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MPI processes per ccNUMA domain
system, adding ambiguous noise effects that obscure hardware-software interplay.

* QOur technique: Full-scale simulator using first-principles analytic models across
system hierarchies (cores, ccNUMA, chips, nodes, networks, clusters) = DisCostiC
* Our technique strengths

4 | Accuracy

1. Distinctiveness: Uses DSEL-based application skeletons to capture inter-process

dependencies, unlike trace-based simulators.

* Isthe error (actual run — simulated run) a reliable metric, considering the ambiguous noise
effects in the actual run?

* Accurate = error < threshold

* Tested various proxy structures of real-world applications, like Chebyshev filter diagonalization,
Gauss-Seidel Successive Over-Relaxation (GSSOR), High Performance Conjugate Gradients, and
Optical Flow Solver on Intel (Ice Lake ICL, Sapphire Rapids SPR) and non-Intel (Odyssey) systems.

2. Capabilities: Performance prediction, engineering, and design-space exploration
for any parallel system.
3. Accuracy: As accurate as the underlying white-box or gray-box models.

4. Efficiency: Simulates hardware, code, and interactions with performance models,
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error remains same across number of iterations
—> simulations as accurate as the underlying models

In all scaling cases: error < 2%

Wisteria/BDEC-01 system

 Odyssey with A64FX and Aquarius with Intel Ice Lake
 H3: Hierarchical, Hybrid, Heterogeneous
* h3-Open-SYS/WaitlO MPI library [1]

Efficiency

“1 Shared/large file system

* For longer runs, the simulation time accounts for
less than 1-2% of the total application runtime.
* For very short runs lasting less than a second, the

domain size iterations

N

(@)
—_
S

iterations .
Fast/small file system

1 TB/s, 1 PB

2D Four-Point Jacobi method
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* Communication bottleneck across inter-cluster link, limiting scalability
* Simulation vs. real run of MPI-parallel Jacobi application on Wisteria using Vampir visualization; "B =
real trace: red (comm + idle times); simulation: red (comm), white (idle times) Sca la bl llty
Real MPI trace Simulated MPI trace Real MPI trace Simulated MPI trace
0 T T T T T Tk = CMGO """""
A =/l Mol 8
= R B = . .
5 — T M2 S How does simulator performance vary with the _
7 § .................................. 10 —
§ 48 CMG3 __________ number Of processes? E —
A ccNUMAO 5 . .
5  Simulation of 4548 processes: 48 Odyssey g °
| ccNUMA1 & i = 1 [ _
o3 =————————J) = .. . processes and 1 to 4500 Aquarius processes g 6
iterations ' ' i i iterati . . . e
iteration 50 iterations 50 iterations 50 frerations >0 * Simulator running with 2 to 4501 processes ],
waitio_mpi_recv (... bottom, .. waitio_mpi_irecv (.., bottom, .. (5|.mglat|on processes + 1) on Frlt-z .hardware, § 2
> waitio_mpi_send (.., bottom, ..) 9;V3't'_fi,_mp'_',5‘?“d g( bfi_ttom')--) utilizing Ice Lake CPUs and an InfiniBand network H
” : waitio_mpi_isend (.., top, .. , )
2 waitio_mpi_send (.., top, .. > waitio_mpi_irecv (.., top, ..) * The simulator's performance trend with the oL = =[]
—> waitio_mpi_recv (.., top, ..) o LA r FEM o _ o BRSO S & OO S
> Jacobi a; ; = 0.25(aj_q ; + A j—1 + Qo1 j + Ay j41) ~ waitio_mpi_waitall (4, requests, statuses) number of processes indicates its scalability. D O L LR G
' ' ' ’ ’ —> Jacobi a; = 0.25(ai_1 +a; i1 taj;+a; '_|_1) > > > > > >
J J J J ] Number of Processes

References Acknowledgement

Outlook Future work

Capabilities unlocking
hardware-software
interplay

Good accuracy

High efficiency

Good scalability

[1] Sumimoto et al., 2023. A System-Wide Communication to Couple Multiple MPI
Programs for Heterogeneous Computing. DOI: 10.1007/978-3-031-29927-8 25

[2] Afzal et al., 2020. Desynchronization and Wave Pattern Formation in MPI-
Parallel and Hybrid Memory-Bound Programs.

|
i
; Experimentation with accelerated
I

DOI: 10.1007/978-3-030-50743-5 20 E
|
|
|
I

and non-accelerated programs

I
|
I
I
I
I
|
I
I
I
I
I
|
|
I
._ | bttos://eithub.com/RR Bundesministerium
[3] Afzal et al., 2022. Analytic Performance Model for Parallel Overlapping * Su ppOrt for additional pe rformance | ZE-HPC/DisCostiC-Sim fur Bildung
I
I
I
I
I
|
I
I
I
I
I
I
I

Memory-Bound Kernels. DOI: 10.1002/cpe.6816

[4] Ujeniya, 2024. Extending a Simulation Framework for Performance Assessment
of Parallel Applications

[5] Afzal et al., 2023. The Role of Idle Waves, Desynchronization, and Bottleneck
Evasion in the Performance of Parallel Programs. DOI:
10.1109/TPDS.2022.3221085

und Forschun
bottlenecks, e.g., caches bottleneck :

* Support for energy consumption
modelling



https://www.doi.org/10.1007/978-3-031-29927-8_25
https://www.doi.org/10.1007/978-3-030-50743-5_20
https://www.doi.org/10.1002/cpe.6816
https://www.doi.org/10.1109/TPDS.2022.3221085
https://github.com/RRZE-HPC/DisCostiC-Sim
https://github.com/RRZE-HPC/DisCostiC-Sim

