, a System for Automated Stencil Computation.

ACM Trans. Math. Softw. 46, 1, Article 6 (April 2020),

https://doi.org/10.1145/3374916

https://doi.org/10.1145/3374916

35

Space order:

4 (triangles),

8 (circles), and

12 (squares).

Red markers show the

performance of spatially blocked

vectorized kernels

Yellow markers show spatial and

temporal blocking using autotuned

tile parameters.

Single-socket 8-core Intel

Broadwell E5-2673 v4 CPUs with

AVX2, L1 (32KB), L2 (256KB)

private to each core, 50MB shared

L3 (Ubuntu 18.04.4, Devito v4.2.3)

Isotropic acoustic model, second-

order in time, single-precision

Devito: tiling-in-time

George Bisbas, et al. Temporal blocking of finite-difference

stencil operators with sparse “off-the-grid” sources. IPDPS 21

iarXiv:2010.10248

Red

Yellow

https://arxiv.org/abs/2010.10248

36

DSLs – domain-specific code
generation tools – are
expensive to maintain

So we have been exploring
how to build on common
infrastructure

What am I doing?

DSLs like Firedrake and Devito

XDSL and MLIR: common compiler architecture
ecosystem for DSLs

Tensor contractions as a compiler IR

Three DSLs mapping into a common compiler
architecture based on MLIR dialects for
stencils, MPI, GPU etc, implemented in XDSL
– a Python rendering of MLIR

Lowered to MLIR then LLVM

Three different DSLs each a separate silo

Fixing the DSL ecosystem

In this work we
restructure three stencil DSLs to
use common MLIR dialects and
transformations

https://xdsl.dev/

G
e

o
rg

e
 B

is
b

a
s
 e

t
a

l,
 A

 s
h

a
re

d
 c

o
m

p
ila

ti
o

n
 s

ta
c
k
 f
o

r
d

is
tr

ib
u

te
d

-m
e

m
o
ry

p
a

ra
lle

lis
m

 i
n

 s
te

n
c
il

D
S

L
s
.
A

S
P

L
O

S
 ‘
2

4

A shared compilation stack

for distributed-memory

parallelism in stencil DSLs

Bisbas et al ASPLOS 2024

37

SSA-based IRs

SSA + regions concept

Mix predefined IRs

Add custom IRs

Connect with MLIR/LLVM

Benefit from Python’s productivity

Open-source/CI/CD/codecov

Active contributor community

Join us on https://xdsl.zulipchat.com/

37

Fehr, Weber, Ulmann, Lopoukhine, Lücke, Degioanni,

Vasiladiotis, Steuwer, and Grosser. 2025. XDSL: Sidekick

Compilation for SSA-Based Compilers. CGO’25

https://xdsl.zulipchat.com/

38

Gysi et.al, Domain-Specific Multi-Level IR Rewriting for GPU: The Open
Earth Compiler for GPU-accelerated Climate (2021), ACM TACO
https://github.com/spcl/open-earth-compiler/

The Open Earth Compiler: the ‘stencil’ dialect

Updated, ported to xDSL

Extended to multi-node

https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/

The ‘dmp’ and ‘mpi’ dialects

39

Message-passing IR

Lowered to MPI library calls

Upstreamed to MLIR!

High-level halo exchanges

Describe communication patterns

Rectangular data subsections

Lowering from ‘stencil’ to ‘mpi’

41

Colours highlight data being operated on, shape and halo information, and communication-related information. This

shows how we can enrich the IR with relevant information to perform efficient rewrites at every level of abstraction.

Lowering from ‘stencil’ to ‘mpi’

42

Colours highlight data being operated on, shape

and halo information, and communication-related

information. This shows how we can enrich the

IR with relevant information to perform efficient

rewrites at every level of abstraction.

Lowering from ‘stencil’ to ‘mpi’

43

Colours highlight data being operated on, shape

and halo information, and communication-related

information. This shows how we can enrich the

IR with relevant information to perform efficient

rewrites at every level of abstraction.

Lowering from ‘stencil’ to ‘mpi’

44

Colours highlight data being operated on, shape

and halo information, and communication-related

information. This shows how we can enrich the

IR with relevant information to perform efficient

rewrites at every level of abstraction.

The shared compilation stack for DMP in stencil DSLs

46

Unlocked optimizations

Unlocked multi-node CPU

Unlocked other backends (FPGA, CUDA)

Competitive or better

performance with an order of 1000s

LoC saved!

Gysi et.al, Domain-Specific Multi-Level IR Rewriting for GPU: The Open Earth Compiler for GPU-
accelerated Climate (2021), ACM TACO https://github.com/spcl/open-earth-compiler/

https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/

Performance evaluation: Devito

47

Single-node AMD EPYC 7742,

8 MPI ranks x 16 OpenMP threads,

16384^2 (2D) and 1024^3 (3D)
Heat (top) and wave (bottom), 3D-7pt, multi-

node strong scaling up to 128 nodes, total of

16384 cores.

xDSL adds support for CUDA, outperforming

Devito’s OSS support for OpenACC, running on

V100-SXM2-16GB (Volta).

Gysi et.al, Domain-Specific Multi-Level IR Rewriting for GPU: The Open Earth Compiler for GPU-
accelerated Climate (2021), ACM TACO https://github.com/spcl/open-earth-compiler/

https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/

Performance evaluation: PSyclone

48

Single-node AMD EPYC 7742

throughput, PSyclone target code

compiled with Cray and GNU

compilers against xDSL-PSyclone.

xDSL-PSyclone code matches Cray

code and significantly outperforms

GNU code for PW advection.

Piacsek and Williams (PW) advection and NEMO tracer advection (traadv) kernels PW advection kernel

Single-node Cirrus NVIDIA Tesla

V100-SXM2-16GB throughput,

PSyclone NVIDIA GPU code against

xDSL-PSyclone GPU code.

xDSL-PSyclone significantly

outperforms PSyclone NVIDIA for

PW advection due to data allocation

approach (explicit device memory

allocation for xDSL-PSyclone).

Multi-node strong scaling of

problem size [256,256,128],

scaling up to 128 nodes, total

of 16384 cores.

Suffers scaling effects at 8

nodes due to small global

problem size.

Multi-node strong scaling of

problem size [512,512,128],

scaling up to 128 nodes, total of

16384 cores.

2D decomposition strategy limits

strong scaling.

traadv kernel

Gysi et.al, Domain-Specific Multi-Level IR Rewriting for GPU: The Open Earth Compiler for GPU-
accelerated Climate (2021), ACM TACO https://github.com/spcl/open-earth-compiler/

https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/
https://github.com/spcl/open-earth-compiler/

50

Productivity – by generating low-level code from a high-level
specification
Performance – by automating optimisations
Performance portability – with multiple back-ends

Conclusions

You can
actually
have it all,
today

Domain-specific compiler design is all about designing
representations that make hard problems easy

Tensor
contractions
Access/execute

The grand project is to build common compiler
infrastructure that spans different domains

With MLIR
Via XDSL

DSL compilers exploit data structures Meshes
Metadata
Taming pointers
Composition
Adaptivity

DSL compilers exploit computation
Redundancy
Locality
Parallelism

51

Thank you to:
EPSRC

EP/Y020499/1 On-Sensor Computer Vision
EP/W026066/1 SysGenX: Composable software generation for system-level
simulation at Exascale
EP/W007789/1 Efficient Cross-Domain DSL Development for Exascale
EP/V001493/1 Gen X: ExCALIBUR working group on Exascale continuum
mechanics through code generation
EP/R029423/1 PRISM: Platform for Research In Simulation Methods
EP/P010040/1 Application Customisation: Enhancing Design Quality and
Developer Productivity
EP/K008730/1 PAMELA: a Panoramic Approach to the Many-CorE
LAndscape - from end-user to end-device: a holistic game-changing
approach
EP/I00677X/1 Multi-layered abstractions for PDEs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Turing tax
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37: ✔ SSA-based IRs ✔ SSA + regions concept ✔ Mix predefined IRs ✔ Add custom IRs ✔ Connect with MLIR/LLVM ✔ Benefit from Python’s productivity ✔ Open-source/CI/CD/codecov ✔ Active contributor community ✔ Join us on https://xdsl.zulipchat.com
	Slide 38: The Open Earth Compiler: the ‘stencil’ dialect
	Slide 39:
	Slide 41: Lowering from ‘stencil’ to ‘mpi’
	Slide 42: Lowering from ‘stencil’ to ‘mpi’
	Slide 43: Lowering from ‘stencil’ to ‘mpi’
	Slide 44: Lowering from ‘stencil’ to ‘mpi’
	Slide 46: The shared compilation stack for DMP in stencil DSLs
	Slide 47: Performance evaluation: Devito
	Slide 48: Performance evaluation: PSyclone
	Slide 50
	Slide 51

