DisCostiC: Digital Twin Performance Simulations
Unlocking Hardware-Software Interplay

Ayesha Afzal, Georg Hager, Gerhard Wellein

Problem statement

MPI-parallel distributed-memory applications can exhibit unpredictable behav-
ior when subjected to disturbances such as system noise, application noise, or
imbalances. The typical ”lock-step” pattern found in many numerical codes
may break down, causing the program to enter a desynchronized state where
computation naturally overlaps with communication. As a result, simply sum-
ming computation time and communication time may not accurately predict the
total runtime. This raises important questions about the dynamics of memory-
bound parallel applications and whether desynchronization, which facilitates
bottleneck evasion and communication-computation overlap, is always bene-
ficial for improving resource utilization. However, understanding this behav-
ior on real systems is challenging due to ambiguous effects, such as system
noise and variations in MPI implementations, and achieving a disturbance-free,
controlled environment is not feasible. One solution to studying this complex
hardware-software interaction is to use simulators, which provide controlled en-
vironments for experimentation. However, existing runtime simulators — such as
SST, BigSim, xSim, LogGOPSim, Dimemas, and SimGrid — are trace-based and
rely on traditional methods, often running directly on the target host architec-
ture. These simulators don’t adequately account for node-level bottlenecks and
do not leverage analytical performance models to enable intuitive architectural
exploration.

Our research approach and its strengths

We present an evaluation of the performance and dynamics of massively paral-
lel MPI applications using our cross-architecture, full-scale parallel simulation
framework. The key innovation of DisCostiC lies in its approach: rather than
running code on actual hardware, it utilizes application skeletons built with a
Domain-Specific Embedded Language (DSEL). Unlike trace-based simulators,
this method accurately encodes inter-process dependencies without introduc-
ing ambiguous effects. The machine model encompasses the entire hierarchy
of parallel systems — cores, chips, nodes, networks, and clusters — along with
inherent bottlenecks such as memory bandwidth and the interactions between



these components. DisCostiC integrates the application model, machine model,
performance models (including the Roofline model, Execution-Cache-Memory
(ECM) model, Hockney’s model, and LogGP variants), and the MPI imple-
mentation to generate simulated traces of the application. These traces can be
visualized using tools like the Google Chromium web browser, ITAC, or Vampir.

Poster structure

In this poster, we first demonstrate the exploration of simulations within the
framework, and then present experiments validating its efficiency and scalability.

Capabilities with two showcases

Hierarchical, hybrid, and heterogeneous (H3) clusters, such as Wisteria/BDEC-
01, present additional challenges, including slow inter-cluster communication
and varying network and memory bandwidth characteristics between clusters.
Along with the Fujitsu MPI library, the WaitIO-MPI wrapper [1], built on Intel
MPI, measures the network characteristics of MPI applications across hetero-
geneous clusters. Currently, DisCostiC uses the “socket” mode of WaitIO-MPI
for inter-cluster communication via the InfiniBand interconnect, rather than the
“file” mode (file system) or the “hybrid” mode (which selects either socket or
file based on message size). We investigate how the performance of one cluster
(Odyssey) affects the performance of another cluster (Aquarius) when both run
a balanced workload. The experiment illustrates the dynamics of the memory-
bound 2D four-point Jacobi code, using one A64FX node on Odyssey and one
Ice Lake chip on Aquarius, over 50 iterations and a domain size of 20,0002.
With a 128-byte eager limit in WaitlO-MPI, the rendezvous protocol is em-
ployed. In the balanced workload scenario, slow communication in the A64FX
and idle waves in A64FX processes — rippling delay caused by slow Ice Lake
processes and slow inter-cluster communication — result in fewer overlapping
compute processes, ultimately improving the effective bandwidth per process
through process desynchronization. In the second showcase, we conducted an
experiment comparing the simulation and real-run performance of a memory-
bound Jacobi application on 10 fixed nodes, with tasks per Ice Lake NUMA
domain varying from 1 to 18 for 10,000 iterations on a 20,000? domain. The
results demonstrate that DisCostiC accurately simulates non-scaling behavior
across cores within a single ccNUMA domain.

Accuracy, efficiency and scalability

We assess the accuracy of our simulation framework by comparing the perfor-
mance of various proxy structures from real-world applications, such as Cheby-
shev filter diagonalization, Gauss-Seidel Successive Over-Relaxation (GSSOR),
High-Performance Conjugate Gradients, and Optical Flow Solvers, across both
Intel (Ice Lake ICL, Sapphire Rapids SPR) and non-Intel (Odyssey) systems.



Additionally, we replicated the experiments from the first showcase, modifying
the setup to balance execution times on both Odyssey and Aquarius. To eval-
uate accuracy, we examine the error between actual and simulated runs, with
error being a typical metric. We establish an acceptable error threshold to ac-
count for uncertainties, but also recognize the impact of ambiguous noise effects
in real systems, which can influence the effectiveness of error metric. In our
experiments across all strong and weak scaling cases, the error remained below
2%, with the errors marked as data point labels in the second graph. The error
remained consistent across multiple iterations, indicating that the simulations
closely align with the accuracy of the underlying performance models, further
validating the reliability of our simulation framework for real-world performance
prediction. To evaluate the simulator’s performance, we ran twelve benchmarks
and applications for approximately 1500 seconds on a single Sapphire Rapids
node. For longer executions, the simulation time represented less than 1-2% of
the total runtime, demonstrating the simulator’s efficiency in scaling with the
application’s duration. However, for very short runs (less than one second), real
executions were more efficient, as expected, due to the overhead of simulation.
We also tested the simulator’s scalability by simulating 4548 processes, con-
sisting of 48 Odyssey processes and 4500 Aquarius processes. The simulation
was executed with 4501 processes (simulation processes + 1) on Fritz hardware,
which uses Ice Lake CPUs and an InfiniBand network. The results confirm
the simulator’s scalability, demonstrating its ability to handle large numbers of
processes effectively.

Outlook and future work

The findings demonstrate that the simulator enables model-based design-space
exploration, allowing the study of interactions between system components and
the performance characteristics of complex parallel systems. Ongoing work in-
cludes adding support for energy predictions, additional performance bottle-
necks (e.g., cache bottlenecks), and experimentation with both accelerated and
non-accelerated programs.



