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Future work
• Experimentation with accelerated 

and non-accelerated programs
• Support for additional performance 

bottlenecks, e.g., caches bottleneck
• Support for energy consumption 

modelling

3 Capabilities: showcase 2

Comparison of measured and predicted scaling

• Capabilities unlocking 
hardware-software 
interplay

• Good accuracy
• High efficiency
• Good scalability

4 Accuracy

In all scaling cases: error < 2%
error remains same across number of iterations 

à simulations as accurate as the underlying models 

2 Capabilities: showcase 1

Wisteria/BDEC-01 system
• Odyssey with A64FX and Aquarius with Intel Ice Lake
• H3: Hierarchical, Hybrid, Heterogeneous
• h3-Open-SYS/WaitIO MPI library [1]

Cluster A Cluster B
Aquarius: data/learning nodes 

Intel Xeon Ice Lake + NVIDIA A100
45 nodes (90x Ice Lake, 360x A100)

InfiniBand HDR Interconnect
7.2 PF, 578.2 TB/s

#224 on Top500 Nov 2024 list

Inter-cluster InfiniBand 
interconnect

module	load )j, )jmpi, waitio
export	WAITIO_MASTER_PORT
= 7100
export	WAITIO_PBID = 0
export	WAITIO_NPB = 2
mpiexec numactl – cpunodebind
=4,5,6,7 ./waiWo−a64fx 20000 20000 
50 1 12 

module	load intel, impi, waitio
export	WAITIO_MASTER_PORT
= 7100
export	WAITIO_PBID = 1
export	WAITIO_NPB = 2
mpiexec – genv
I_MPI_PIN_PROCESSOR_LIST= 0−35
./waiWo−intel 20000 20000 50 0 0

WaitIO run on Cluster BWaitIO run on Cluster A

2D Four-Point Jacobi method
• Load imbalance between the two halves of the system (Odyssey & Aquarius), with one half in a 

lagging mode.
• Communication bottleneck across inter-cluster link, limiting scalability
• Simulation vs. real run of MPI-parallel Jacobi application on Wisteria using Vampir visualization; 

real trace: red (comm + idle times); simulation: red (comm), white (idle times)

Odyssey: simulation nodes
Fujitsu PRIMEHPC FX1000 (A64FX)

7,680 nodes (368,640 cores)
Tofu D Interconnect

25.9P F, 7.8 PB/s
#58 on Top500 Nov 2024 list

domain size
domain size

computing operations take place with less overlapping computing processes. The
number of overlapping computing processes is less that the number of processes
at which memory bandwidth saturates. Hence, each computing process with less
overlapping computing processes ends up having more effective bandwidth and offers
better performance. Such effect can also be called a staircase effect, as seen in the
traces. This computation-communication overlap due to high memory bandwidth
and low communication bandwidth acts as a boon in disguise.

(a) Trace for actual execution without barrier (b) Trace for simulation without barrier

(c) Trace for actual execution with barrier (d) Trace for simulation with barrier

Figure 5.7: Trace for Jacobi algorithm with 20K x 20K domain in Blocking mode.
A64FX computation< ICX computation. Blue : Computation, Red in actual execution:
Idletime, Red in simulation: Communication.

The slow communication in A64FX, shifts each computing operation further,
which keeps on adding a lot of idle time for the top neighboring process. The first rank
in the whole pool of process will have to wait a lot of time after the first timestep to
communicate. After the 1st timestep, there will always be an idle wave propagating
in A64FX processes when we use bottom-top communication pattern. This length of
idlewave will depend on the intercluster communication-time + the computation time
of ICX process on the intercluster boundary (i.e. MPI process 48 in this case). More
computing time required by the ICX processes means the idlewave will be bigger, and
the A64FX processes will remain in the desynchronized and contention-free computing
state.

Traces with barrier showcases that the ICX processes spend less time idling
due to a collective operation. First of all, due to low memory bandwidth compared
to A64FX, the ICX processes spend most of the time in the computation phase where
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DisCostiC is able to predict the performance in NON-BLOCKING mode as
well. Runtime in our case means the time taken to complete a certain number of
timesteps. We also know that some processes may take less time to complete all
timesteps due to desynchronization as compared to other processes. Overall, the
runtime from simulation may match the actual runtime due to the slowest process.
It may look like the simulator is able to capture all the details but in Non-blocking
case, the predictions match due to the slowest executing processes. There are some
more peculiar observations, which goes out of the scope of the simulator to model.
We explore this unexpected behavior in the next section.

5.3.6.1 Analyzing the traces of actual execution and simulation in Non-blocking
mode

(a) Trace for actual execution without barrier (b) Trace for simulation without barrier

Figure 5.12: Trace for Jacobi algorithm with 20K x 20K domain in Non-blocking mode.
A64FX computation< ICX computation. Blue : Computation, Red in actual execution:
Idletime, Red in simulation: Communication.

From the first case in Figure 5.12, we observe the similarities in actual and
simulated trace. The larger computing time from ICX desynchronizes the processes
in A64FX. We also observe that processes from CMG 1 finish earlier, whereas starting
from CMG 2 till CMG 4, the waiting time for each process increases. Eventually,
the intercluster boundary process in A64FX (process 47) has to wait till intercluster
boundary process in ICX (process 48) finishes communication. Also, the slow
intercluster communication leads to slow desynchronization in the 1st ccNUMA
domain in the ICX socket. As the number of timesteps increases, the processes in
ccNUMA 1 will be desynchronized, leading to more computation-communication
overlap.
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waitio_mpi_recv (.., bottom, ..) 
à waitio_mpi_send (.., bottom, ..)

 à waitio_mpi_send (.., top, ..)
à waitio_mpi_recv (.., top, ..)

à Jacobi 𝑎G,H = 0.25(𝑎GIJ,H + 𝑎G,HIJ + 𝑎GKJ,H + 𝑎G,HKJ)

waitio_mpi_irecv (.., bottom, ..)
à waitio_mpi_isend (.., bottom, ..)
à waitio_mpi_isend (.., top, ..)
à waitio_mpi_irecv (.., top, ..) 

à waitio_mpi_waitall (4, requests, statuses)
à Jacobi 𝑎G,H 	= 0.25(𝑎GIJ,H + 𝑎G,HIJ + 𝑎GKJ,H + 𝑎G,HKJ) 

Shared/large f i le  system
500 GB/s,  25.8  PB

Fast/smal l  f i le  system
1 TB/s,  1  PB

Figure 5.2: Bandwidth measurements for intrasocket, intersocket, internode and
intercluster cases using WaitIO MPI library.
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(a) A64FX intrasocket measurements
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(b) A64FX internode measurements

100 102 104 106 108
0

50

100

150

Message size in bytes [B]

Pe
r

pr
oc

es
s

ba
nd

w
id

th
[M

B/
s] 1 process per cluster

2 processes per cluster
4 processes per cluster
8 processes per cluster

16 processes per cluster
32 processes per cluster
36 processes per cluster

(c) A64FX$ICX intercluster measurements
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(d) ICX intrasocket measurements
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(e) ICX intersocket measurements
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(f) ICX internode measurements57

• Simulation vs. real-run performance of a 
memory-bound Jacobi application on 10 fixed 
nodes, varying the number of tasks per Ice Lake 
ccNUMA domain {1, 2, ..., 18} for 10K iterations 
on a 20𝑘+ domain.

• Comparison reveals that DisCostiC accurately 
handles scaling, which occurs across ccNUMA 
domains, but not across cores within a single 
ccNUMA domain.
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How does simulator performance vary with the 
number of processes?
• Simulation of 4548 processes: 48 Odyssey 

processes and 1 to 4500 Aquarius processes
• Simulator running with 2 to 4501 processes 

(simulation processes + 1) on Fritz hardware, 
utilizing Ice Lake CPUs and an InfiniBand network

• The simulator's performance trend with the 
number of processes indicates its scalability.

6 Scalability

5 Efficiency

How does the simulator perform?
• Twelve benchmarks and applications were 

executed for approximately 1500 seconds on a 
single Sapphire Rapids node.

• For longer runs, the simulation time accounts for 
less than 1-2% of the total application runtime. 

• For very short runs lasting less than a second, the 
real executions are more efficient, as expected. 
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What’s an effective metric for assessing the accuracy of a simulation? How can we 
determine it's accuracy?
• Is the error (actual run – simulated run) a reliable metric, considering the ambiguous noise 

effects in the actual run?
• Accurate è error < threshold
• Tested various proxy structures of real-world applications, like Chebyshev filter diagonalization, 

Gauss-Seidel Successive Over-Relaxation (GSSOR), High Performance Conjugate Gradients, and 
Optical Flow Solver on Intel (Ice Lake ICL, Sapphire Rapids SPR) and non-Intel (Odyssey) systems.

• Hypothesis: predicted runtime = predicted computation runtime from models like 

Roofline and ECM + predicted communication runtime from models like Hockney 

and LogGP  è 𝒕𝒑𝒓𝒆𝒅 = 𝒕𝐜𝐨𝐦𝐩 + 𝒕𝒄𝒐𝒎𝒎
• Reality: Hypothesis fails in certain cases è 𝒕𝒂𝒄𝒕𝒖𝒂𝒍 ⋚ 𝒕𝒑𝒓𝒆𝒅
• Reason: Hardware-software interplay; complex interaction of noise, hardware 

bottlenecks, and overlapping contributions
• Existing techniques: Workflows require traces or running the application on a real 

system, adding ambiguous noise effects that obscure hardware-software interplay.
• Our technique: Full-scale simulator using first-principles analytic models across 

system hierarchies (cores, ccNUMA, chips, nodes, networks, clusters) è DisCostiC
• Our technique strengths

1. Distinctiveness: Uses DSEL-based application skeletons to capture inter-process 

dependencies, unlike trace-based simulators.

2. Capabilities: Performance prediction, engineering, and design-space exploration

for any parallel system.

3. Accuracy: As accurate as the underlying white-box or gray-box models.

4. Efficiency: Simulates hardware, code, and interactions with performance models, 

requiring no real hardware execution or trace collection, saving time and resources.

5. Scalability: Supports large-scale studies, addressing hardware bottlenecks and effects 

not present at individual system hierarchy levels.

https://www.doi.org/10.1007/978-3-031-29927-8_25
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