Exploring advanced visualization of MPI
parallel programs

A Framework for High-Performance Computing Insight

Jean-Yves Verhaeghe
Supervisors: Prof. Gerhard Wellein and Dr. Georg Hager
Department of Computer Science
Friedrich-Alexander-Universitat Erlangen-Niirnberg

30.06.2025

Contents

Abstract
1 Background
1.1 Existing Trace Visualization Tools
1.2 Motivation and Visualization Challenges
1.3 Design Objectives and Graphic Framework Choice
2 Workflow Architecture
2.1 Trace Generation
2.2 Trace Extraction
2.2.1 The OTF2 format
2.2.2 Extraction Script Usage
2.3 Blender Scriptingo
2.4 Video Generation
3 Implementation
3.1 Used Code e e
3.2 The Jacobi method
3.3 Idle Waves e
4 Testbed
4.1 Hardware Setup
4.2 Software Environment
4.3 Test Scenarios
4.4 Fvizl Nodes e
4.5 Personal Laptop
5 3D Visualization Implementations
5.1 Perspective vs Orthographic Projection
5.2 Different Geometries for Different Domains
5.2.1 Line
5.2.2 Circle
5.2.3 Grid
5.2.4 Tube
5.2.5 Torus
5.2.6 Sphere
5.2.7 Cube
5.3 Display choices
5.3.1 Sparsity

w

CUOT

©

Ne}

11
12

13
13
13
14

16
16
17
17
17
17

Exploring advanced visualization of MPI parallel programs 2

5.3.2 Camera movements 26

5.3.3 Displaying MPI and Computation Phases 26

5.4 Practical additionso 30
5.4.1 Ignoring Uninteresting Trace Events 30

5.4.2 Reproducing the Vampir Visualization in Blender 31

5.4.3 Communication Arrows 32

5.4.4 Showing NUMA domains and displaying the Pinning 32

54.5 Clock 32

5.4.6 Identifying the Ranks 33

6 Evaluation 34
6.1 Effectiveness 34
6.2 Usability 35
6.3 Scalability 36
6.3.1 Trace Extraction Script 0L 36

6.3.2 Blender’s Limitations, 36

7 Future Work and Possible Directions 38
8 Conclusion 39
A Appendix: Used Codes 43
A.1 Batch Job Seript 43
A2 Makefile 46
A.3 Optional Score-P Filtering File 47
A4 Triaxis-3Djacobi - Main 47
A5 Triaxis-3Djacobi - ProcInfo 56

A.6 Triaxis-3Djacobi - Solver 56

Abstract

The performance analysis of parallel programs, particularly those using the Message
Passing Interface (MPI), typically relies on trace data that is challenging to interpret in
textual or 2D visualizations.

This thesis proposes a novel approach that leverages the 3D modeling and animation of
Blender to visualize MPI trace data in a three-dimensional environment within a video.
By mapping each process rank, and communication events onto 3D figures, this project
enables intuitive exploration of program behavior, bottlenecks, and communication pat-
terns.

The framework developed offers automated translation of trace data into Blender scenes.
This thesis discusses the design, implementation, and evaluation of this visualization
pipeline and presents use cases that highlight its potential to enhance understanding of
MPI-based parallel program performance.

To this end, it uses a real-world scientific application, the Jacobi algorithm, run on
our Fritz HPC cluster, and generates idle waves to create a typical use case where this
tool could bring an interesting added value. This base setup is investigated through our
innovative visualization, which brings both better and faster understandability, shows
subtle run details hard to grasp from usual tools, and adapts to higher-dimensional and
other complex domains, eventually giving us valuable added insight into the fine details
of each run.

Background

1.1 Existing Trace Visualization Tools

Trace visualization tools are essential for understanding and analyzing the performance
of parallel and distributed applications. These tools allow developers and researchers to
examine trace data generated by performance profiling tools, providing valuable insights
into how programs execute across multiple processors or nodes. By visualizing events like
function calls, communication patterns, and resource utilization, trace visualization tools
help pinpoint inefficiencies, bottlenecks, and areas for optimization in complex parallel
systems.

One of the leading tools in this domain, Vampir, is a powerful visualization tool designed
for high-performance computing (HPC) applications. It takes trace data generated by
profiling tools like Score-P and presents it into interactive, easy-to-interpret visualiza-
tions. In particular, the timeline view feature displays a list of all ranks, color-coding
events depending on their state of execution or communication along the time, help-
ing users identify performance issues such as load imbalances, excessive communication
overhead, and inefficient execution patterns.

Trace View - /lustre/ihpc/ihpcl26h/TRACES/ Codes/3D-Jacobi/scorep. traces/traces,otf2* - Vampir:

File Edit Chart Filter Window Tools Help

= i 93]
= mME QOTHth B aEE | 1aas
0s 10s 205 30s 40s 505 60s 705 80s 90s 100s 110 1205 130 | Accumulated Exclusive Time per Function
Master thread0 2005 150s 1005 50s 0s
Master thread:1 pxra:elst:\ve]rﬁ
Master thread:2 Lo
Master thread:3 =
jaster threat 13,577 s IR MPI_Finalize
12.236s MPI_Reduce
11814 s initarrays_
4.012 s || MPL_Init_thread
0.979 s} copysendbuf_
0.724 s} copyrecvbuf_
66.286 ms| setarray_
24.216 ms| Others (11)
=| i Traceinfo A x 4
Property value |~
File Nustrejit
Creator Score-p.
Master thread:0 yersion 203
oo . ® ° ® . N . Timer Resolution 417.646
L P, 0" COunts
2 Processes 4
L | L_______N L.\ L __.__N L.\ ..\ Process Groups ﬂ
a | Process Group Paradigms 2
Source Code Files 1
Source Code Locations 8
Functions 242
Function Groups 1
Communicators 0 -
v
Function Leqend
I Application
[vl
M MPI Collective Communication
[MPI Management
[MPI One-sided Communication
B MPI Point-to-point Communication
[MPI Request Handling
B MPI synchronization
B veH/0
[Monitor
EE 2 ‘ 3 ‘ 4 ‘@mpdzsn@fmz: M Hﬂmpclzsn@mn: Nustre/ipc/inpc126h/ TRACES/Codes/3D... H |/ Trace View - /lustre/ihpc/inpc126h/TRACES/Codes/3D-Jac.. [NI I &3 17:25:28

Figure 1.1: Vampir display

Exploring advanced visualization of MPI parallel programs)

1.2 Motivation and Visualization Challenges

Current 2D tools provide timelines and message flow diagrams but often become unread-
able as the number of processes increases. While Vampir is a powerful and widely used
tool for visualizing MPI trace data, it becomes increasingly difficult to interpret trace
information effectively when the data spans more than one dimension. Vampir primarily
presents information using 2D timelines—typically mapping time on the horizontal axis
and process ranks or threads on the vertical axis.

Another problem is the display of a significant amount of ranks, typically over 100, which
is easily attained and can take orders of magnitude more. Also, simultaneous communi-
cations between many ranks can create dense, intersecting messages that obscure timing
relationships and communication patterns. As a result, users may struggle to extract
meaningful insights from large or complex datasets, particularly in massively parallel ap-
plications where multidimensional behavior is the norm. This limitation motivates the
exploration of alternative visualization approaches, such as 3D representations, to better
capture and present the full richness of the trace data. An interesting previous attempt
to display computations in 3D is available in the references[!3]. For those cases involving

“Trace View - /Home/woody/ihpe/inpcl26h/yizhpe/trace-converter/ OTF2-traces/realriins/biaxis-2Djacobi/nbasks1152- 1874408/ Scoreptraces/ traces, ot 2* = Vampir:

Ele Edt Chart Fiter Window Tools Help

1505 1525 1sas

Master thread:0
Master

;
Master threa
Master threa
Master fhrea

m; ¥
Master threa
Master thre:
Master threa

Master threa
Master thre:

Master threa
Master threa
Master threa
Master threa
Master threa
Master threa

;
Master thres
Master threa
Master threa
Master threa
Master threa
Master threa
Vaster threa

ERRENBIFRNI!

2
2
2
2
2
5
3
3
3
3
(a
4
o
4
4
5
5
5
5
5
0
62
64
66
7
7
7.
7
7
8
&
&
8
8t
5
2
7]
%
3
1

iaster thread: 114
Master thread 116
Master thread:118
Master thread:120
Master thread 122

laster thread 124
Master thread 126

laster thread:128
Master thread 130

iaster thread 132
Master thread: 134

‘
@:H?-‘\ i@} 2 | 3 ‘ 4 ‘ Bl inpc1zsh@tvia: ~ ‘,@' (Unsaved) - Blender 43.2 “@B\ennev Render Sl inpc1zsh@fvia: ~ i]—i‘éw-wrmmmﬂnm_ MEEEN 44826

Figure 1.2: Vampir display on a more than 100 ranks with 2D dimensionality

such high-dimensional communication patterns, and in order to understand them, this
thesis proposes a novel approach using intuitive 3D representations of such data and
outputting it to a video, facilitating deeper insights.

1.3 Design Objectives and Graphic Framework Choice
The necessary features of our desired tool are to:
e Translate MPI trace data into a 3D spatial representation.

e Display each rank in a fitting way with regard to the source underlying domain and
the communication patterns it involves.

Exploring advanced visualization of MPI parallel programs 6

e Generate automatically a 3D scene, to be converted into an output video with a
script that we keep separate from our extraction script for modularity.

e Explore, test and select visually intuitive outputs for HPC users and researchers.

Candidate frameworks - Pros and Cons

We considered three possible frameworks to implement our visualization, namely Manim,
Javascript and Blender.

Manim was the first to be excluded, due to its higher complexity, and steeper learning
curve. Visualizing the result is less interactive and more constrained, since everything
needs to be coded through dedicated functions and rendered before being even able to
view the output. The other two offer simple mouse gesture to quickly check what’s the
best angle and how it looks.

Javascript was a very good candidate. It offers many interesting frameworks, works
from a simple browser, excluding the need to install additional software, and is by far the
most versatile. One example of that is the possibility to display information when hover-
ing objects, which allows for interesting additions. We considered D3. js, and Three. js,
which has the perk to handle 3D glasses.

However, Blender seemed like the most balanced decision, with straightforward and
user-friendly handling by either coding with a powerful Python API or dedicated quick
buttons on the GUI, a long and strong development with a very active community, as
well as extensive documentation. Furthermore, Blender specializes in rendering videos,
so much so that it can even be used as a standalone video editing tool, which was the
desired output, while still having the possibility to interact within Blender with the 3D
scene, for example by changing interactively its zoom and angle while it is playing. It is
the tool we selected this thesis’ visualization objectives.

Figure 1.3: Output example

Workflow Architecture

There are four key step to our workflow, namely:
1. Writing the codes we will be tracing. This will be further discussed in chapter 3
2. Running them on our testbed and generating their trace

3. Extracting the trace file and staging its data for a later use with Blender (nonethe-
less the output is compatible with any other tool) through a dedicated Python
script

4. Running Blender’s Python script to generate the scene and the final video.

2.1 Trace Generation

To trace our programs, we will be using Score-P[15], a powerful performance profiling
and tracing tool designed for high-performance computing (HPC) applications. With it,
we collect detailed execution data from parallel applications and produce performance
traces in the OTF2 file format. Since Vampir reads that same file format, we can easily
compare both visualizations generated from the same file.

Alternatively, we can also use DisCostiC-Sim[!], a cross-architecture simulation frame-
work designed to predict performance of MPI programs on HPC systems. It simulates
computation and communication across cores and nodes, without executing the target
program on real hardware, and is able to output to an OTF2 file as well, and was in the
earlier development phases used to explore OTF2 files and write our extraction script.

Setting up Score-P

We use Score-P’s compile-time tracing option, rather than the runtime option. This
requires some key modifications to the standard workflow, mentionned in the Score-P
Cheat Sheet [11], specifically:

e Loading the dedicated Score-P module and its dependencies with module load
scorep

e Exporting SCOREP_ENABLE TRACING=true, to actually enable the tracing, since by
default, Score-P only does profiling.

Exploring advanced visualization of MPI parallel programs 8

e Exporting SCOREP_TOTAL_MEMORY=3GB, to increase the memory per process dedi-
cated to Score-P’s tracing, which is close to the maximum. This is to avoid as
much as possible costly flushes that have an impact on the program’s performance
and change its behavior, although this is orders of magnitude higher than what’s
usually necessary.

e Exporting SCOREP_EXPERIMENT DIRECTORY=scorep run trace folder to option-
ally set the Score-P output folder, but it can also be overlooked since Score-P
creates a default folder.

e Optionally exporting SCOREP_FILTERING FILE=scorep filter file so that Score-
P ignores specific regions listed in a filter file. This needs to be also set in the
compilation command for instrument filtering, failing to do so would provoke a
runtime filtering. More information is available in the Score-P documentation [15].

e Compiling with the scorep command as prefix for the normal compiling command,
or optionally, scorep --instrument-filter=./scorep_filter file when using
a filter, an example of which is in section A.3

Example Compiling Command

Normal compiling command:
mpiicc test.c -o binary
Corresponding Score-P command:

scorep --instrument-filter=./scorep_filter_file mpiicc test.c -o binary

Dedicated scripts

For more practicality, two standardized scripts were created.

Batch Job Script

Firstly, a batch job script available in section A.1 was created, handling all the details,
namely:

e All Sbatch options for node, socket and CPU requirements, frequency fixing, CPU
binding

e Loading the appropriate modules
e The compilation through the dedicated Makefile

e Setting up the environment for Score-P and for the generated trace’s extraction of
data, later used in Blender

e The actual extraction of that data through our dedicated script

e Saving the used code, binary, job script, input file, Makefile, standard output and
standard error as well as full environment set-up for later reproduction or debugging

Exploring advanced visualization of MPI parallel programs 9

Makefile

Secondly, a standardized Makefile available in section A.2, handling:

e Using the scorep command
e Optionally using a filter file, as described in section A.3

e Providing standard flags for debugging, OpenMP, libraries, warnings, speed opti-
mizations, macros

e Deleting intermediary files and the binary to clean the code directory

2.2 Trace Extraction

MPI trace information is parsed and extracted using a Python script converting it to a
text file consumable by Blender. It takes as input an OTF2 format trace file.

2.2.1 The OTF2 format

The OTF2 (Open Trace Format 2) is a widely used, scalable, and efficient trace file
format designed for storing all execution data from parallel applications using MPI and
OpenMP, to which it binds itself, to track the execution of each key step such as en-
tering/exiting a region, which correspond to functions in the code, sending/receiving
messages, /O operations, OpenMP thread creation, etc. All these specific actions in the
execution are recorded within so-called events that represent them, while associating all
the corresponding metrics, in particular the timestamps for such execution.

For this, we will be using the dedicated OTF2 Python Interface and its documenta-
tion [12] [10] [11] to read and prepare all the necessary data from the generated trace file
to be later read and handled by Blender.

We’ll focus on two specific event type:
e Enter and Leave events track the entry and exit points of code regions, and provide
their relative timestamps.

e MpiSend/MpiRecv, and Mpilsend/Mpilrecv events track the transfer of MPI mes-
sages, and their timestamps, for respectively synchronous and asynchronous send-
s/receives between processes.

In the context of asynchronous messages, the OTF2 format implements further details
for the different stages regarding a message being passed from a process to another:

e An MpiIsend event indicates that a non-blocking MPI send operation was initiated.

e An MpiIsendComplete event indicates the completion of a non-blocking MPI send
operation.

e An MpilrecvRequest event indicates that a non-blocking MPI receive operation
was initiated.

e An MpiIrecv event indicates the completion of a non-blocking MPI receive opera-
tion completed.

Exploring advanced visualization of MPI parallel programs 10

2.2.2 Extraction Script Usage

There are actually two main uses for our script. The standard and default use was
already introduced: it is the extraction of the relevant trace data and timestamps later
used in Blender. But in order to read and investigate an OTF2 trace file, it is also
possible to output all binary content to a human-readable format. This is especially
useful for debugging when implementing new features or updating the execution behavior.
Therefore, there are two possible prefixes for each mode, defining the behavior of the
script.

--mode (str) Description: Determines which output files will be generated. The
modes are:

e read full: Reads the full trace data for all ranks.

e read rank: Reads rank-specific trace data. This needs the --selected _rank
option to be defined.

e read rank formatted: Reads rank-specific trace data and outputs to a csv
file while outputting timestamps minus the initial timestamp, and ignoring
much of the data for readability. This needs the --selected _rank option to
be defined.

e read _formatted: Reads the formatted trace data for all ranks and outputs
to a csv file while outputting timestamps minus the initial timestamp, and
ignoring much of the data for readability.

e extract: Generates the Ranks.txt and CompStopAndStart.txt files, used in
Blender

e extract_limited: Generates Ranks.txt and CompStopAndStart-limit.txt,
which limits to a certain number of event or a certain timestamp, given by the
user to ignore every subsequent trace event, therefore limiting the output file.
This needs the ——cycle maxcount or the ——loop_maxcount to be defined.

e extract_full: Generates Ranks.txt, CompStart.txt, CompStop.txt, and
CompStopAndStart.txt. This can be used for implementations requiring sep-
arate files.

e extract_discosim: This options allows using traces generated with DisCostiC-Sim[]

3]12]-

Default: "extract"

--root_folder (str) Description: Defines the relative path to the root folder contain-
ing the Score-P trace data. The output files will be saved in this folder, separate
from the trace data.

Default: "./"
Example: "raw data/myprogram/"

--scorep_folder (str) Description: Defines the folder used by Score-P to output
trace files. This folder contains the raw trace data generated by Score-P.
Default: "scorep traces/"

Exploring advanced visualization of MPI parallel programs 11

--selected_rank (str) Description: Specifies the rank for which the trace data should
be extracted. If not provided, no rank-specific data is extracted.
Default: None

--cycles _per_frame (int) Description: Specifies the number of cycles per frame in
the Blender video generation. This value affects the precision and granularity of
events shown in the video and is used to calculate the time-flow difference between
the execution and the video.

Default: 100000

--cycle maxcount (int) Description: The upper limit for the cycle timestamp in the
timestamp output files. If the value exceeds this threshold, the cycle timestamp
will be truncated.

Default: math.inf (Infinity)

—--loop-maxcount (int) Description: Defines the maximum number of lines in the
timestamp output files. This limits the number of frames/steps that are included
in the output.

Default: math.inf (Infinity)

--cpu_frequency (int) Description: The CPU frequency in Hz. This is used to con-
vert timestamps into real-time and is used to calculate the time-flow difference
between the execution and the video.

Default: 2400000000 (2.4 GHz)

--framerate (int) Description: Specifies the number of frames per second (FPS) for
the Blender video output. This affects the smoothness and speed of the video, and
is also used to calculate the time-flow difference between the execution and the
video.

Default: 60

--fading (int) Description: Defines the number of frames for a color transition (fad-
ing) in the Blender video. This is used to control the visual effect of changing colors
in the animation.

Default: 1

--threshold (int) Description: The threshold number of frames for a time jump. If
there is inactivity (no events) for more than this number of frames, the script will
compress time in the video output to skip the idle period.

Default: 10000000

Example Command

python trace_converter.py --root_folder=$TRACE_CONVERTER_ROOT_FOLDER \
-—framerate=60

2.3 Blender Scripting

Blender’s Python API is used to:

Exploring advanced visualization of MPI parallel programs 12

e Import data from the timestamp files

e Generate all the 3D objects necessary for our representation, according to the user’s
selected geometry

e Color these objects depending on their MPI status along a series of frames that will
compose the output video

e Use Blender’s capabilities for creating comprehensive and agreable textures and
lighting, as well as camera angles and movements within our 3D environment scene.

e Render the output to a video

Key note: since there are an enormous amount of possible communication arrange-
ments, and an appropriate and comprehensible 3D arrangement would be either hard to
guess or even non-existent for the oddest ones, our second script executed within Blender
is not designed to guess the correct geometry from the communication patterns exhibited
in the trace files. Instead, it focuses on generating some classic and usual domain shapes,
such as 2D and 3D grids. Outside of those, the user is supposed to give the appropriate
3D disposition of the ranks.

2.4 Video Generation

After running the Blender script, a simple click on View > Viewport Render Animation
automatically generates the video. In particular, this rendering method is computation-
ally much less costly, as the aspirations of this tool do not require any costly ray tracing
capabilities for beautiful light reflection effects or fuzzy transparency.

Implementation

3.1 Used Code

To safely assert the usability of our tool, we made sure to use trace data collected from
real-world runs of applications that are actually used in scientific simulations. For this,
we chose to solve a Poisson equation using the iterative Jacobi algorithm. All used codes
are available in the A.4, A.6, and A.5 sections of the appendix.

3.2 The Jacobi method

Figure 3.1: Graphical representation of the Jacobi rank communication

The Jacobi method is an iterative algorithm used to solve systems of linear equations
of the form Ax = b, where A is a square matrix, x is the vector of unknowns, and b
is the right-hand side vector. The Jacobi method assumes that the matrix A can be
decomposed into its diagonal component D and the remainder R = A — D, such that the
iteration formula is given by:

x*) = p=H(b — Rx®).
For each component ¢ of the solution vector x, the update rule can be written as:
1
x§k+1) _ - (bi _ Z aiﬂﬁ“) :
Qi —
JFi

where a;; are the elements of matrix A. The method proceeds iteratively, updating each
component of x based on the previous iteration values. The Jacobi method is simple and

13

Exploring advanced visualization of MPI parallel programs 14

parallelizable.

The key component that is necessary for our tool, and that makes the Jacobi our chosen
algorithm, is its necessity to send and receive data from its direct neighbors in each it-
eration of the solver, which we will use, through an extra workload on a certain rank, to
create an idle wave.

3.3 1dle Waves

To assess the effectiveness of our various visualization proposal, and to demonstrate their
usefulness, we must select a well-fitting case for which they would prove practical. Gen-
erating idle waves seems ideal for this task.

Idle waves|7][1][5][0] are a performance phenomenon in parallel computing where idle
time, typically caused by synchronization delays or imbalances, propagates across a set
of processes in a wave-like fashion. This effect is most commonly observed in tightly cou-
pled MPI applications, where processes frequently wait on one another to exchange data.
If one process becomes delayed, due to a hardware interruption, system noise, or uneven
computation load, it may arrive late at a communication point, causing its neighbors to
wait. These delays can then ripple outward through the system, forming a pattern of
staggered idle periods.

In traditional tools such as Vampir, idle waves often appear as stair-like diagonal bands,
indicating how the idle state moves across process ranks over time. This effect, while
very visual, can be hard to inspect on Vampir, especially in the context of a high number
of ranks, or higher-dimension communication, even if it is only 2D. This is a very visual

Trace View - /home/woody/ihpc/ihpcl26h/vizhpc/trace-converter/OTF2_traces/realruns/biaxis-2Djacobi/ntasks576_1860529/scorep_traces/traces.otf2* - Vampir.
File Edit Chart Filter Window Tools Help

HhE QOFHN B E LB

3105 315s 320 3255 330s 335 3405 3.45s 3.50s 3555 360s 365s 3705 [

Master thread:0

Master thread:1

Master thread:2

Master thread:3

Master thread:4.

Master thread:5.

Master thread:6

Master thread:7

Master thread:8

Master thread:3

Master thread:10
Master thread:11
Master thread:12
Master thread:13
Master thread:14
Master thread:15
Master thread:16
Master thread:17
Master thread:18
Master thread:19
Master thread:20
Master thread:21
Master thread:22
Master thread:23
Master thread:24
Master thread:25
Master thread:26
Master thread:27
Master thread:28
Master thread:29
Master thread:30
Master thread:31
Master thread:32
Master thread:33
Master thread:34
Master thread:35
Master thread:36
Master thread:37
Master thread:38
Master thread:39
Master thread:40

<
BE @ 2 ‘ 3 ‘ 4 |Empcusn@muz~ H@Trace View - /home/woody/ihpc/ihpc126h/vizhpe/... [T | | | [=Eeies

Figure 3.2: Example of idle wave in Vampir

Exploring advanced visualization of MPI parallel programs 15

effect, and it is typically what could be significantly more straightforward to view with
our visualization, especially in the context of higher dimensional communication since
it is particularly difficult to comprehend with existing trace visualization software and
illustrate the usefulness of the tool we're developping. Hence, it is the ideal phenomenon
to display with it. Also, since the presence of idle waves is particularly concerning in
large-scale HPC applications, as they can heavily degrade parallel efficiency, it gives a
interesting use case for our tool being used in actual HPC research to understand and
mitigate idle wave propagation.

In every instance, we simulate this phenomenon by insuring our Jacobi codes are memory-
bound by assigning 20MB of data for each process, ensuring us that this is significantly
over their cache capacity and that they will need to fetch it from the RAM, and then
injecting an extra workload on rank 5, from which the ripple effect will originate. This
ripple effect is what we hope to show in our visualization that would display it in a way
that would be both elegant and instantaneously understood, with details being straight-
forwardly shown while they are hard to grasp in Vampir.

Testbed

To run our programs and generate the relative trace files, we used the Fritz cluster[9].
This testbed environment provides the conditions for controlled and reproducible exper-
iments that can accurately be recreated.

Then, to run Blender 4.3.2, we used either a standard office laptop, or the , slightly
more powerful fvizl remote visualization nodes available on Fritz.

4.1 Hardware Setup

The testbed consists of the following hardware components:

Machine (25268 tetal)

Package L#0

[o |

Groupd Groupd

| NUMANode L#1 P#L (63GB) |

| NUMANode L#0 P#0 (63GE)

| L2 (1280KE) ” L2 (1286KE) |DDU ||.z (1288KE) | PCI 88:11.5 | L2 (1280KE) || L2 (1280KE) |E|E|D ||.z (1286K8) | 32 32 | pCI 65:80.8
18x total 18x total
| L1d (48KB) | |L1u (48KE) | |L1u (48KE) | ?;;":Bs“ | L1d (48KB) | |Lm (48K8) | |Lm (48K8) | ILMI
[as czxer | [as e | [ozeey | [ozmn | [gz | e OpenFabrics nlxs 0
3.9 3.9| eI 01:00.0
Core L#0 Core L#1 Core L#17 Core L#18 Core L#19 Core L#35
Net enpls@
PU L#18 PU L#19 PU L#35

PU L#0 PU L#1 PU L#17
P40 P P 0.6 6.6 PCI 64:00.0

Package L#1

P#18 [Z2t] P45

[o |

Groupd Groupd

| NUMANode L#2 P#2 (63GE) | | NUMANode L#3 P#3 (63GB) |

| L2 (1280KE) ” L2 (1286KE) |DDU ||.z (1288KE) | |L2 (1288KE) ” L2 (1280KE) |DDD | L2 (1280KE) |
18x total 18x total

| L1d (4BKB) | |L1u (48KE) | |L1u (48KE) | |L1d (48KEB) | | L1d (48KE) | | L1d (48KE) |

| L11 (32K8) | |Ln (32K8B) | |Ln (32K8) | |Ln (32K8) | | L1i (32KB) | | L11 (32KB) |

Core L#36 Core L#37 Core L#53 Core L#54 Core L#55 Core L#T1

PU L#36 U L#37
P46 a7

U L#71
Pa71

PU L#53
P#53

PU L#54
P54

PU L#55
P#55

Figure 4.1: Topology of Fritz

e Nodes: Each node is composed of 2 x Intel Xeon Platinum 8360Y ("Ice Lake”),
each containing 36 cores @ 2.4 GHz. Simultaneous Multithreading (SMT) is de-
activated, therefore a single thread will be run per each core. The 36 cores can
be further divided into 2 CC-Numa domains of 18 cores each. On the total of 992
nodes, we can allocate up to 64 nodes at a time for a job.

e Memory: Each node processor has 54MB of L3 cache, for a total of 108MB for the
two processors. Furthermore, each core has a 1IMB L2 cache, for a total of 36 MB
per processor. Each node is equipped with 256 GB of DDR4 RAM @ 3200 MHz.

16

Exploring advanced visualization of MPI parallel programs 17

e Network: An HDR100 Infiniband with up to 100 GBit/s bandwidth.

e Clients: Five desktop machines with Intel Core i7 processors and 16 GB RAM,
simulating user workloads.

4.2 Software Environment
The software stack installed on the testbed includes:

e Operating System: AlmalLinux 8.
e Manager: Slurm Workload Manager.

e Modules: We compiled our codes using intel/2021.4.0 with C11 standard. Our
MPI vendor is intelmpi/2021.7.0. We used version 8.1 of Score-P for profiling
and generating our trace files, under the name:
scorep/8.1-intel-2021.4.0-intelmpi-2021.7.0-papi.

e Run program: We use self-developped codes implementing or mimicking the afore-
mentionned Jacobi. There is a 2D, a 3D and a spherical versions, all in C.

4.3 Test Scenarios

We tested several task binding/pinning schemes to find out if the effect of such pinning
would be displayed in a noticeable way in our visualization, and especially how straight-
forwardly and comprehensively this would show up.

4.4 Fvizl Nodes

Fviz1 was used for remote visualization with VirtualGL, in order to run Blender, generate
and display its scene. It consists in an Nvidia A16 GPU, partitioned into 4 virtual GPUs,
one of which we attach our VNC client to. It offers 16GB of RAM, and runs on Xfce
Linux.

4.5 Personal Laptop

A simple office Dell laptop was used

e CPU: 11th Generation Intel@®) Core™ i5-1135G7 (8 MB Cache, 4 Core, 8 Threads,
2.40 GHz to 4.20 GHz, 17.5 W).

Memory: 16 GB, DDR4, 3200 MHz, dual-channel, integrated.

Storage: M.2 2280, 1 TB, Gen 3 PCle x4 NVMe, Class 40 SSD.

Graphics: Intel Corporation TigerLake-LP GT2 [Iris Xe Graphics].

OS: Ubuntu 24.04.2 LTS.

3D Visualization Implementations

Some choices made the 3D visualizations more intuitive for understanding complex mes-
saging behavior compared to traditional tools.

5.1 Perspective vs Orthographic Projection

Blender offers two ways to display any object, the user has to select between a perspective
projection or an orthographic projection, otherwise known as isometric projection, which
are in 3D graphics and technical drawing, the two different ways of representing 3D
objects on a 2D surface such as a computer screen.

e Perspective Projection mimics how we see in real life. Objects appear smaller
as they get farther away, creating a sense of depth. It’s commonly used in games,
animation, and realistic renderings because it feels natural to the eye.

e Orthographic Projection, on the other hand, shows objects without perspective
distortion. Parallel lines stay parallel, and size remains constant regardless of dis-
tance. This projection is used in blueprints, CAD, and technical drawings, where
accuracy and scale are more important than visual realism.

(a) Orthographic projection (b) Perspective projection

Figure 5.1: Base Blender cube

18

Exploring advanced visualization of MPI parallel programs 19

5.2 Different Geometries for Different Domains

5.2.1 Line

This is the simplest case and does not present any additional value compared to the
Vampir view, outside of a more practical view of a high number of processes, a full node
is shown in Figures 5.2 and 77.

Figure 5.2: Line of 72 ranks in orthographic projection

5.2.2 Circle

We can extend the line to a circle for the case of a periodic communication, where the
first and last ranks are directly communicating.Again, a full node is shown in Figures 5.3
and 5.4.

Figure 5.3: Circle of 72 ranks in orthographic projection

Exploring advanced visualization of MPI parallel programs 20

Figure 5.4: Circle of 72 ranks in perspective projection

5.2.3 Grid

The case of the grid is the first and most frequent case of 2D communication, where ranks
are connected both with their left and right neighbor as well as with their up and down
neighbors. This time, Figures 5.5 and 5.6, are showing a grid of 24x24 ranks, for a total
of 576 ranks, composing 8 nodes.

Figure 5.5: Grid of 24x24 ranks in orthographic projection

Exploring advanced visualization of MPI parallel programs 21

Figure 5.6: Grid of 24x24 ranks in perspective projection

5.2.4 Tube

The tube, or hollow cylinder / cylindrical shell, is the same as the grid that has a periodic
communication in a single direction. In terms of clarity, it rarely offers an advantage
compared to the standard grid, since we can usually intuitively grasp the communication
happening on the edges. However, it may be useful for more complicated communication
patterns occurring on the boundaries. Figure 5.7 is again showing a grid of 24x24 ranks,
for a total of 576 ranks, composing 8 nodes.

(a) Orthographic projection (b) Perspective projection

Figure 5.7: Tube of 24x24 ranks

Exploring advanced visualization of MPI parallel programs 22

5.2.5 Torus

The torus extends further the concept of the tube by adapting to periodic communica-
tion in both directions, with ranks at the edges of the grid being connected not only
horizontally (as in the tube), but also vertically, forming a seamless wraparound in two
dimensions, following communication topologies where the edge effects are eliminated
entirely.

User Orthographic. Perspective

ser Ortho] T Perspe
(1) Collestion (1) Collestion

(a) Orthographic projection (b) Perspective projection

Figure 5.8: Torus of 24x24 ranks

However, an obvious problem arises when observing the examples from figures 5.8: the
choice for the two radiuses will skew the individual ranks significantly, especially in our
case of a square 24x24 rank grid. They can be either very similar or very different, and
this will provoke an unavoidable difformation of the ranks’ figures composing the global
structure. This explains why the torus may not significantly improve clarity for simple
communication patterns, and it may become more useful for understanding only some
very specific complex or symmetric communication patterns.

Outside of these rare cases, the torus is more adapted to band-like domains, as shown in
the next example figure, otherwise, the standard flat display of the grid case is the most
straightforward way to better understand communication, including on the boundaries.
If more detail is needed, the simple copy of the original grid around itself eight times over,
one for every direction, will suffice to make any pattern be both obvious and precisely
displayed.

Exploring advanced visualization of MPI parallel programs 23

F5 User Orthagraphic
£55 (0 cotection

4 User Ortnographic
4. (1) Collection

L] UserPerspective
L53, () Collection

Figure 5.12: Torus of 12x120 ranks in perspective projection

Exploring advanced visualization of MPI parallel programs 24

5.2.6 Sphere

The more complex the domain, the more helpful our visualization schemes become. The
current case of a spherical domain, while being quite standard, e.g. in Earth simulated
phenomenons, will certainly helps us understand better and visualize in a straightforward
way the intricate communication schemes between ranks.

To develop a geodesic polyhedron mesh, we started from a standard icosahedron, on
which we applied a 6-frequency subdivision on each triangle, and we then projected all
vertices onto a sphere. Every triangle is a rank, connected to three other ranks.

(a) Orthographic projection (b) Perspective projection

Figure 5.13: Geodesic polyhedron of 720 ranks

5.2.7 Cube

Finally, the cube is understandably an crucial addition to our domain list.

F N @8O

(a) Orthographic projection (b) Perspective projection

Figure 5.14: Cube of 5x5x5 ranks

Exploring advanced visualization of MPI parallel programs 25

Again, some obvious obstacles immediately arise at first glance: we cannot see past the
surface. Therefore, we had to come up and test some workaround methods to solve them,
which we will discuss in the following section.

5.3 Display choices

5.3.1 Sparsity

Sparsity, i.e. spacing objects apart in a 3D scene makes it easier to see past the front
layer and view what’s behind. By avoiding to group objects too close together or in a
stacked way, the outer ones doesn’t block the view anymore, allowing to see the inner
layers, and better understand the overall structure. There is a fine balance in finding the
appropriate spacing, as to avoid missing the global structure and the link between the
ranks, as well as the view angle. Figure 5.15 shows an update of our preceding cube view.

(a) Orthographic projection (b) Perspective projection

Figure 5.15: Cube of 5xbx5 ranks with better spacing and view angle

Carefully selecting the angle is a crucial part of such a view, meaning that not all angles
are valid in order not to confuse the user.

Figure 5.16: Confusing views for the cube

This will lead us to another proposal, in the next section, through camera movements.

Exploring advanced visualization of MPI parallel programs 26

5.3.2 Camera movements

In Blender, simple mouse movements can change the camera angle and zoom in and out
on the object. These movements can then be coded for the subsequent rendering of the
output video. They can also help us mimic 3D on a flat screen, giving us the impression
of true 3D, as shown in Figure 5.17.

(a) Orthographic projection (b) Perspective projection
Open in default player Open in default player

Figure 5.17: Camera movement around a sparse cube

5.3.3 Displaying MPI and Computation Phases

Following a suiting object creation for our domains, we need to formally define a way to
display ranks sitting in or out of MPI regions.

Dual Color Display

The first option we explored was to define two colors, red and blue, respectively for ranks
sitting in MPI or not.

Using Transparency

Another idea to better show the difference between processes sitting in MPI and others,
and because it further helps, in multi-layer geometries, to see past the first layer, we
decided to use transparency to code for any non-MPI event, and to keep red for MPI
regions. On later stages of the development and for some geometries, we used a partial
transparence also for color-coded MPI events, to be able to see behind their respective
Blender objects.

Using a Color Gradient

A key information such as which processes are sitting in MPI for a long time or not, in
other words determining laggers and speeders. A tool like Vampir allows the user to see
it precisely with a single glance, as well as the sequence in which processes communicate.
Using only one color, our tool can only help do that at a high cost, since the user, see-
ing which processes start communicating, can only know when they stop after the video
reaches this point when they finish communicating. Therefore, the user needs to track a

2025/05/31 15:06:55

Cube_cameramovement_orthographic.mp4
Media File (video/mp4)

2025/05/31 14:52:51

Cube_cameramovement_perspective.mp4
Media File (video/mp4)

Exploring advanced visualization of MPI parallel programs 27

rank, or worse, a collection of ranks for that whole time, which can become quickly hard.
In particular, a paused video can offer no good insight on the matter.

To help distinguish laggers and speeders, and to know in advance if a process will resume
computing soon, we use a red-to-green color gradient: a process that just entered an MPI
region will be colored in red, and will gradually swith to green as long as it sits in MPI.

e A long call will therefore immediately appear as red and will show little to no
change in its color, immediately striking the user as a costly call.

e A short call will quickly turn green, or possibly even disappear instantaneously.
e An intermediary call will show a gradual turn orange.

This gradient conveys in a simple way to the user an intuition about which communication
will take a long time, and helps identify bottlenecks. It essentially gives a premonitory
feeling about the upcoming events and the future of the video, without having seen it.
It can also even be used as a reminder of the past, displaying which processes have been
sitting in MPI for a long time.

With this addition, a very short time playing the video, or potentially even a paused
video, gives much insight about how the communication is happening between the ranks,
and helps reconstruct the scenario of the execution. This is one of the most important
addition to our visualization tool.

Prioritizing Progression over Time

Another potential option to implement the red-to-green gradient change that would have
been depending on the amount of time spent in MPI rather than in progression, the user
would then know depending on the color for how long in milliseconds the concerned ranks
had been in its MPI regions, but this was deemed much less practical or useful, since the
user is already at least somewhat aware of that simply with the video playing, and we
would lose out the intuitive insight on the future steps of the video. Besides, it also would
need us to determine which threshold is appropriate to go from full red to full green.

Blender’s Color Gradient Algorithm

Using Blender’s color diffusion method means that any change in the color or transparency
of an object isn’t defined as happening at a certain timestamp of the trace, but rather
between two timestamps. We implemented a fading option to be able to select how
smooth the object light up and tone down. The standard option is to do it over a single
frame, the quickest possible.

Coloring the Extra Workload Rank’s Edges?

Coloring the edges of our 3D objects can be an interesting addition, they could be used
to show in which iteration of a global loop a certain rank is, although this hasn’t been
completed yet, since we cannot access to a loop counter directly, but instead need to infer
it from the region names recorded in the trace. It assumes, possibly wrongly, that all
ranks are supposed to call the looping region the same number of times, as well as know
that region name in advance.

Exploring advanced visualization of MPI parallel programs 28

Results for our different cases

In this section we will be using a 2D-Jacobi code with an idle wave to display the progres-
sion of the view over those improvements for the Grid, Torus, Cube and Sphere cases.

"Lbb\)c"
({\S
|) \1 v

3

(a) Grid case (b) Torus case
Open in YouTube Open in YouTube

Figure 5.18: First stage : dual color, red for MPI, blue for computation

(a) Grid case (b) Cube case
Open in YouTube Open in YouTube

Figure 5.19: Second stage: Using Transparency for non-MPI regions

Exploring advanced visualization of MPI parallel programs 29

(a) Grid case (b) Cube case
Open in YouTube Open in YouTube

Figure 5.20: Third stage: Using a Green-to-Red color gradient for MPI regions

a 3m
(a) Sphere case (b) Torus case
Open in YouTube Open in YouTube

Figure 5.21: Fourth stage: Using partially tranparent colors to see past them

Comparing Our 3D Visualization with Vampir

Figure 5.2.3 shows a comparison of our visualization with Vampir.

This simple 2D grid run suffices to show the higher dimension problem with Vampir:
this somewhat confusing view appears to show multiple rank from which an idle wave
originates. It actually is due to the 2D communication, that skips 24 ranks, in other
words the size of the line for this grid.

Exploring advanced visualization of MPI parallel programs 30

P P P Eree— L LT T TR

a) wit ender wit ampir
ith Blend b) with V. i

Figure 5.22: Trace Visualization for a 2D-Grid
Open in YouTube

5.4 Practical additions

5.4.1 Ignoring Uninteresting Trace Events

Initialization Parts

e Any MPI code needs to call Mpi_Init(), which is usually uninteresting and sig-
nificantly long. Since the time length of our visualization is much longer than the
actual execution time on the cluster, this leads to an unnecessarily boring and heavy
video where nothing happens. This is standardly ignored.

e The user can decide to ignore every event before a specific region, identified by a
calling function name. Our Trace Extraction script handles either ignoring every
event before the first occurence of such region, or before the last one, as well as
ignore that region itself or not.

Relatively Quick Events

Depending on the length of the run corresponding to the trace, and in order to have a
digestible output video that isn’t impractically long, some events may be too quick to be
displayed, since the video discretizes the run over a much fewer number of frames, which
is why this number of frame may not be fine-grained enough for two consecutive events
or more. Therefore these events happen over the same frame and cannot be displayed.
They are lost in translation and do not exist in the output video. The user has the power
to increase the framerate, or to make the video span over a longer time, although this
may quickly pose scaling problems, or as mentionned before, render the video much less
practical or useful.

Time Jumps

Some parts of a trace can be particularly uneventful, and they can be this way for a long
time, especially in the output video, where the time is stretched multiple times over. For
this reason, we implemented an option to ignore trace parts when no event happen for
a long time, making the next event happen much sooner. The threshold to which this
feature is triggered is modifiable by the user.

Exploring advanced visualization of MPI parallel programs 31

5.4.2 Reproducing the Vampir Visualization in Blender

As discussed in the Introduction chapter, this tool does not claim to replace Vampir-like
trace visualizations, only to complement them. They are still very handy, and they are
what users are used to. We first proposed to include alongside the video the corresponding
Vampir view of the trace, and later decided to go as far as to recreate it in Blender. These
trace objects move from left to right, to synchronize the center of the Vampir-like view
with the coloring of the corresponding ranks recreated in 3D. Another advantage is the

Figure 5.23: Vampir Visualization Reproduced in Blender
Open in YouTube

possibility to rearrange ranks in another order. In particular, for our 2D Jacobi code,
we tested a reordering of the ranks from nearest to farthest starting from rank 5, the
one where we injected an extra workload and from which we started an idle wave. This
changes the Vampir-like visualization to make it look like there is indeed a single idle
wave injection, instead of seemingly multiple ones, which is artificially caused by the two-
direction communication. However, due to the high number of region switches, creating

Figure 5.24: Reordering the ranks from nearest to farthest to rank 5

as many corresponding figures in Blender, this is by far the most unstable implementation
we developed, and displaying it is always prone to instability issues and crashes. After
all, Blender’s documentation[9] itself specifies that it is expected to crash over and over
again during development.

Exploring advanced visualization of MPI parallel programs 32

5.4.3 Communication Arrows

We also wanted to show message being passed. For this, we created arrows. At first, we
implemented a solution showing timestamps for Send/Isend calls and Recv/Irecv calls
separately, lighting up respectively the tails, and the heads of the concerned arrows.

Is 221 ms 355us

Figure 5.25: Communication Arrows representing MPI messages
Open in YouTube

We later moved to merge the arrows’ heads and tails using the same color gradient as
for processes, and using timestamps for Send calls and Recv as beginning and end times.

5.4.4 Showing NUMA domains and displaying the Pinning

Figure 5.26 is an attempt at showing how fast or privileged the communication is between
two specific ranks was to space ranks differently with regard to them being or not in
the same node, processor or CC-Numa domain. This is a very interesting addition to
understand some communication patterns, in particular those being the consequence of
a set of ranks pertaining to the same CC-Numa domain and benefitting from faster
communication. This interesting view allows to see both the logical topology and the
underlying physical cores that are running the tasks, in order to inspect more deeply the
intricate details of the trace. Seeing the CC-Numa domains can allow the user to better
view the less-costly communication and memory operations, which explains greatly some
of the trace’s output and the general program behavior. Specifically for this run, we
pinned each 3x6 rectangles to a dedicated CC-Numa domain. It soon becomes obvious
that their shape, along the X-axis, is responsible for the subsequent X-axis idle wave
fronts of the run.

5.4.5 Clock

An obviously useful addition was to include a clock corresponding to the runtime, and
displayed in seconds, milliseconds and microseconds for practicality. In order to match
Vampir-like tools, it needs to keep as origin the initial start of the trace, which is why it
usually doesn’t start at 0 seconds.

Exploring advanced visualization of MPI parallel programs 33

Figure 5.26: Spacing ranks and grouping CC-Numa domains together
Open in YouTube

5.4.6 Identifying the Ranks

(a) Torus (b) Cube
Open in YouTube Open in YouTube

Figure 5.27: identifying the ranks with sequential highlighting

A crucial information for the user is to know which ranks corresponds to which cube
or square. Labels are indeed an option, but they can bloat the display quite fast. We
could simply label a few key ranks. But a quick and straightforward proposal was made
with including as an introduction in the output video an animation: every rank from 0
to last lights up one after the other sequentially.

Evaluation

6.1 Effectiveness

Our visualizations displayed accurately the various trace data that we generated, and
helped display idle waves straightforwardly, giving an interesting and useful addition to
the traditional display. It also revealed some communication patterns and their effect on
the execution, e.g. with the ranks sharing the same CC-Numa domain having priviledged
communication, which showed immediately by forming lines in the Grid video.

One obvious added value is the ability to display complex domain in 3D. Figure 6.1,
showing longside the Blender and Vampir visualizations for our Sphere case, is probably
the best example of this. Not only is the unintuitive pinning easily understood, but in
this particular screenshot, we can also see around the highlighted rank 5 a total of 17
ranks that are transparent, therefore outside of an MPI region. Immediately, this gives
us an intuition that they belong to the same CC-Numa domain, which is correct, but
very hard to see in the trace.

) Blender display
Open in YouTube

O-=mB[T] > 3| ¢ |Ewamens: s AEEEET 2

(b) Corresponding Vampir visualization

Figure 6.1: Run over 2880 ranks (40 nodes)

Another case, shown in Figure 6.2, is that of the cube, showing idle waves in the
form of a euclidian plane, with vertical 6x3 CC-Numa domains. A quick glance at the
Vampir visualization can show this. But we also notice that its direction changes over
the run, and Vampir cannot accurately display in 2D all direction changes happening in
3D. Hence, this is accurately displayed only in Blender. Not only that, displaying the
underlying pinning with regard to the CC-Numa domains gives some subtle insight into
what is influencing that change: they are aligned along the Z-axis, and it is an interesting

34

Exploring advanced visualization of MPI parallel programs 35

assumption that the faster communication along that axis provoked the corresponding
rotation and switched the direction of the plane of the idle wave front.

BEmB[T] 3 | ¢ [Ereasew R AEEEED

(a) Blender display
Open in YouTube

(b) Corresponding Vampir visualization

Figure 6.2: Displayed CC-Numa domains in the cube run

6.2 Usability

The Blender-based system required minimal setup and provided a qualitative 3D scene
with a powerful and an effective Python API and GUI that were adaptable and provided
high quality videos.

However, while this video generation is a good first objective to explore and assess the
possibilities and their added value, it is also the most rigid and probably the worst output
possible. Indeed, once rendered and saved, the only modification that the user can bring
is by interacting with the progress bar, and even then, the control in a player such as
VLC is very rigid and coarse, mostly skipping the in-between frames when moving its
cursor from time A to time B, while YouTube does even worse by intentionally blurring
them in addition to the skipping. Moreover, moving frame-by-frame is only possible go-
ing forward in VLC, with the E shortcut, while YouTube has a frame-stepping options in
both directions, through the point key and the comma key, that quickly needs buffering.
They were simply not designed for those uses.

This adds to a video compression that isn’t frame-perfect, being mostly designed to
save space and bandwidth, they only store an image difference with the previous frame
and need to be decoded. Outputting to a video could be compared to using a screenshot
of Vampir.

However, as we demonstrated, controlling other parameters such as the view angle is
not only practical, it can be crucial to see certain hidden behaviors, or even simply to see
the ranks that we are interested in. Only video editors would propose a finely controlled
progress bar over those videos, and this represent a significant investment compared to
the meager reward.

Within Blender however, the scene is not rendered yet, and it stores not pixel but the
original source data much like vectorial images (typically in the SVG format) store the

Exploring advanced visualization of MPI parallel programs 36

algorithmic formula generating an image, rather than the list of pixels composing it like
raster images (usually in PNG or JPEG formats), allowing us to change the zooming with
no loss and with a light memory footprint. Therefore, an ideal tool would not necessarily
render to a video, but rather allow the user to move through a scene and select zoom,
angle, and other display characteristics on-the-fly through simple and intuitive mouse
and trackpad movements. Alternatively, the 3-axis figure on the top-right corner of the
view can serve the same purpose. It is also easy to go over the frame, by simply hovering
the current frame number on the lower-right corner, and scrolling more or less quickly to
go over any particular set of frames.

* (Unsaved) - Blender 4.3.2

Figure 6.3: The Blender display and controls

6.3 Scalability

6.3.1 Trace Extraction Script

Using the OTF2 Python package, this script was both stable and versatile, as long as the
trace file was light and short. To make it more scalable, we used common methods such
as using the Numpy package and pre-allocating the memory that is later populated with
the extracted trace data. We then used more complicated loops to read the trace only
once after that, instead of looping over the ranks. This allowed us a roughly 100 times
faster execution. However, using a standard office laptop, Blender would not handle more
than 100MB worth of trace files. To lower the trace space on disk, we also implemented
outputting the extracted timestamps as offsets, and to a binary file. This roughly halves
the output file size.

6.3.2 Blender’s Limitations

Understandably, running our Blender script was always the main problem, as we expe-
rienced freezes and many crashes. Generating objects alone could scale fairly well on
our laptop, scaling to up to 10000 objects, generated within 10 seconds. After that,

Exploring advanced visualization of MPI parallel programs 37

(a) 8000 ranks Sphere (b) 25x25x15 (9375) ranks Cube

Figure 6.5: 100x100 ranks 2D grid

we needed to color the objects along the frames. This scaled up to mid-sized jobs of
around 1500 processes before Blender started slowing down or freezing. We managed to
display 2880 ranks, therefore 40 nodes, with the sphere, but since the generated objects
are only triangles instead of cubes, they are less heavy on the memory. The same freezes
and crashes were also experienced when generating a high number of frames, typically
over 100000. A more powerful computer would indeed be able to handle significantly
higher workloads, but that is exactly what a tool would do well to avoid, finding and
implementing a lightweight solution.

Future Work and Possible Directions

e Adding all the standard capabilities, such as collective operations events, or OpenMP
events would be the first addition, in order to get a complete tool handling all basic
situations.

e Support for VR-based MPI trace inspection for easily and a "true” 3D display
instead of a 2D screen with identical input in both eyes.

e Going away from Blender: using Javascript to display over the browser though an
integration with real-time viewers such as Unity or WebGL. This would allow to
interactively change the view angle and the zoom, as well as allow specific behavior
such as displaying information at hovering or when selecting objects, different color
schemes changeable on-the-fly, switching the display to show other data such as the
iteration number or the load imbalance...

e Developing the ability to modify the display speed, i.e. being able to change its
cycle jump per frame, which would make the user go over the trace slower when fine
detail and granularity are needed or faster when a more global insight is preferred,
with an easy and intuitive action such as a simple mouse scrolling.

e Making it a live-tool able to inspect an ongoing execution. This could potentially
be combined with the previous feature.

e Improve the scaling, to handle both a great number of processes and trace size,
probably by implementing an equivalent of the Vampir server.

38

Conclusion

This thesis, describing itself as an exploration, was merely a first step towards an inno-
vative visualization method. It aimed at demonstrating the feasibility and usefulness of
using a 3D visualization for displaying MPI trace data, evaluating each specific viewing
method and assessing its added value. By mapping each rank to a corresponding object
in a 3D scene, and then mapping each region to their specific rank, we could create a new
visualization that offers enhanced interpretability, making it valuable for developers and
researchers optimizing parallel applications.

Using our tool, we could develop a deeper insight into the codes we studied, compared to
just using Vampir. Although many of the codes’ behaviors were noticeable on the latter,
we could have them truly stand-out, and sometimes even add some key details that would
not be shown on Vampir, such as the idle wave front’s direction shift on our 3D Jacobi
code, and its possible link to the CC-Numa domain’s disposition.

This was done through two key additions: showing the trace through an animation al-
lowed us to free the x-axis that was formerly dedicated to time, and using a 3D scene
gave us an additional dimension, therefore allowing us to display ranks arranged in the
form of a cuboid.

Regarding the display scalability, another practical addition was that this 3D scene al-
lowed us to see that a very high number of ranks, such as with a 3D grid of 25x25x15
ranks or a 2D grid of 100x100 ranks. Far from bloating the scene, they are still easily
displayed in an understandable, and not particularly overwhelming view, when it would
be a struggle with Vampir to usefully show all that at once. We actually did not go
further simply because we were stopped by the low computational limits of memory and
compute power to display them on an office laptop. These number are much lower when
combining that display to the coloring of each rank along frames, where it is best to limit
ourselves to a few thousands ranks.

Indeed, Blender being widely known for being prone to crashes and for its hunger for
power and memory, it could not be satisfactory in the context of a long run development
of a tool, and it seems preferable and reasonable to move away from Blender for a more
stable and lightweight alternative, ideally not needing the user to install additional soft-
ware, such as a Javascript implementation running within a browser, which would allow
us many interesting additions such as specific behaviors with hovering or selecting objects.

Of course, the downside to that is that it would lead us to giving up outputting our

39

Exploring advanced visualization of MPI parallel programs 40

view to a video, since there is no easy way to encode them, especially across browsers
and in a standardized way. But this comes a very low price, indeed, they are the least
interactive and most rigid possible output, and have virtually no added value for the user
in the context of exploring a trace compared to viewing the trace within the 3D scene
itself before it is rendered: nobody would prefer a Vampir outputting to a simple image.

While such a tool will not replace Vampir or other existing trace visualization tools,
it does not propose to do so. But merely to be an interesting, useful and handy addition
to it, allowing the user to explore deeper into the trace data, and to make it faster to
grasp and study it.

Bibliography

Ayesha Afzal, Georg Hager, and Gerhard Wellein. “Analytic Modeling of Idle Waves
in Parallel Programs: Communication, Cluster Topology, and Noise Impact”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Ed. by Bradford L. Chamberlain
et al. Vol. 12728 LNCS. Springer Science and Business Media Deutschland GmbH,
June 24, 2021, pp. 351-371. 1SBN: 978-3-030-78712-7. pOI: 10.1007/978-3-030-
78713-4_19.

Ayesha Afzal, Georg Hager, and Gerhard Wellein. DisCostiC: A DSL-based Parallel
Simulation Framework using First-Principles Analytic Performance Models. Series:
PASC’22. June 27, 2022. URL: https://www.youtube. com/watch?v=RKEyaa_khcY.

Ayesha Afzal, Georg Hager, and Gerhard Wellein. DisCostiC: Simulating MPI Ap-
plications Without Fzxecuting Code. Series: SC’24. Nov. 17, 2024. URL: https://
sc24 . supercomputing . org/ proceedings / poster /poster _pages/post167 .
html.

Ayesha Afzal, Georg Hager, and Gerhard Wellein. DisCostiC:Digital Twin Perfor-
mance Sitmulations Unlocking Hardware-Software Interplay. Series: ISC’25. June 10,
2025. URL: https://isc . app . swapcard . com/widget / event / isc —high -
performance-2025/planning/UGxhbm5pbmdfMjU4NDU1Mg==.

Ayesha Afzal, Georg Hager, and Gerhard Wellein. Physical Oscillator Model for
Parallel Distributed Computing. Series: ISC-HPC’21. June 24, 2021. URL: https:
//app.swapcard.com/event/isc-high-performance-2021-digital/planning/
UGxhbmbpbmdfNDUzNTk2.

Ayesha Afzal, Georg Hager, and Gerhard Wellein. “Propagation and Decay of In-
jected One-Off Delays on Clusters: A Case Study”. In: Proceedings of the 2019 IEEE
International Conference on Cluster Computing. Vol. 2019-September. CLUSTER’19.
Institute of Electrical and Electronics Engineers Inc., Sept. 23, 2019, pp. 1-10. 1SBN:
978-1-7281-4734-5. DOI: 10.1109/CLUSTER.2019.8890995.

Ayesha Afzal, Georg Hager, and Gerhard Wellein. “The Role of Idle Waves, Desyn-
chronization, and Bottleneck Evasion in the Performance of Parallel Programs”.
In: IEEE Transactions on Parallel and Distributed Systems, TPDS (2022). DOL:
10.1109/TPDS.2022.3221085.

Blender 4.3 - Python API URL: https://docs.blender.org/api/4.3/.
Fritz - Documentation. URL: https://doc.nhr.fau.de/clusters/fritz/.

OTF2 3.0.3 - HTML Manual. URL: https://perftools.pages.jsc.fz-juelich.
de/cicd/otf2/doc.7£6882e3/.

41

https://doi.org/10.1007/978-3-030-78713-4_19
https://doi.org/10.1007/978-3-030-78713-4_19
https://www.youtube.com/watch?v=RKEyaa_khcY
https://sc24.supercomputing.org/proceedings/poster/poster_pages/post167.html
https://sc24.supercomputing.org/proceedings/poster/poster_pages/post167.html
https://sc24.supercomputing.org/proceedings/poster/poster_pages/post167.html
https://isc.app.swapcard.com/widget/event/isc-high-performance-2025/planning/UGxhbm5pbmdfMjU4NDU1Mg==
https://isc.app.swapcard.com/widget/event/isc-high-performance-2025/planning/UGxhbm5pbmdfMjU4NDU1Mg==
https://app.swapcard.com/event/isc-high-performance-2021-digital/planning/UGxhbm5pbmdfNDUzNTk2
https://app.swapcard.com/event/isc-high-performance-2021-digital/planning/UGxhbm5pbmdfNDUzNTk2
https://app.swapcard.com/event/isc-high-performance-2021-digital/planning/UGxhbm5pbmdfNDUzNTk2
https://doi.org/10.1109/CLUSTER.2019.8890995
https://doi.org/10.1109/TPDS.2022.3221085
https://docs.blender.org/api/4.3/
https://doc.nhr.fau.de/clusters/fritz/
https://perftools.pages.jsc.fz-juelich.de/cicd/otf2/doc.7f6882e3/
https://perftools.pages.jsc.fz-juelich.de/cicd/otf2/doc.7f6882e3/

Exploring advanced visualization of MPI parallel programs 42

[11]
[12]

[13]

[14]

[15]

OTF2 3.0.3 - PDF Manual. URL: https://perftools.pages.jsc.fz-juelich.
de/cicd/otf2/doc.7£6882e3/python/index.html.

OTF2 3.0.3 - Python Interface Reference Guide. URL: https://perftools.pages.
jsc.fz-juelich.de/cicd/otf2/doc.7£6882e3.pdf.

Lucas Mello Schnorr, Guillaume Huard, and Philippe O. A. Navaux. “Triva: In-
teractive 3D visualization for performance analysis of parallel applications”. In:
Future Generation Computer Systems 26.3 (2010), pp. 348-358. 1SSN: 0167-739X.
DOI: https://doi.org/10.1016/j.future.2009.10.006. URL: https://www.
sciencedirect.com/science/article/pii/S0167739X09001563.

Score-P - Cheat Sheet. URL: https://vampir.eu/public/files/pdf/spcheatsheet_
a4.pdf.

Score-P 8.1 - Documentation. URL: https://perftools.pages. jsc.fz-juelich.
de/cicd/scorep/tags/scorep-8.1/html/.

https://perftools.pages.jsc.fz-juelich.de/cicd/otf2/doc.7f6882e3/python/index.html
https://perftools.pages.jsc.fz-juelich.de/cicd/otf2/doc.7f6882e3/python/index.html
https://perftools.pages.jsc.fz-juelich.de/cicd/otf2/doc.7f6882e3.pdf
https://perftools.pages.jsc.fz-juelich.de/cicd/otf2/doc.7f6882e3.pdf
https://doi.org/https://doi.org/10.1016/j.future.2009.10.006
https://www.sciencedirect.com/science/article/pii/S0167739X09001563
https://www.sciencedirect.com/science/article/pii/S0167739X09001563
https://vampir.eu/public/files/pdf/spcheatsheet_a4.pdf
https://vampir.eu/public/files/pdf/spcheatsheet_a4.pdf
https://perftools.pages.jsc.fz-juelich.de/cicd/scorep/tags/scorep-8.1/html/
https://perftools.pages.jsc.fz-juelich.de/cicd/scorep/tags/scorep-8.1/html/

Appendix: Used Codes

A.1 Batch Job Script

#!/bin/bash -1

#

#

Usage of this script:

Find double question marks, and replace them with the corresponding values
Some comments can be crucial to read for correct settings
#

#SBATCH --ntasks-per-socket=27?

#SBATCH --sockets—per—node=??

#SBATCH --ntasks-per-node=22

#SBATCH --nodes=??

#SBATCH --ntasks=??

#SBATCH --cpus—per—task=1

#SBATCH --cpu-freq=2400000-2400000:performance

#SBATCH —--time=00:22:00

#SBATCH --job—name=comment??-ntasks??-program_name??

#SBATCH --mail-type=TIME_LIMIT # or =ALL,TIME_LIMIT 80

#SBATCH —--mail-user=2207.7

#SBATCH -o ../ntasks??_Jj/sbatch_output/out-Jz-/j-on-/N.out

#SBATCH -e ../ntasks??_Jj/sbatch_output/err-jz-/j-on-/jN.err

#SBATCH --export=NONE # don't export env from submitting shell

First non-comment line ends SBATCH options, so the next one does

s
77

mw

Preparing run environment and folders

®H B R

#

enable export of environment from this script to srun
unset SLURM_EXPORT_ENV

Setup

job environment (load modules, stage data, ...)

43

H O OR R R

Exploring advanced visualization of MPI parallel programs 44

module load scorep

Comment <f you don't want this script to handle the compilation
make distclean

make —j

make clean

Export the results folder mame for readability
export RESULTS_FOLDERNAME=ntasks$SLURM_NTASKS_$SLURM_JOB_ID

Score-P tracing parameters
export SCOREP_ENABLE_TRACING=true
export SCOREP_TOTAL_MEMORY=3GB #Default is 16M

Create the necessary directories and related variables to save useful info
cd ..

export TRACE_CONVERTER_ROOT_FOLDER=$PWD/$RESULTS_FOLDERNAME/

export PROGRAM_NAME=$(basename $(pwd))

mkdir -p $RESULTS_FOLDERNAME/extract/

mkdir -p $RESULTS_FOLDERNAME/sbatch_output/

Save this job script to the sbatch_output folder in case we need to debug
cp Code/job??7.sh $RESULTS_FOLDERNAME/sbatch_output/job.sh

Save the used code to the sbatch_output folder in case we need to debug
mkdir -p $RESULTS_FOLDERNAME/sbatch_output/used_code/
cp Code/?? $RESULTS_FOLDERNAME/sbatch_output/used_code/

Come back to the Code folder
cd Code

OpenMP and Hybrid jobs parameters

export OMP_NUM_THREADS=1 # 1 OpenMP thread per MPI process

for OpenMP, set number of threads to requested cpus—per-task

#export OMP_NUM_THREADS=£SLURM_CPUS_PER_TASK

for Hybrid Job, for Slurm wersion >22.05: cpus-per-task has to be set again
export SRUN_CPUS_PER_TASK=$SLURM_CPUS_PER_TASK

#=== ==
Printing program parameters

###-commented ones don't work/exist?

echo "=== PROGRAM PARAMETERS:
echo

Exploring advanced visualization of MPI parallel programs 45

echo "=== SLURM_CLUSTER_NAME = "$SLURM_CLUSTER_NAME

echo "=== SLURM_JOB_PARTITION = "$SLURM_JOB_PARTITION

echo "=== SLURM_JOB_NODELIST = "$SLURM_JOB_NODELIST

echo "=== SLURM_JOB_ID = "$SLURM_JOB_ID

echo "=== SLURM_NTASKS_PER_SOCKET = "$SLURM_NTASKS_PER_SOCKET

echo "=== SLURM_SOCKETS_PER_NODE = "$SLURM_SOCKETS_PER_NODE ###
echo "=== SLURM_NTASKS_PER_NODE = "$SLURM_NTASKS_PER_NODE

echo "=== SLURM_JOB_NUM_NODES = "$SLURM_JOB_NUM_NODES

echo "=== SLURM_NTASKS = "$SLURM_NTASKS

echo "=== SLURM_CPUS_PER_TASK = "$SLURM_CPUS_PER_TASKSRUN_CPUS_PER_TASK
echo "=== SRUN_CPUS_PER_TASK = "$SRUN_CPUS_PER_TASK

echo '"=== OMP_NUM_THREADS = "$0MP_NUM_THREADS

echo "=== SLURM_CPU_FREQ_REQ = "$SLURM_CPU_FREQ ###

echo "=== SBATCH_TIMELIMIT = "$SBATCH_TIMELIMIT ###

echo "=== SLURM_JOB_NAME = "$SLURM_JOB_NAME

echo "=== SBATCH_OUTPUT = "$SLURM_OUTPUT ###

echo "=== SBATCH_EXPORT = "$SBATCH_EXPORT ###

echo "=== SLURM_CPU_BIND_VERBOSE = "$SLURM_CPU_BIND_VERBOSE ###
echo "=== SLURM_CPU_BIND_TYPE = "$SLURM_CPU_BIND_TYPE ###

echo "=== SLURM_CPU_BIND_LIST = "$SLURM_CPU_BIND_LIST ###

echo "=== SLURM_CPU_BIND = "$SLURM_CPU_BIND ###

echo

echo "=== SCOREP_ENABLE_TRACING = "$SCOREP_ENABLE_TRACING

echo "=== SCOREP_TOTAL_MEMORY = "$SCOREP_TOTAL_MEMORY

echo "=== SCOREP_FILTERING_FILE = "$SCOREP_FILTERING_FILE

echo "=== SCOREP_METRIC_PERF = "$SCOREP_METRIC_PERF

echo "=== SCOREP_METRIC_PAPI = "$SCOREP_METRIC_PAPI

echo "=== SCOREP_EXPERIMENT_DIRECTORY = "$SCOREP_EXPERIMENT_DIRECTORY
echo

echo "=== TRACE_CONVERTER_ROOT_FOLDER = "$TRACE_CONVERTER_ROOT_FOLDER
echo "=== RESULTS_FOLDERNAME = "$RESULTS_FOLDERNAME

echo "=== SLURM_SUBMIT_DIR = "$SLURM_SUBMIT_DIR

echo "=== PROGRAM_NAME = "$PROGRAM_NAME

echo "=== COMMENTS = 7??" # put comments here, filtered?
echo "=== COMMENTS = " # input file/problem size
echo "=== COMMENTS =" # code modifications?

echo "=== COMMENTS =" # compilation and run conditions?
echo "=== COMMENTS = " # omp threads/deactivated?
echo

echo "=== Running the program now!"

echo

echo

#=== ===#

Run command

Exploring advanced visualization of MPI parallel programs 46

Run command with normal binding
srun --verbose --cpu-freq=2400000-2400000:performance \
--cpu-bind=verbose,cores ./binary?? # < input #??

H=== == = = == ===

Python : Ezxztraction of trace data

module load python
conda activate trace
python ../../../../trace_converter.py --root_folder=$TRACE_CONVERTER_ROOT_FOLDER

A.2 Makefile

CC = scorep mpiicc
to have compilation time filtering, replace with:
#CC = scorep —--instrument-filter=./scorep_filter_file mpiicc

FLAGS_OPENMP = -qopenmp

FLAGS_DEBUG = -g -00 # -g3 includes extra wnfo such as macro expansions
FLAGS_FAST = -03 -xAVX -fno-alias

FLAGS_WARNING = -std=cll -Wall -Wextra -pedantic

FLAGS_PROFILING = -pg

FLAGS_MACROS = -DREAD_INPUT #-MMD -MP

INCLUDES =

LIBS = -1m # aka LDFLAGS

FLAG_LIST_BUILD
FLAG_LIST_DEBUG

$ (FLAGS_MACROS) $(FLAGS_WARNING) $(FLAGS_FAST)
$ (FLAGS_MACROS) $(FLAGS_WARNING) $(FLAGS_DEBUG)

DEBUG = No
ifeq ($(DEBUG),No)
CFLAGS = $(FLAG_LIST_BUILD)

LIBS = -1m
else

CFLAGS = $(FLAG_LIST_DEBUG)
LIBS = -1m

endif

SRCDIR =

SRC = $(wi1dcard $ (SRCDIR) /*.c)
0BJ = $(SRC:.c=.0)

Exploring advanced visualization of MPI parallel programs

47

EXEC = binary
all: distclean $(EXEC) clean

binary: $(0BJ)

@$(CC) $(CFLAGS) -o $@ $~ $(LIBS)
Qecho "\033[1m"

@echo " DEBUG was set to $(DEBUG)."
Q@echo " Compilation done."

@echo "\033[0m"

In case there ts a .h file, the dependencies are not rebuilt
automatically when it s modified unless we add the following:
#main.o: filename.h

main.o: proc_info.h

solver.o: proc_info.h

%.0: $(SRCDIR)/%.c
@$(CC) $(CFLAGS) -c $< -o %o

clean:
@rm -rf *.o
@rm -rf *.0 2> /dev/null # Suppresses error messages

distclean:
@rm -rf $(EXEC) *.o
@rm -rf £(EXEC) *.o 2> /dev/null # Suppresses error messages

If there is a file nmamed clean newer than its dependencies in the
directory, it will not be executed unless we add the following:
.PHONY: distclean #dependencies will be systematically rebuilt

A.3 Optional Score-P Filtering File

SCOREP_REGION_NAMES_BEGIN
EXCLUDE *
SCOREP_REGION_NAMES_END

A.4 Triaxis-3Djacobi - Main

/*
* Copyright (c) 2021, Dirk Pletter, KTH
*

Exploring advanced visualization of MPI parallel programs 48

¥ 0% % X X %X %X % % %X %X % % ¥ ¥ % % % % % % % %x

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the mname of NVIDIA CORPORATION nor the names of tts
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ~"AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OUR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <limits.h>

#include <mpi.h>

// #include <hwloc.h>
// #include <sched.h>
#include "proc_ainfo.h"

//#ifndef MEASURETIME
//#define MEASURETIME O
//#endif

/%

*

Parallel solver implemented in the solver.c file

*/
int solver(double *, double *, int, int, int, double, int, \
struct proc_info *, int, int, int, int, int, int);

/%

*

Helper function that calculates the optimal partitioning of processes

Exploring advanced visualization of MPI parallel programs 49

for the current domain.

*/

static void find_optimal_partitioning(int nx, int ny, int nz, int size, \
int *NPROCX, int *NPROCY, int *NPROCZ);

int main(int argc, char** argv)

{

/*

* Setup Phase

*/

/*Initialize MPI and the process info struct*/
MPI_Init(&argc, &argv);

struct proc_info proc;

MPI_Comm_size (MPI_COMM_WORLD, &proc.size);
/*Get Tun parameters from input file and communicate it to all ranks*/

int myrank;
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;

int NX, NY, NZ, NPROCX, NPROCY, NPROCZ, PERIODICITY_X, PERIODICITY_Y, \
PERIODICITY_Z, NMAX, INJECTION_ITERATION, WORKLOAD_ITERATIONS, LAGGER_RANK;
double EPS;

if (myrank == 0)

{
/*Defaults*/
NX = 455;
NX += 2; // Add 2 for boundary points
NY = 455;
NY += 2; // Add 2 for boundary points
// NZ = 455;
// NZ += 2; // Add 2 for boundary points
PERIODICITY_X = O; // Setting pertodictity to O (= False)
PERIODICITY_Y = O;
PERIODICITY_Z = 0;
INJECTION_ITERATION = 3;
LAGGER_RANK = 5;
WORKLOAD_ITERATIONS = 100000000;
NMAX = 40;
EPS = 1le-5;

#1fdef READ_INPUT

printf ("\nInput NX, the grid size in the x direction:");
scanf ("%d", &NX);

NX += 2; // Add 2 for boundary points

Exploring advanced visualization of MPI parallel programs 50

printf ("\nInput NY, the grid size in the y direction:");

scanf ("%4", &NY);

NY += 2; // Add 2 for boundary points

// printf("\nInput NZ, the grid size in the z direction:");
// scanf("7d", ENZ);

// NZ += 2; // Add 2 for boundary points

// printf("\nInput NPROCX, number of ranks in the z direction:");
// scanf("4d", ENPROCX) ;

// printf("\nInput NPROCY, number of ranks in the y direction:");
// scanf("%d", ENPROCY);

// printf("\nInput NPROCZ, number of ranks in the z direction:");
// scanf("7d", E&NPROCZ);

printf ("\nInput PERIODICITY_X, O for false:");

scanf ("%d", &PERIODICITY_X);

printf ("\nInput PERIODICITY_Y, O for false:");

scanf ("%d", &PERIODICITY_Y);

printf ("\nInput PERIODICITY_Z, O for false:");

scanf ("%d", &PERIODICITY_Z);

printf ("\nInput INJECTION_ITERATION, the iteration number for \
the extra workload injection:");

scanf ("%d", &INJECTION_ITERATION);

printf ("\nInput LAGGER_RANK, the rank of the lagger for the \
extra worload injection:");

scanf ("%d", &LAGGER_RANK) ;

printf ("\nInput WORKLOAD_ITERATIONS, the iteration number for \
the extra workload:");

scanf ("%d", &WORKLOAD_ITERATIONS);

printf ("\nInput NMAX, the maximum iterations for the solver:");
scanf ("%d", &NMAX);

printf ("\nInput EPS, the error tolerance for the solver:");
scanf ("%1f", &EPS);

#endif

NZ = (int) ceil((20 * 1024 = 1024 / (8%2)) * proc.size / \

((NX - 2) = (NY - 2)));

NZ += 2; // Add 2 for boundary points
find_optimal_partitioning(NX-2, NY-2, NZ-2, proc.size, \
&NPROCX, &NPROCY, &NPROCZ);

printf ("\n-> Total grid size: NX=Jd x NY=Jd x NZ=Jd"

"\n-> Local grid size: NPROCX=}%d x NPROCY=Jd x NPROCZ=%d"

"\n-> Periodicity in X, Y and Z is: %d x %d x %d (0 is False)"
"\n-> Injecting an extra workload on iteration %d on rank %d"
"\n-> Extra workload is %d iterations"

"\n-> Max number of iterations: %d"

"\n-> Tolerance: %f\n\n",

NX, NY, NZ,

NPROCX, NPROCY, NPROCZ,

PERIODICITY_X, PERIODICITY_Y, PERIODICITY_Z,
INJECTION_ITERATION, LAGGER_RANK,

Exploring advanced visualization of MPI parallel programs 51

WORKLOAD_ITERATIONS,
NMAX,
EPS) ;

/* Send input parameters to all procs */

MPI_Bcast(&NX, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast(&NY, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast(&NZ, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast(&NPROCX, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast(&NPROCY, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&NPROCZ, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast(&PERIODICITY_X, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast(&PERIODICITY_Y, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&PERIODICITY_Z, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&NMAX, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast (&INJECTION_ITERATION, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast(&LAGGER_RANK, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast (4WORKLOAD_ITERATIONS, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
MPI_Bcast(&EPS, 1, MPI_DOUBLE, O, MPI_COMM_WORLD);

/*Set-up distribution of the grid among a 3D process arrangement*/

proc.dims[1] = NPROCX;
proc.dims[0] = NPROCY;
proc.dims[2] = NPROCZ;

/*Set up the cartesian communicator with reordering set to 0%/
int periods[3] = {PERIODICITY_X,PERIODICITY_Y,PERIODICITY_Z};
MPI_Cart_create(MPI_COMM_WORLD, 3, proc.dims, periods, O, &proc.cartcomm);

MPI_Comm_rank(proc.cartcomm, &proc.rank);

/*Get the ranks of the neighboring processes in all directions*/
MPI_Cart_shift(proc.cartcomm, O, 1, &proc.neighbors[BACK], \
&proc.neighbors [FRONT]) ;

MPI_Cart_shift(proc.cartcomm, 1, 1, &proc.neighbors[LEFT], \
&proc.neighbors [RIGHT]) ;

MPI_Cart_shift(proc.cartcomm, 2, 1, &proc.neighbors[DOWN], \
&proc.neighbors[UP]) ;

/*Get own cartesian coordinates*/
MPI_Cart_coords(proc.cartcomm, proc.rank, 3, proc.coords);

/*Local size of the grid; Additional rows and columns for boundary
points*/

size_t local_nx
size_t local_ny

((NX-2) /proc.dims[1]) + 2;
((NY-2) /proc.dims[0]) + 2;

Exploring advanced visualization of MPI parallel programs 52

size_t local_nz = ((NZ-2)/proc.dims[2]) + 2;

(local_ny - 2) * proc.coords[0];
(local_nx - 2) * proc.coords[1];
(local_nz - 2) * proc.coords[2];

int y_offset
int x_offset
int z_offset

/*
* If the grid points are not divisible by the processor dimension.
* The last processor on the azis will receive the remaining points.

*/
if (proc.coords[0] == proc.dims[0] - 1)
{
local_ny += ((NY - 2) 7 proc.dims[0]);
}
if (proc.coords[1] == proc.dims[1] - 1)
{
local_nx += ((NX - 2) % proc.dims[1]);
}
if (proc.coords[2] == proc.dims[2] - 1)
{
local_nz += ((NZ - 2) 7 proc.dims[2]);
}

// hwloc_topology_t topology;

// int nbcores;

/7

// hwloc_topology_init(&topology); // initialization

// hwloc_topology_load(topology); // actual detection

/7

// mbcores = hwloc_get_nbobjs_by_type(topology, HWLOC_OBJ_CORE);

// printf("/d cores\n", nbcores);

/7

// //int last_cpu_location = 0;

// hwloc_bitmap_t set = hwloc_bitmap_alloc();

// //hwloc_set_cpubind(topology, set, HWLOC_CPUBIND_THREAD);

/7

// int last_cpu_location = 0;//hwloc_get_last_cpu_location(topology, \
set, HWLOC_CPUBIND_THREAD); //0); \

//HWLOC_CPUBIND_PROCESS) ; //HWLOC_CPUBIND_THREAD)

// int cpubind = hwloc_get_cpubind(topology, set, \
HWLOC_CPUBIND_PROCESS); //0); //HWLOC_CPUBIND_PROCESS); //HWLOC_CPUBIND_THR.
// //int proc_cpubind = hwloc_get_proc_cpubind(topology, set, pid_t, HWLOC_(
//HWLOC_CPUBIND_PROCESS); //HWLOC_CPUBIND_THREAD)

/7

// int sched_cpu = sched_getcpu();

Exploring advanced visualization of MPI parallel programs 53

// unsigned int cpu, node;
// getcpu(&cpu, Enode);

/*Print for each rank its coordinates, neighbors,

and other topology infox/

printf ("\n-> My rank is: %d"

"\n-> My cartesian coordinates (x,y,z) are: (%d,%d,%d) for a \
total ranks number of (%d,%d,%d)"

"\n-> My neighbors are: RIGHT=),d, FRONT=)d, LEFT=%d, BACK=Jd, \
UP=%d, DOWN=%d"

"\n-> My local grid size is: local_nx=%d, local_ny=%d, \
local_nz=}d for a total grid size of NX=Jd, NY=Jd, NZ=Jd\n\n",
//"\n-> last_cpu_location=/d, cpubind=/d, sched_cpu=/d, cpu=/d, \
node=yd\n\n",

//"\n-> sched_cpu=/4d, cpu=/d, node=jd\n\n",

proc.rank,

proc.coords[1], proc.coords[0], proc.coords[2],

proc.dims[1], proc.dims[0], proc.dims[2],

proc.neighbors [RIGHT] ,proc.neighbors [FRONT] ,proc.neighbors [LEFT],
proc.neighbors [BACK] ,proc.neighbors [UP] ,proc.neighbors [DOWN],
(int) local_nx, (int) local_ny, (int) local_nz, NX, NY, NZ);//,
//sched_cpu, cpu, node);

//last_cpu_location, cpubind, sched_cpu, cpu, node);

/*MPI Datatype for the communtication of the boundary points

between processes*/

MPI_Type_vector(local_nz-2, local_nx-2, local_nx*local_ny,
MPI_DQUBLE, &proc.roll_xz);

MPI_Type_commit (&proc.roll_xz);

// Using MPI_Type_create_struct instead of this mon-fonctionning \
combination

// MPI_Type_vector(local_ny-2, 1, local_nz, MPI_DOUBLE, &proc.column);
// MPI_Type_commit (&proc.column);

// MPI_Type_vector(local_nz-2, 1, local_nz*local_ny, proc.column, \
&proc.pitch_yz);

// MPI_Type_commit (&proc.pitch_yz);

int *lengths = \
malloc((local_ny-2)*(local_nz-2)*sizeof (int));
MPI_Aint *displacements = N malloc((local_ny-2)*(local_nz-2)*sizeof (MPI_Aint)
MPI_Datatype *types = ! malloc((local_ny-2)*(local_nz-2)*sizeof (MPI_Datatype)
for (int iz = 0; iz < local_nz-2; iz++)
for (int iy = 0; iy < local_ny-2; iy++)
{
lengths[(local_ny-2)*iz + iy] = 1;
displacements[(local_ny-2)*iz + iy] = (MPI_Aint) \

Exploring advanced visualization of MPI parallel programs

o4

((local_nx*local_ny*(iz+1) + local_nx*(iy+1))*sizeof (double));

types[(local_ny-2)*iz + iy] = MPI_DOUBLE;
}

MPI_Type_create_struct((local_nz-2)*(local_ny-2), lengths, \

displacements, types, &proc.pitch_xz);
MPI_Type_commit (&proc.pitch_yz);

MPI_Type_vector(local_nx-2, local_ny-2, local_nx, MPI_DOUBLE, \

gproc.yaw_xy) ;
MPI_Type_commit (&proc.yaw_xy) ;

/*
* End of setup phase
*/

double *v;
double *f;

// Allocate memory

v = (double *) malloc(local_nz * local_ny * local_nx *

f = (double *) malloc(local_nz * local_ny * local_nx

// Initialise input

for (int iz = 0; iz < (int) local_nz; iz++)
for (int iy = 0; iy < (int) local_ny; iy++)
for (int ix = 0; ix < (int) local_nx; ix++)

{
v[local_ny*local_nx*iz + local_nx*iy + ix]
const double x = 2.0 * (ix+x_offset) / (NX
const double y = 2.0 * (iy+y_offset) / (NY
const double z = 2.0 * (iz+z_offset) / (NZ
f[local_ny*local_nx*iz + local_nx*iy + ix]
}

/*Start timer*/
//#1f MEASURETIME
//struct timespec ts;
//double start, end;
//if (proc.rank == 0)

sizeof (double));
* sizeof (double));

0.0;

1.0) - 1.0;//2
1.0) - 1.0;//2
1.0) - 1.0;//2

sin(x +y + 2);//?

/71
// clock_gettime (CLOCK_MONOTONIC, &ts);
// start = (double)ts.tvu_sec + (double)ts.tv_nsec * 1.e-9;
S/}

//#endi f

// Call solwer

Exploring advanced visualization of MPI parallel programs 55

solver(v, f, local_nx, local_ny, local_nz, EPS, NMAX, &proc, \
NX, NY, NZ, INJECTION_ITERATION, LAGGER_RANK, WORKLOAD_ITERATIONS);

/*End timer*/
//#if MEASURETIME
//if (proc.rank == 0)

/7L
// clock_gettime (CLOCK_MONOTONIC, &ts);
// end = (double)ts.tv_sec + (double)ts.tv_msec * 1.e-9;
/7 printf("Execution time: Jf s\n", end-start);
S/}
//#endif

//for (int iy = 0; iy < NY; dy++)
// for (int itz = 0; iz < NX; iz++)

// printf("/d, nd, se\n", iz, <y, v[iy*NX+iz]);
// Clean-up

free(v);

free(f);

// hwloc_bitmap_free(set);
// hwloc_topology_destroy(topology);

MPI_Type_free(&proc.roll_xz);
MPI_Type_free(&proc.pitch_yz);
free(displacements);
free(types);
MPI_Type_free(&proc.yaw_xy);
//MPI_Type_free(Eproc.column);
MPI_Finalize();

return O;

static void find_optimal_partitioning(int nx, int ny, int nz, int size, \
int *NPROCX, int *NPROCY, int *NPROCZ)

{

int min_surface_area = INT_MAX;

// Try all factor combinations nprocr * nprocy * mprocz = size
for (int nprocx = 1; nprocx <= size; nprocx++)

if (size % nprocx == 0)

{

int remaining ranks = size / nprocx;

Exploring advanced visualization of MPI parallel programs 56

for (int nprocy = 1; nprocy <= remaining_ranks; nprocy++)
if (remaining_ranks 7 nprocy == 0)
{

int nprocz = remaining_ranks / nprocy;

// Compute inter-rank surface area for this partitioning
int area = nprocx*ny*nz + Nprocy*nx*nz + Nprocz*nx*ny;

// Update minimum if better configuration found
if (area < min_surface_area)

{
min_surface_area = area;
*NPROCX = nprocx;
*NPROCY = nprocy;
*NPROCZ = nprocz;

}

A.5 Triaxis-3Djacobi - Proc_Info

#pragma once
#include <mpi.h>

#define FRONT O
#define RIGHT 1
#define BACK 2
#define LEFT 3
#define UP 4

#define DOWN 5

struct proc_

int
int
int
int
int

MPI_
MPI_
MPI_

};

info {
rank; /*Rank of the current process*/
size; /*Number of processes in total*/

coords[3]; /*Coordinates of the current process in the grid*/
neighbors[6]; /#Neighbors of the process in the cartesian grid*/
dims [3]; /*Dimension of the cartesian grid*/

Comm cartcomm; /*Cartesian communicator*/

Datatype roll_xz, pitch_yz, yaw_xy, column; /*MPI Types for faces*/
Request requests[12]; /#MPI Request handles instanciated in calls*/

A.6 Triaxis-3Djacobi - Solver

/*

* Copyright (c) 2021, Dirk Pletter, KTH

Exploring advanced visualization of MPI parallel programs o7

This source code s in parts based on code from Jiri Kraus (NVIDIA) and
Andreas Herten (Forschungszentrum Juelich)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclatimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of NVIDIA CORPORATION nor the names of tts
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ~"AS IS'' AND Any
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR Any DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON Any THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN Any WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POUSSIBILITY OF SUCH DAMAGE.
*/

¥ 0% % %X %X %X %X % % %X %X ¥ ¥ ¥ ¥ % % ¥ % ¥ % % % % % % %x

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "proc_info.h"

int solver(double *v, double *f, int nx, int ny, int nz, double eps,
int nmax, struct proc_info *proc, int NX, int NY, int NZ,
int INJECTION_ITERATION, int LAGGER_RANK, int WORKLOAD_ITERATIONS)
{
int n = 0;
double e = 2. * eps;
double *vp;
double sum = 1.0;

vp = (double *) malloc(nx * ny * nz * sizeof(double));

Exploring advanced visualization of MPI parallel programs 58

MPI_Barrier (proc->cartcomm) ;

while ((n < nmax)) //é#5 (e > eps))
{
e = 0.0;

/*Computation Phase*/

for(int iz = 1; iz < (nz-1); iz++)
for(int ix = 1; ix < (nx-1); ix++)
for (int iy = 1; iy < (ay-1); iy++)

{
double d;
vp [ny*nx*iz + nxxiy +ix] = -(1/6) =*
(f [ny*nx*iz + iy*nx + ix] - \
(v [ny*nx*iz + nx*iy + ix+1] + \
v [ny*nx*iz + nx*xiy + ix-1] + \
v [ny*nx*iz + nxx(iy+1) + ix] + \
v [ny*nx*iz + nxx(iy-1) + ix] + \
v [ny*nx*(iz+1) + nx*iy +ix] +\
v[ny*nx*(iz-1) + nx*iy +ix 1));
d = fabs(vp[nx*ny*iz+nx*iy+ix] - v[nx*ny*iz+nx*iy+ix]);
e=(d>e)?74d: e;
}

// Update v and compute error as well as error weight factor
double w = 0.0;

for(int iz = 1; iz < (nz-1); iz++)
for(int ix = 1; ix < (nx-1); ix++)
for (int iy = 1; iy < (ny-1); iy++)
{

v[ny*nx*iz + nx*iy + ix] = vp[ny*nx*iz + nx*iy + ix];
w += fabs(v[ny*nx*iz + nx*iy + ix]);

/*End of computation phase*/

/*Extra workload injection to generate an idle wave*/

if ((n == INJECTION_ITERATION) && (proc->rank == LAGGER_RANK))

{

sum = 1.0;

Exploring advanced visualization of MPI parallel programs 59

Va1

for (int j = 0; j < WORKLOAD_ITERATIONS; j++)
sum = sum + 4.0 / (1.0 + j * j);

printf ("\n\n Rank %d: Extra workload with a total \
sum of %12.6f MBytes.\n\n", proc->rank, sum);
// e =0.0;

// /*Computation Phase*/
// for(int iz = 1; 12 < (nz-1); iz++)

// for(int iz = 1; iz < (nz-1); tz++)

// for (int <y = 1; 4y < (ny-1); iy++)

// {
// double d;
/7 up [ny*nz*iz + nTkiy + gz] \

= -(1/6) * (flny*nz*iz + iy*nz + iz] - \

// (v[ny*nz*iz + nTkiyY + jx+1]
+ v[ny*ne*iz + nTkiy + gx-1] + \
// v[ny*nz*iz + nx*x(iy+1) + iz]
+ v[ny*nz*iz + nxx(iy-1) + iz] + \
// v [ny*nzc* (i2+1) + ne*iy + iz]
+ v[ny*nzc* (12-1) + neriy +4z]));
/7 d = fabs (vp[nz*ny*iz+ne*iy+iz] - \
v [ne*ny*iz+nz*iy+iz]);
// e=(d>e) ?2d: e;
/7 }

// // Update v and compute error \
as well as error weight factor

// double w = 0.0;

// for(int iz = 1; itz < (nz-1); iz++)

// for(int 1z = 1; iz < (nz-1); tz++)
// for (int ity = 1; 4y < (ny-1); iy++)
/7 {
/7 v[ny*nz*iz + nexiy + ix] = \
vp [ny*nz*iz + nxkiy + ix/;
/7 w += fabs(v[ny*nz*iz + nr*iy + ix]);
// }

// /*End of computation phase*/

// //T0D0: printf("\nRank Jd: Extra workload with \
a total sum of J12.6f MBytes.\n", proc->rank, ?);

Exploring advanced visualization of MPI parallel programs

60

/7 F
/*End of injection phase*/
/*Communication Phasex*/
MPI_Isend(&v[1#ny*nx + (ny-2)*nx +
proc—>neighbors [FRONT], O, proc->cartcomm,

MPI_TIsend(&v([l#ny*nx + 1*nx +
proc->neighbors[BACK], O, proc->cartcomm,

1], 1, proc->roll_xz,
gproc->requests[0]);

1], 1, proc->roll_xz,
&proc->requests[1]);

MPI_Isend(&v[1*ny*nx + 1*nx + (nx-2)], 1, proc—>pitch_yz,

proc->neighbors [RIGHT], 0O, proc->cartcomm,
MPI_Isend(&v[I*ny*nx + 1*nx +
proc->neighbors[LEFT], 0, proc->cartcomm,
MPI_Isend(&v[(nz-2)*ny*nx + 1*nx +
proc->neighbors [UP], 0, proc->cartcomm,
MPI_Isend(&v[l*ny*nx + 1#nx +
proc->neighbors[DOWN], O, proc->cartcomm,

MPI_Irecv(&v(I*ny*nx + (ny-1)*nx +
proc->neighbors [FRONT], O, proc->cartcomm,
MPI_Irecv(&v([l#ny*nx + O*nx +
proc->neighbors[BACK], 0, proc->cartcomm,

&proc->requests[2]);

1], 1, proc->pitch_yz,
gproc->requests[3]);

1], 1, proc—>yaw_xy,
&proc->requests[4]);

1], 1, proc->yaw_xy,
&proc->requests[5]);

1], 1, proc->roll_xz,
&proc->requests[6]);

1], 1, proc->roll_xz,
&proc->requests[7]);

MPI_Irecv(&v([I*ny*nx + 1*nx + (nx-1)], 1, proc->pitch_yz,

proc->neighbors[RIGHT], O, proc->cartcomm,
MPI_Irecv(&v[1*ny*nx + 1*nx +
proc->neighbors[LEFT], 0, proc->cartcomm,
MPI_Irecv(&v[(nz-1)*ny*nx + 1#nx +
proc->neighbors [UP], 0, proc->cartcomm,
MPI_TIrecv(&v([O*ny*nx + 1*nx +
proc->neighbors[DOWN], O, proc->cartcomm,

&proc->requests[8]);

0], 1, proc->pitch_yz,
&proc->requests[9]);

1], 1, proc->yaw_xy,
gproc->requests[10]);

1], 1, proc—>yaw_xy,
&proc->requests[11]);

MPI_Waitall(12, proc->requests, MPI_STATUSES_IGNORE);

/*End of communication phasex/

/*Compute weight on the boundary*/

// This is cancelled because we don't actually care about the \
Jacobr result and we want to have all computational load equal

/* if (proc->coords[0] == 0)
{

for (int <z
for (int iz

{

1; iz < (nz-1); iz++)
1; 2z < (nz-1); xz++)

//v[nx*1 + iz] = v[nz*x0 + ix];

Exploring advanced visualization of MPI parallel programs 61

w += fabs(v[ny*nz*iz + nx*0 + ix]);

}
}
if (proc->coords[0] == proc->dims[0]-1)
{
for (int iz = 1; 4z < (nz-1); iz++)
for (int itz = 1; 4z < (nz-1); txz++)
{
//vlne*(ny-2) + iz] = v[nz*(ny-1) + ix];
w += fabs(v[ny*nz*iz + nx*x(ny-1) + iz]);
}
}
if (proc->coords[1] == 0)
{
for (int iz = 1; 4z < (nz-1); iz++)
for (int <ty = 1; 4y < (ny-1); iy++)
{
//vlne*iy + 1] = v[nz*iy + 0J;
w += fabs(v[ny*nz*iz + nzxiy + 0]);
}
}
if (proc->coords[1] == proc->dims[1]-1)
{
for (int iz = 1; 4z < (nz-1); iz++)
for (int ity = 1; 4y < (ny-1); iy++)
{
//vnz*iy + (nx-2)] = vlnz*iy + (nz-1)];
w += fabs(v[ny*nz*iz + nx*iy + (nx-1)]);
}
}
if (proc->coords[2] == 0)
{
for (int ity = 1; iy < (ny-1); iy++)
for (int iz = 1; 4z < (nz-1); iz++)
{
//v[nz*ny*iz + 1] = v[nz*ny*iz + 0];
w += fabs(v[ny*nz*0 + nz*iy + iz]);
}
}

if (proc->coords[2] == proc->dims[2]-1)

{
for (int ity = 1; iy < (ny-1); iy++)
for (int iz = 1; 4z < (nz-1); iz++)

Exploring advanced visualization of MPI parallel programs 62

//vnerny*iz + (ny-2)] = v[nz*ny*iz + (ny-1)];
w += fabs(v[ny*nz*(nz-1) + ne*iy + iz]);

}

*/

//T0OD0: Reduce to 1 reduction operation

// We comment the Allreduces to avotid synchronization
//and to make the idle wave appear in the trace
//MPI_Allreduce (MPI_IN_PLACE, &e, 1, MPI_DOUBLE, MPI_MAX, \
proc->cartcomm) ;

//MPI_Allreduce (MPI_IN_PLACE, &w, 1, MPI_DOUBLE, MPI_SUM, \
proc->cartcomm) ;

w /= (NX * NY * NZ);
e /= w;

/*
if (proc->rank == 0)
{
if ((n 7 100) == 0 || n == 20)
printf("%5d, 70.4e\n", n, e);
F*/
n++;
}
free(vp);
if (proc->rank == 0)
{
if (e < eps)
printf ("Converged after Jd iterations (nx=%d, ny=%d, nz=/d, \
e=%.2e)\n", n, NX, NY, NZ, e);
else
printf ("ERROR: Failed to converge\n");
}

return (e < eps 7 0 : 1);

	Abstract
	Background
	Existing Trace Visualization Tools
	Motivation and Visualization Challenges
	Design Objectives and Graphic Framework Choice

	Workflow Architecture
	Trace Generation
	Trace Extraction
	The OTF2 format
	Extraction Script Usage

	Blender Scripting
	Video Generation

	Implementation
	Used Code
	The Jacobi method
	Idle Waves

	Testbed
	Hardware Setup
	Software Environment
	Test Scenarios
	Fviz1 Nodes
	Personal Laptop

	3D Visualization Implementations
	Perspective vs Orthographic Projection
	Different Geometries for Different Domains
	Line
	Circle
	Grid
	Tube
	Torus
	Sphere
	Cube

	Display choices
	Sparsity
	Camera movements
	Displaying MPI and Computation Phases

	Practical additions
	Ignoring Uninteresting Trace Events
	Reproducing the Vampir Visualization in Blender
	Communication Arrows
	Showing NUMA domains and displaying the Pinning
	Clock
	Identifying the Ranks

	Evaluation
	Effectiveness
	Usability
	Scalability
	Trace Extraction Script
	Blender's Limitations

	Future Work and Possible Directions
	Conclusion
	Appendix: Used Codes
	Batch Job Script
	Makefile
	Optional Score-P Filtering File
	Triaxis-3Djacobi - Main
	Triaxis-3Djacobi - Proc_Info
	Triaxis-3Djacobi - Solver

