
Using containers on the HPC systems at NHR@FAU

HPC Services, NHR@FAU

hpc-support@fau.de

https://doc.nhr.fau.de

mailto:hpc-support@fau.de
https://doc.nhr.fau.de/

22025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Agenda

This presentation introduces the usage of container to manage software environments.

They offer greater portability and reproducibility and are relevant as a replacement for the

python or conda virtual environments.

1. Introduction

▪ Why use container in your HPC project?

2. Container basics

▪ OS-level virtualization

3. Setting up your environment

▪ Starting with a fresh container

▪ Utilizing existing container

▪ Using our recipes as drop-in venv replacement

4. Troubleshooting and Best Practices

▪ Recap of building and using container

▪ First step for troubleshooting

Introduction & Motivation

Why use container for HPC/AI workloads?

▪ Portability and Reproducibility

▪ BYOE: Bring Your Own

Environment!

▪ Less dependence on software

and their version present on

cluster

▪ Easy copying between systems

▪ Simple distribution through

hubs

4

Source: https://arxiv.org/pdf/2005.14165

▪ Flexibility

▪ System packages can be

installed easily inside the

container

▪ Fakeroot feature gives you root

access not possible directly on

cluster

▪ Build on own devices and copy

any HPC system

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Why use container for HPC/AI workloads?

Storage performance

▪ Problem

▪ Pythons pip packaging system needs

virtual environments for preventing

version conflicts of multiple projects,

thereby creating many small files

▪ Loading many small files from storage

takes long and slows down general

file system performance due to

overhead

5

▪ Solution
▪ One big container with all relevant

files loading fast and running

isolated form other projects

▪ Fast copying of files

Remember HPC Café:

Handling many small

files and managing AI

data sets (from February

11, 2025)

Would you rather carry

1,000 puzzle pieces with

or without a box?

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Why use container for HPC/AI workloads?

Because you should!

▪ Increasing problems with python conflicts and file counts

▪ Python modules will be removed from the newer clusters

▪ Limited inodes on Helma (quota of 500k per group)

62025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Survey

7

Have you encountered slow environment

setup and loading times?

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Container basics

OS-level virtualization

▪ Operating system virtualization paradigm

where the kernel allows multiple isolated user

space instances to exist

▪ Programs running environment is limited to the

container’s contents and individually bound

libraries from outside (like CUDA/MPI)

▪ Shared kernel approach where all containers

share the same OS kernel, unlike full

virtualization that requires separate operating

systems

9

Host Hardware

Host OS

Shared Kernel

Container:

Programs

Guest OS

& Root file

system

User Filesystem & Libs

Container:

Programs

Guest OS

& Root file

system

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Apptainer

10

▪ Open source container application

optimized for HPC systems

▪ Began 2015 as project at the

Lawrence Berkeley National

Laboratory as Singularity

▪ Now part of the Linux Foundation

as Apptainer

▪ Support of InfiniBand and Intel

Omni-Path

▪ PCIe device support like GPUs

▪ Open MPI support via two

approaches

▪ Integrates into SLURM

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Storage Concept

11

▪ Once build, a containers storage is packed as

one immutable .sif file

▪ Set up container as environment and add

libraries or static dependencies inside

▪ → use your host file system as storage of the

changing project files (e.g. python/c++ files)

▪ Container sandboxes should only used during

building and removed afterwards (ideally on own

system or in $TMPDIR)!

▪ After development build one container with all

files as a production version and share it

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Host OS

Container

fixed storage

Programs,

libs, packages

User Filesystem:

mutable

avoid many small files!

$HOME, /anvme, …

Container

sandbox

mutable

only use

during

building!

Setting up your environment

Workflow for using Apptainer

13

apptainer build --
sandbox $TMPDIR/

Container

apptainer build --
writable $TMPDIR/

container.img Container

apptainer build
container.sif my.def

apptainer build
container.sif

docker://ubuntu

Interactive Development Build from Recipe

Build from Docker

apptainer run container.sif
apptainer shell container.sif
apptainer exec container.sif …

Container Execution

apptainer push
library://...

Reproducible Sharing

Build Environment Production Environment

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Introductory Example: Using Existing Container

apptainer pull docker://ghcr.io/apptainer/lolcow
apptainer exec lolcow_latest.sif cowsay moo

< moo >

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

142025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Build your own container interactively

▪ Create sandbox

▪ apptainer build –-sandbox <container_name>/ docker://<base_container>

▪ Enter writable container

▪ apptainer shell –-writable <container_name>

▪ Convert sandbox to image and back

▪ apptainer build <container_name>.sif <container_name>

▪ apptainer build –-sandbox <container_name> <container_name>.sif

▪ Make sure to set python packages location inside the container and not in your

home file system!

▪ Delete unpacked sandbox afterwards!

152025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Build your own container from def file

▪ Build container

▪ apptainer build <container_name>.sif <definition_file>

▪ Def file: python example

16

Bootstrap: docker
From: dockerhub-mirror.rrze.uni-erlangen.de/python:3.10

%files
requirements.txt

%environment
export LISTEN_PORT=54321

%post
pip install --root-user-action=ignore -r requirements.txt

%runscript
echo "Container was created $NOW"
echo "Arguments received: $*"
exec echo "$@"

Define base container

Files needed from file system

Set environment variable persistently present in the container

Put your system setup here

Executed when the container is run

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Build your own container from def file

▪ Def file: From conda environment

17

Bootstrap: docker
From: dockerhub-mirror.rrze.uni-erlangen.de/condaforge/miniforge3:latest

%files
environment.yaml /

%post
export CONDA_OVERRIDE_CUDA=12.8
ENV_NAME=$(head -1 /environment.yaml | cut -d' ' -f2)
echo ". /opt/conda/etc/profile.d/conda.sh" >> $APPTAINER_ENVIRONMENT
echo "conda activate $ENV_NAME" >> $APPTAINER_ENVIRONMEN

. /opt/conda/etc/profile.d/conda.sh
conda env create -f /environment.yaml -p /opt/conda/envs/$ENV_NAME
conda clean –all

%runscript
exec "$@"

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Build your own container from def file

▪ Def file: For spack

18

Bootstrap: docker
From: almalinux:8.10

%post
dnf update -y && dnf upgrade -y
dnf install -y python3 tar
dnf install -y gcc gcc-c++ gcc-gfortran git make patch cpp autoconf automake libtool m4 openssl curl
dnf install -y epel-release glibc-devel glibc kernel-headers mpfr libmpc openssh libzip
dnf install -y numactl perl
git clone --depth=100 --branch=v0.23.1 https://github.com/spack/spack.git /opt/spack

/opt/spack/bin/spack compiler find
/opt/spack/bin/spack install ...

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Run your container

▪ Execute command
▪ apptainer exec <container_name>.sif command…

▪ Start shell
▪ apptainer shell <container_name>.sif

▪ Run pre-defined run script
▪ apptainer run <container_name>.sif

▪ Options

▪ --bind: give the container access to additional file systems

▪ apptainer shell –-bind /opt,/data:/mn <container_name>.sif

202025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Run your container

▪ Execute command
▪ apptainer exec <container_name>.sif command…

▪ Start shell
▪ apptainer shell <container_name>.sif

▪ Run pre-defined run script
▪ apptainer run <container_name>.sif

▪ Options

▪ --bind: give the container access to additional file systems

▪ --fakeroot: enabling operations requiring root access inside of the container

▪ --contain: restrict filesystem to container (by default all file systems are bound)

▪ --H: specify the default home directory

▪ --nv/--nvccli/--rocm: GPU feature support (--nv is set by default on Alex/Helma)

212025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Start container from SLURM script

▪ Example: batch script with ddp python ML code

22

#!/bin/bash -l

#SBATCH --job-name=fno
#SBATCH --output=output/slurm-%j.out
#SBATCH --error=output/slurm-%j.err
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=4
#SBATCH --gpus-per-node=4
#SBATCH --cpus-per-task=32
#SBATCH --time=03:00:00
#SBATCH --partition=a100
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

export
CONTAINER_PATH="/anvme/workspace/…container/envFNO.sif"
export CODE_PATH="/anvme/workspace/projects/perm"
export GPUS=4

export EXPERIMENT=1
export LAYER_SIZE=32

cd $CODE_PATH/permFNO

Run the command with specified resources and environment
variables
for layers in 2 4 8 12; do

srun --ntasks=$GPUS \
--ntasks-per-node=$GPUS \
--kill-on-bad-exit=1 \
apptainer exec --nv \

--env GPUS=$GPUS \
--env WORLD_SIZE=$GPUS \
--env MASTER_PORT=12348 \
--env MASTER_ADDR=$(scontrol show hostnames

"$SLURM_JOB_NODELIST" | head -n 1) \
--bind /hnvme \
$CONTAINER_PATH \
python $CODE_PATH/permFNO/main.py \

--layers $layers \
--layer_size $LAYER_SIZE \
--distributed

done

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Workflow for using Apptainer

23

apptainer build --
sandbox $TMPDIR/

Container

apptainer build --
writable $TMPDIR/

container.img Container

apptainer build
container.sif my.def

apptainer build
container.sif

docker://ubuntu

Interactive Development Build from Recipe

Build from Docker

apptainer run container.sif
apptainer shell container.sif
apptainer exec container.sif …

Container Execution

apptainer push
library://...

Reproducible Sharing

Build Environment Production Environment

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

https://doc.nhr.fau.de/environment/apptainer

Troubleshooting and Best Practices

https://doc.nhr.fau.de/environment/apptainer

Survey

25

What do you use as current environment?

2025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Cache

▪ The cache is stored in $HOME/.apptainer/cache as default and can fill up

fast!

▪ Set cache folder

▪ export APPTAINER_CACHEDIR=$WORK/…/<user>-container/

▪ Add to your ~/.bashrc or .bash_profile for persistent change

▪ Clean cache

▪ apptainer cache clean [clean options…]

▪ Options

▪ --days int: remove all cache entries older than specified number of days

▪ --force: suppress any prompts and clean the cache

▪ --type strings: a list of cache types to clean (possible values: library, oci, shub,

blob, net, oras, all) (default [all])

262025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Choice of Base Container

▪ Miniforge3

▪ Use if you want to use conda packages or have a drop in .yaml config environment

▪ CUDA

▪ Because binding outside libraries in combination with module load can be problematic

▪ Ubuntu / other distributions

▪ Simplest base with freedom to build most essential setup without conflicts

▪ Your individual application

▪ Highest chance of working out-of-the-box

▪ Usually with git repository like setup

272025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Ubuntu problems

▪ Containers have to be built on a system where you have enough permissions and

the security model allows it

▪ Containers can be build on the AlmaLinux based cluster frontend nodes (Fritz,

Alex, Helma, Woody, Meggie)

▪ It is not possible to build them on our Ubuntu based systems (TinyX, Testcluster)

ERROR : Could not write info to setgroups: Permission denied
ERROR : Error while waiting event for user namespace mappings: Success
FATAL: While performing build: while running engine: exit status 1

▪ Replace apptainer build <options> with /apps/singularity/apptainer-
wrapper.sh build <options>

▪ apptainer build should switch automatically to working script on affected systems

282025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

▪ Two options

▪ NOT RECOMDENDED: Hybrid

▪ Install the exact MPI version inside of the container that communicates with the outside versions

▪ Complicated setup, error prone and needs additional dependencies (Slurm, InfiniBand,…)

▪ Binding

▪ Add MPI folder to your section of your .def file

▪ %environment

export PATH="$OPENMPI_ROOT/bin:$PATH"
export LD_LIBRARY_PATH="$OPENMPI_ROOT/lib:$LD_LIBRARY_PATH"

▪ Execute with –-bind

▪ mpirun -n <threads> apptainer exec --bind "$OPENMPI_ROOT" <container>.sif <executable>

▪ Include RDMA/InfiniBand rdma-cora, libibverbs1, etc to communicate efficiently

▪ Check NCCL performance when using pytorch to verify correct usage

Open MPI Binding

292025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

Open MPI Binding

▪ Outlook

▪ Future Open MPI v5.0.x release adds compatibility to previous versions

▪ Version specific names are standardized

▪ Should make hybrid approach reliable and simple

302025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

NHR@FAU
https://doc.nhr.fau.de

hpc-support@fau.de

THANK YOU.

https://doc.nhr.fau.de/
mailto:hpc-support@fau.de

Sources & Useful Links

▪ NHR@FAU docs: https://doc.nhr.fau.de/environment/apptainer

▪ Apptainer docs: https://apptainer.org/docs/user/latest/

▪ NHR@Göttingen: Declutter your Python environments: https://gitlab-

ce.gwdg.de/hpc-team-public/science-domains-blog/-/blob/main/20230907_python-

apptainer.md

▪ HPC Café: Handling many small files and managing AI data sets (from Februrary

11, 2025) https://hpc.fau.de/2025/02/04/monthly-hpc-cafe-efficient-packing-and-

handling-of-large-data-sets-hybrid-event/

▪ OpenMPIv4: https://docs.open-mpi.org/en/v5.0.x/building-apps/abi-

compatibility.html

322025-06-24 | Container for HPC | NHR@FAU | hpc-support@fau.de

https://doc.nhr.fau.de/environment/apptainer
https://apptainer.org/docs/user/latest/
https://gitlab-ce.gwdg.de/hpc-team-public/science-domains-blog/-/blob/main/20230907_python-apptainer.md
https://hpc.fau.de/2025/02/04/monthly-hpc-cafe-efficient-packing-and-handling-of-large-data-sets-hybrid-event/
https://docs.open-mpi.org/en/v5.0.x/building-apps/abi-compatibility.html

