
1 Problem and solution

DisCostiC: Digital Twin Performance Simulations
Unlocking Hardware-Software Interplay

Ayesha Afzal1, Georg Hager1, Gerhard Wellein2

1Erlangen National High Performance Computing Center (NHR@FAU)
2Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany

References Outlook Acknowledgement
[1] Sumimoto et al., 2023. A System-Wide Communication to Couple Multiple MPI
Programs for Heterogeneous Computing. DOI: 10.1007/978-3-031-29927-8_25
[2] Afzal et al., 2020. Desynchronization and Wave Pattern Formation in MPI-
Parallel and Hybrid Memory-Bound Programs.
DOI: 10.1007/978-3-030-50743-5_20
[3] Afzal et al., 2022. Analytic Performance Model for Parallel Overlapping
Memory-Bound Kernels. DOI: 10.1002/cpe.6816
[4] Ujeniya, 2024. Extending a Simulation Framework for Performance Assessment
of Parallel Applications
[5] Afzal et al., 2023. The Role of Idle Waves, Desynchronization, and Bottleneck
Evasion in the Performance of Parallel Programs. DOI:
10.1109/TPDS.2022.3221085

https://github.com/RR
ZE-HPC/DisCostiC-Sim

Future work
• Experimentation with accelerated

and non-accelerated programs
• Support for additional performance

bottlenecks, e.g., caches bottleneck
• Support for energy consumption

modelling

3 Capabilities: showcase 2

Comparison of measured and predicted scaling

• Capabilities unlocking
hardware-software
interplay

• Good accuracy
• High efficiency
• Good scalability

4 Accuracy

In all scaling cases: error < 2%
error remains same across number of iterations

à simulations as accurate as the underlying models

2 Capabilities: showcase 1

Wisteria/BDEC-01 system
• Odyssey with A64FX and Aquarius with Intel Ice Lake
• H3: Hierarchical, Hybrid, Heterogeneous
• h3-Open-SYS/WaitIO MPI library [1]

Cluster A Cluster B
Aquarius: data/learning nodes

Intel Xeon Ice Lake + NVIDIA A100
45 nodes (90x Ice Lake, 360x A100)

InfiniBand HDR Interconnect
7.2 PF, 578.2 TB/s

#224 on Top500 Nov 2024 list

Inter-cluster InfiniBand
interconnect

module	load)j,)jmpi, waitio
export	WAITIO_MASTER_PORT
= 7100
export	WAITIO_PBID = 0
export	WAITIO_NPB = 2
mpiexec numactl – cpunodebind
=4,5,6,7 ./waiWo−a64fx 20000 20000
50 1 12

module	load intel, impi, waitio
export	WAITIO_MASTER_PORT
= 7100
export	WAITIO_PBID = 1
export	WAITIO_NPB = 2
mpiexec – genv
I_MPI_PIN_PROCESSOR_LIST= 0−35
./waiWo−intel 20000 20000 50 0 0

WaitIO run on Cluster BWaitIO run on Cluster A

2D Four-Point Jacobi method
• Load imbalance between the two halves of the system (Odyssey & Aquarius), with one half in a

lagging mode.
• Communication bottleneck across inter-cluster link, limiting scalability
• Simulation vs. real run of MPI-parallel Jacobi application on Wisteria using Vampir visualization;

real trace: red (comm + idle times); simulation: red (comm), white (idle times)

Odyssey: simulation nodes
Fujitsu PRIMEHPC FX1000 (A64FX)

7,680 nodes (368,640 cores)
Tofu D Interconnect

25.9P F, 7.8 PB/s
#58 on Top500 Nov 2024 list

domain size
domain size

computing operations take place with less overlapping computing processes. The
number of overlapping computing processes is less that the number of processes
at which memory bandwidth saturates. Hence, each computing process with less
overlapping computing processes ends up having more effective bandwidth and offers
better performance. Such effect can also be called a staircase effect, as seen in the
traces. This computation-communication overlap due to high memory bandwidth
and low communication bandwidth acts as a boon in disguise.

(a) Trace for actual execution without barrier (b) Trace for simulation without barrier

(c) Trace for actual execution with barrier (d) Trace for simulation with barrier

Figure 5.7: Trace for Jacobi algorithm with 20K x 20K domain in Blocking mode.
A64FX computation< ICX computation. Blue : Computation, Red in actual execution:
Idletime, Red in simulation: Communication.

The slow communication in A64FX, shifts each computing operation further,
which keeps on adding a lot of idle time for the top neighboring process. The first rank
in the whole pool of process will have to wait a lot of time after the first timestep to
communicate. After the 1st timestep, there will always be an idle wave propagating
in A64FX processes when we use bottom-top communication pattern. This length of
idlewave will depend on the intercluster communication-time + the computation time
of ICX process on the intercluster boundary (i.e. MPI process 48 in this case). More
computing time required by the ICX processes means the idlewave will be bigger, and
the A64FX processes will remain in the desynchronized and contention-free computing
state.

Traces with barrier showcases that the ICX processes spend less time idling
due to a collective operation. First of all, due to low memory bandwidth compared
to A64FX, the ICX processes spend most of the time in the computation phase where

69

computing operations take place with less overlapping computing processes. The
number of overlapping computing processes is less that the number of processes
at which memory bandwidth saturates. Hence, each computing process with less
overlapping computing processes ends up having more effective bandwidth and offers
better performance. Such effect can also be called a staircase effect, as seen in the
traces. This computation-communication overlap due to high memory bandwidth
and low communication bandwidth acts as a boon in disguise.

(a) Trace for actual execution without barrier (b) Trace for simulation without barrier

(c) Trace for actual execution with barrier (d) Trace for simulation with barrier

Figure 5.7: Trace for Jacobi algorithm with 20K x 20K domain in Blocking mode.
A64FX computation< ICX computation. Blue : Computation, Red in actual execution:
Idletime, Red in simulation: Communication.

The slow communication in A64FX, shifts each computing operation further,
which keeps on adding a lot of idle time for the top neighboring process. The first rank
in the whole pool of process will have to wait a lot of time after the first timestep to
communicate. After the 1st timestep, there will always be an idle wave propagating
in A64FX processes when we use bottom-top communication pattern. This length of
idlewave will depend on the intercluster communication-time + the computation time
of ICX process on the intercluster boundary (i.e. MPI process 48 in this case). More
computing time required by the ICX processes means the idlewave will be bigger, and
the A64FX processes will remain in the desynchronized and contention-free computing
state.

Traces with barrier showcases that the ICX processes spend less time idling
due to a collective operation. First of all, due to low memory bandwidth compared
to A64FX, the ICX processes spend most of the time in the computation phase where

69

DisCostiC is able to predict the performance in NON-BLOCKING mode as
well. Runtime in our case means the time taken to complete a certain number of
timesteps. We also know that some processes may take less time to complete all
timesteps due to desynchronization as compared to other processes. Overall, the
runtime from simulation may match the actual runtime due to the slowest process.
It may look like the simulator is able to capture all the details but in Non-blocking
case, the predictions match due to the slowest executing processes. There are some
more peculiar observations, which goes out of the scope of the simulator to model.
We explore this unexpected behavior in the next section.

5.3.6.1 Analyzing the traces of actual execution and simulation in Non-blocking
mode

(a) Trace for actual execution without barrier (b) Trace for simulation without barrier

Figure 5.12: Trace for Jacobi algorithm with 20K x 20K domain in Non-blocking mode.
A64FX computation< ICX computation. Blue : Computation, Red in actual execution:
Idletime, Red in simulation: Communication.

From the first case in Figure 5.12, we observe the similarities in actual and
simulated trace. The larger computing time from ICX desynchronizes the processes
in A64FX. We also observe that processes from CMG 1 finish earlier, whereas starting
from CMG 2 till CMG 4, the waiting time for each process increases. Eventually,
the intercluster boundary process in A64FX (process 47) has to wait till intercluster
boundary process in ICX (process 48) finishes communication. Also, the slow
intercluster communication leads to slow desynchronization in the 1st ccNUMA
domain in the ICX socket. As the number of timesteps increases, the processes in
ccNUMA 1 will be desynchronized, leading to more computation-communication
overlap.

74

DisCostiC is able to predict the performance in NON-BLOCKING mode as
well. Runtime in our case means the time taken to complete a certain number of
timesteps. We also know that some processes may take less time to complete all
timesteps due to desynchronization as compared to other processes. Overall, the
runtime from simulation may match the actual runtime due to the slowest process.
It may look like the simulator is able to capture all the details but in Non-blocking
case, the predictions match due to the slowest executing processes. There are some
more peculiar observations, which goes out of the scope of the simulator to model.
We explore this unexpected behavior in the next section.

5.3.6.1 Analyzing the traces of actual execution and simulation in Non-blocking
mode

(a) Trace for actual execution without barrier (b) Trace for simulation without barrier

Figure 5.12: Trace for Jacobi algorithm with 20K x 20K domain in Non-blocking mode.
A64FX computation< ICX computation. Blue : Computation, Red in actual execution:
Idletime, Red in simulation: Communication.

From the first case in Figure 5.12, we observe the similarities in actual and
simulated trace. The larger computing time from ICX desynchronizes the processes
in A64FX. We also observe that processes from CMG 1 finish earlier, whereas starting
from CMG 2 till CMG 4, the waiting time for each process increases. Eventually,
the intercluster boundary process in A64FX (process 47) has to wait till intercluster
boundary process in ICX (process 48) finishes communication. Also, the slow
intercluster communication leads to slow desynchronization in the 1st ccNUMA
domain in the ICX socket. As the number of timesteps increases, the processes in
ccNUMA 1 will be desynchronized, leading to more computation-communication
overlap.

74

CMG 0

CMG 1

CMG 2

CMG 3

ccNUMA 0

ccNUMA 1

O
dy

ss
ey

Aq
ua

riu
sPr
oc
es
sr
an
k

0

48

83
iterations 50

iterations iterations

iterations 50 iterations 50 iterations 50

Real	MPI	trace	 Simulated	MPI	trace	 Real	MPI	trace	 Simulated	MPI	trace	

waitio_mpi_recv (.., bottom, ..)
à waitio_mpi_send (.., bottom, ..)

 à waitio_mpi_send (.., top, ..)
à waitio_mpi_recv (.., top, ..)

à Jacobi 𝑎G,H = 0.25(𝑎GIJ,H + 𝑎G,HIJ + 𝑎GKJ,H + 𝑎G,HKJ)

waitio_mpi_irecv (.., bottom, ..)
à waitio_mpi_isend (.., bottom, ..)
à waitio_mpi_isend (.., top, ..)
à waitio_mpi_irecv (.., top, ..)

à waitio_mpi_waitall (4, requests, statuses)
à Jacobi 𝑎G,H 	= 0.25(𝑎GIJ,H + 𝑎G,HIJ + 𝑎GKJ,H + 𝑎G,HKJ)

Shared/large f i le system
500 GB/s, 25.8 PB

Fast/smal l f i le system
1 TB/s, 1 PB

Figure 5.2: Bandwidth measurements for intrasocket, intersocket, internode and
intercluster cases using WaitIO MPI library.

100 102 104 106 108
0

0.5

1

1.5

·103

Message size in bytes [B]

Pe
r

pr
oc

es
s

ba
nd

w
id

th
[M

B/
s] 1 process

2 processes
4 processes
8 processes

16 processes
32 processes
48 processes

(a) A64FX intrasocket measurements

100 102 104 106 108
0

100

200

300

Message size in bytes [B]

1 process per node
2 processes per node
4 processes per node
8 processes per node
16 processes per node
32 processes per node
48 processes per node

(b) A64FX internode measurements

100 102 104 106 108
0

50

100

150

Message size in bytes [B]

Pe
r

pr
oc

es
s

ba
nd

w
id

th
[M

B/
s] 1 process per cluster

2 processes per cluster
4 processes per cluster
8 processes per cluster

16 processes per cluster
32 processes per cluster
36 processes per cluster

(c) A64FX$ICX intercluster measurements

100 102 104 106 108
0

2

4

6

·103

Message size in bytes [B]

1 process
2 processes
4 processes
8 processes

16 processes
32 processes
36 processes

(d) ICX intrasocket measurements

100 102 104 106 108
0

2

4

6
·103

Message size in bytes [B]

Pe
r

pr
oc

es
s

ba
nd

w
id

th
[M

B/
s] 1 process per socket

2 processes per socket
4 processes per socket
8 processes per socket
16 processes per socket
32 processes per socket
36 processes per socket

(e) ICX intersocket measurements

100 102 104 106 108
0

2

4

6
·103

Message size in bytes [B]

1 process per node
2 processes per node
4 processes per node
8 processes per node

16 processes per node
32 processes per node
36 processes per node

(f) ICX internode measurements57

• Simulation vs. real-run performance of a
memory-bound Jacobi application on 10 fixed
nodes, varying the number of tasks per Ice Lake
ccNUMA domain {1, 2, ..., 18} for 10K iterations
on a 20𝑘+ domain.

• Comparison reveals that DisCostiC accurately
handles scaling, which occurs across ccNUMA
domains, but not across cores within a single
ccNUMA domain.

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·104

0

20

40

60

80

100

120

3.74 2.98 2.97 2.96 2.95 2.94

3.27 1.97 1.96 1.95 1.94 1.93

3.28 2.74 2.71 2.7 2.69

6.4 3.71 3.68 3.67 3.65

Number of iterations
Pe

rfo
rm

an
ce

[it
/s

]

Actual w/o barrier (b. workload) Simulation w/o barrier (b. workload)
Actual w barrier (b. workload) Simulation w barrier (b. workload)
Actual w/o barrier (b. runtime) Simulation w/o barrier (b. runtime)
Actual w barrier (b. runtime) Simulation w barrier (b. runtime)

1

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

Number of nodes

Er
ro

r[
%

]

GSSOR-ICL weak scaling GSSOR-ICL strong scaling
GSSOR-SPR weak scaling GSSOR-SPR strong scaling

STREAM-ICL weak scaling STREAM-ICL strong scaling
STREAM-SPR weak scaling STREAM-SPR strong scaling

errors shown as data point labels
experiments: same as in , and also with balanced execution times5

How does simulator performance vary with the
number of processes?
• Simulation of 4548 processes: 48 Odyssey

processes and 1 to 4500 Aquarius processes
• Simulator running with 2 to 4501 processes

(simulation processes + 1) on Fritz hardware,
utilizing Ice Lake CPUs and an InfiniBand network

• The simulator's performance trend with the
number of processes indicates its scalability.

6 Scalability

5 Efficiency

How does the simulator perform?
• Twelve benchmarks and applications were

executed for approximately 1500 seconds on a
single Sapphire Rapids node.

• For longer runs, the simulation time accounts for
less than 1-2% of the total application runtime.

• For very short runs lasting less than a second, the
real executions are more efficient, as expected.

2 4 6 8 10 12 14 16 18

50

100

150

200

MPI processes per ccNUMA domain

Pe
rfo

rm
an

ce
[it

/s
]

Actual
Simulated

DDOT

vec
tor

SU
M

WAXPBY

DAXPY

DSC
AL

ST
REAM

Sch
oen

au
er

DCOPY
ADD

2D
5p

tJa
cob

i

3D
7p

tJa
cob

i

GSS
OR

0

5 · 10−2

0.1

0.15

0.2

Simulation time [s]

Pe
rc

en
ta

ge
of

ap
pl

ica
tio

n
ru

nt
im

e
[%

]

48+
36

48+
360

48+
660

48+
100

0

48+
200

0

48+
250

0

48+
300

0

48+
360

0

48+
400

0

48+
450

0
0

2

4

6

8

10

Number of Processes

Si
m

ul
at

io
n

tim
e

[s]

What’s an effective metric for assessing the accuracy of a simulation? How can we
determine it's accuracy?
• Is the error (actual run – simulated run) a reliable metric, considering the ambiguous noise

effects in the actual run?
• Accurate è error < threshold
• Tested various proxy structures of real-world applications, like Chebyshev filter diagonalization,

Gauss-Seidel Successive Over-Relaxation (GSSOR), High Performance Conjugate Gradients, and
Optical Flow Solver on Intel (Ice Lake ICL, Sapphire Rapids SPR) and non-Intel (Odyssey) systems.

• Hypothesis: predicted runtime = predicted computation runtime from models like

Roofline and ECM + predicted communication runtime from models like Hockney

and LogGP è 𝒕𝒑𝒓𝒆𝒅 = 𝒕𝐜𝐨𝐦𝐩 + 𝒕𝒄𝒐𝒎𝒎
• Reality: Hypothesis fails in certain cases è 𝒕𝒂𝒄𝒕𝒖𝒂𝒍 ⋚ 𝒕𝒑𝒓𝒆𝒅
• Reason: Hardware-software interplay; complex interaction of noise, hardware

bottlenecks, and overlapping contributions
• Existing techniques: Workflows require traces or running the application on a real

system, adding ambiguous noise effects that obscure hardware-software interplay.
• Our technique: Full-scale simulator using first-principles analytic models across

system hierarchies (cores, ccNUMA, chips, nodes, networks, clusters) è DisCostiC
• Our technique strengths

1. Distinctiveness: Uses DSEL-based application skeletons to capture inter-process

dependencies, unlike trace-based simulators.

2. Capabilities: Performance prediction, engineering, and design-space exploration

for any parallel system.

3. Accuracy: As accurate as the underlying white-box or gray-box models.

4. Efficiency: Simulates hardware, code, and interactions with performance models,

requiring no real hardware execution or trace collection, saving time and resources.

5. Scalability: Supports large-scale studies, addressing hardware bottlenecks and effects

not present at individual system hierarchy levels.

https://www.doi.org/10.1007/978-3-031-29927-8_25
https://www.doi.org/10.1007/978-3-030-50743-5_20
https://www.doi.org/10.1002/cpe.6816
https://www.doi.org/10.1109/TPDS.2022.3221085
https://github.com/RRZE-HPC/DisCostiC-Sim
https://github.com/RRZE-HPC/DisCostiC-Sim

