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Computational Research Programming Lab Overview 

Enabling scientific advancements by migrating real-
world applications on novel and powerful hardware 

Advancing foundational computer science by 
building effective compiler tools 

Understanding physics simulations with ML-
enhanced models 

Exploring GenAI/Large Language Models to 
complement manual software testing 



A Grand Challenge: Extracting meaningful insights 
from complex data streams  

• Simulation or scientific instruments produce 
complex data at massive scale 

• Storage of such data for offline analysis is 
impractical

• Physical constraints of the file system pose a 
massive challenge 

• Data reduction will simply NOT suffice 

• A complete view of full data is NEVER available 

• Need solutions for online analysis of data 
generated at high rate and volume - to extract 
meaningful information 3



Climate & Weather Modeling 

• Earth System Models (ESMs) dataset is  multi-
dimensional, diverse, high-resolution including  
structured and unstructured.

• Models can generate TBs of data, with long-term 
simulations spanning centuries producing PBs of data.

• Destination Earth project – Digital Twin 

• ECMWF, ICON, MPAS-A, MPAS-O 4

CERN’s Large Hadron Collider 
(LHC)

• CERN’s Large Hadron Collider (LHC) detectors 
generate over 1 billion collisions per second, with only 
a fraction of them being recorded and analyzed due to 
the sheer volume of data. This still results in TBs of 
data per day.

• Discovery of the Higgs boson, the LHC produced 
around 30 PB of data per year from collisions



Plasma Physics – governed by the physics of charged 
particles    
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Diverse data properties 

Microscopic particle interactions 
to macroscopic magnetic field

Plasma Instabilities  

Every simulation tracks millions 
to billions of particle

Credit: Felix Meyer (former HZDR, now NVIDIA) 

Real-Time Vector Field Visualization test using 
HZDR Hemera Cluster with 4 NVIDIA V100.



Plasma Instabilities – Implications  

Geomagnetic 
Storms and 
cosmic rays 

Sudden violent reaction in 
fusion research 

Solar flares and 
enormous 

quantities of 
radiation 

Magnetic 
reconnection



What do we want to learn? 
• Complete reconstruction of phase space 

from observations to get a detailed view of 
the growth and dynamics of instabilities 

• Automatic detection of correlations 
between plasma dynamics and emitted 
radiation spectrum 

• Otherwise this requires extensive post-
processing and analysis spanning years 

• Extracting meaningful info out of complex 
heterogeneous data being generated from 
source or simulation at an exponential rate 
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Credit: Rene Widera, HZDR 

Real-Time Vector Field Visualization test using HZDR Hemera 
Cluster with 4 NVIDIA V100.
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The Plasma-In-Cell on GPU (PIConGPU)team



PIConGPU applicability 
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Compact table top X-Ray sources of high brightness, e.g. 
Free-Electron Lasers to create snapshots of ultrafast 
processes in material science

Extend plasma-based electron accelerators from multi-
GeV towards TeV electron energies

Applications in radiation therapy of cancer.

Fundamental studies of warm-dense matter and high 
energy density physics



ORNL’s Center for Accelerated Application Readiness (CAAR) 
- To stress test Frontier’s hardware & software stack 

OLCF Frontier‘sAMD EPYC 

CPU + AMD Radeon Instinct 

MI250x GPU 
ACK: Felix Meyer (NVIDIA, former HZDR), Richard 
Pausch, HZDR
Still image from an uncut LWFA simulation video 
using OLCF Summit and 48 NVIDIA V100s using 
ISAAC 1.5 (in-situ library)

~>= 4 x

Vs Summit 
at ORNL
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PIConGPU targets….

• Since ORNL’s TITAN supercomputer NVIDIA’s K20s GPUs
• ORNL’s Summit supercomputer NVIDIA’s V100 GPUs
• LBNL’s Perlmutter NVIDIA A100 GPUs
• JSC’s JEWELS Booster NVIDIA A100 GPUs
• NVIDIA’s H100 GPUs
• Julich’s H200 GPUs
• Frontier’s AMD MI250x GPUs

• Ampere computing Altra Q80 6—bit CPUs (based on Arm 
Neoverse N1)

11



• Compute Node 1 64-core AMD “Optimized 3rd Gen EPYC” 
CPU 4 AMD Instinct MI250X GPUs = 606,208 cores

• GPU Architecture AMD Instinct MI250X GPUs, each feature 
2 Graphics Compute Dies (GCDs) for a total of 8 GCDs per 
node = 37,888 Instinct GPUs

• System Interconnect 4-port HPE Slingshot 200 Gbps (25 
GB/s) NICs providing a node-injection bandwidth of 800 
Gbps (100 GB/s)

• Storage 700 PB HDD+11 PB Flash Performance Tier, 9.4 
TB/s and 10 PB Metadata Flash Lustre

• System Size ~9400nodes 

• Ranking No. 1 in the Top500 as of June 2024

ORNL’s Frontier 
supercomputer 



PIConGPU Exascale challenges
Portability: Run code on different compute 
architectures (single-source, run everywhere)

Performance: Cannot lose performance while 
maintaining portability 

Scalability: Code profiling & scaling tests to ensure 
science cases scale to Frontier 

Visualizations: Create and develop tools to 
visualize PIConGPU on the new system 

Exascale workflows: Extend I/O capabilities, 
provide in-situ analysis, data reduction and 
visualization workflows 13

ACK: Benjamin Hernandez, ORNL
LWFA Simulation. Using Summit’s 8 nodes 
(48 V100 GPUs) with ~2 billion particles 
using ISAAC v1.5.1 running on OLCF’s 
cloud environment (SLATE)



software stack
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Huebl, Axel, et al. (2018) Zero Overhead Modern C++ for Mapping to Any Programming Model. 
Software Stack updated by René Widera (2020)

template< typename T_Acc
>

ALPAKA_FN_ACC void
operator()(

T_Acc const & acc, 
// ...

) const
{

// ...
}

Kelling, J., Bastrakov, S., Debus, A., Kluge, T., Leinhauser, M., Pausch, R., ... & Juckeland, G. (2022, May). Challenges porting a C++ template-
metaprogramming abstraction layer to directive-based offloading. In Accelerator Programming Using Directives: 8th International Workshop, 
WACCPD 2021, Virtual Event, November 14, 2021, Proceedings (pp. 92-111). Cham: Springer International Publishing.

https://zenodo.org/record/1304272


FOM baseline run on OLCF Summit (2019) TWEAC case study
(Single Precision) 
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№ timesteps 1000

№ NVIDIA V100 GPUs 27600 (4600 nodes)

№ cells total 404 billion

№ cells per GPU 14.6 million

№ particles total 10.1 trillion

№ particles per GPU 365 million

№ simulation data 324 TB

Particle Data 313.36 TB

Cell Data 14.52 TB

Particles Processed 16.2 Trillion particles/ 
sec 

Cells Processed 656 Billion cells/sec

GPU Kernel Calls 9 Million kernels/sec

Peak FOM: 16.3 TeraUpdates / s
Average FOM: 14.7 TeraUpdates / s

Peak power: 8MW
Sustained power: 5.8MW



Major Improvements to PIConGPU since Summit run 
(2019)

● Algorithmic improvements
○ Optimized laser functor [TWTSfast]
○ New field background algorithm [SuperPusher]
○ New laser algorithm [IncidentField]– 2 years' worth work 

● Performance optimizations 
○ GPU-aware MPI
○ Optimized particle assignment
○ Enhance device utilization
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No. of commits: Autumn 2019: cupla 136, Alpaka 1057, PIConGPU 1278, mallocMC 93
Red Queen's race – staying in the same place is falling behind 

Leinhauser, M., Widera, R., Bastrakov, S., Debus, A., Bussmann, M. and Chandrasekaran, S., 2022. Metrics and design of an instruction roofline model 
for AMD GPUs. ACM Transactions on Parallel Computing, 9(1), pp.1-14.



Hardware is only as good as its software and tools and a close 
COMMUNICATION between developers & users!

17



Exascale FOM runs for TWEAC case study 
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Summit’19 4600 nodes baseline Summit’22 projected

Frontier’22 8704 nodes Frontier’22 9216 nodes 

4.44 x
4.08 x

1.26 x
1.00 x

14.7 
TUP/s

18.6 
TUP/s

60.0 
TUP/s

65.7 
TUP/s

MET THE CAAR 
FOM TARGET

Note, these 
results use 
single precision. 

8.5x for double 
precision 



FOM run on Frontier (2023) TWEAC case study 
(Single Precision) 
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№ timesteps 1000
№ AMD GCDs 73,728 (9216 nodes)
№ cells total 1.1 Trillion
№ cells per GCD 14.6 Million
№ particles total 27 trillion
№ particles per 

GCD 365 million

Particle Data 760.7 TB 41% more 

Cell Data 35.3 TB 41% more 

Particles 
Processed

72 Trillion/sec 22.5% more 

Cells 
Processed

2.6 Trillion/sec 25% more 

GPU Kernel 
Calls

24 Million 
kernels/sec

37% more 

Peak FOM: 78.3 TeraUpdates / s
Average FOM: 65.7 TeraUpdates / s

PIConGPU on 98% of Frontier
Peak Power: 23 MW
Average Power: 21.5 MW



Weak Scaling FOM case on Frontier 
• № Iterations: 1000

• Runtime: ~10 mins 
 ~ 0.37 secs per iteration

• FOM Science case

• Scaling: 
○ 6 nodes → 9,216 nodes
○ 48 GCDs → 73,728 GCDs
○ 24 GPUs  → 36,864 GPUs
○ 96-98% GPU utilization



There is more to do….

● With Frontier we can ONLY perform a few long-running 
simulations where we will hopefully observe 
acceleration of electrons to highest 100GeV scale 
energies, BUT the parameter space of laser electron 
acceleration is HUGE; we are still just able to catch a 
TINY bit of it.

● Need to explore LARGER parameter range, need a 
sophisticated WORKFLOW  to further advance 
science

● Need to close gap between simulation scenarios on 
supercomputers and the experimental setup in the 
labs 

21

ACK: Vincent Gerber, HZDR, Germany
Using In-Situ viz library for Animation of 
Accelerated Computations (ISAAC)



• Forward calculation incurs a heavy 
computational cost prohibitively 
expensive for a wide range of simulation 
parameters.

• Simulations of plasma behavior, involve 
solving complex nonlinear equations for 
trillions of particles creating TBs of data 

• Due to the scale of the data, we cannot 
save all the raw data to disk 

• We need a different solution! 

PIConGPU data volume 



What do we want to learn? 
• Extracting meaningful info out of complex 

heterogeneous data being generated from 
source or simulation at an exponential rate 

• Need a complete reconstruction of phase 
space from observations to get a detailed view 
of the growth and dynamics of instabilities 

• Need for automatic detection of correlations 
between plasma dynamics and emitted 
radiation spectrum 

• Otherwise this requires extensive post-processing 
and analysis spanning years 

23
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Extracting knowledge from large scale simulations 
is a challenge!! 

Particle data 
streaming

Learning 

Learning Outcomes

Jeffrey Kelling…..Michael Bussmann, Sunita Chandrasekaran, “The Artificial Scientist - Leveraging In-transit Machine 
Learning for Plasma Simulations” Accepted to 39th IEEE International Parallel & Distributed Processing Symposium 
(IPDPS) 2025, Best Paper Nomination



Case Study: Kelvin-Helmholtz instability (KHI) in 
PIConGPU
• Well known shear surface 

instability observed in 
fluids and plasma 

• When 2 layers exhibit 
different velocity/density

• Viz using ISAAC

25

Richard Pausch, HZDR, Germany; Uses 4 V100 GPUs

In plasmas, the KHI is driven by a self-amplifying cycle of small density or velocity fluctuations that lead to a growing 

magnetic field at the shear surface, which further amplifies the initial fluctuations  as depicted



openPMD and ADIOS2
• openPMD

• Data standard for particle mesh data

• ADIOS2
• I/O library handling the data transfer
• SST (Staging Transport Engine) is a backend of ADIOS2 that supports in-

memory data streaming.
• Multiple transport methods - TCP, libfabric, MPI_Open_port()

• PIConGPU sends openPMD-formatted particle data directly from 
memory to another process in memory using ADIOS2 with the SST 
engine. 
• This bypasses the slow file system entirely.

26

Poeschel, Franz, et al. "Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2." Smoky Mountains 

Computational Sciences and Engineering Conference. Cham: Springer International Publishing, 2021.

Huebl, A., Lehe, R., Vay, J. L., Grote, D. P., Sbalzarini, I., Kuschel, S., ... & Bussmann, M. (2015). openPMD: A meta data standard for particle and 
mesh based data. URL https://doi. org/10.5281/zenodo, 591699.



Challenges - System Constraints
• PIConGPU simulation produces 5.86GB of particle data per node per time 

step
• Simulations of plasma behavior, involve solving complex nonlinear equations for 

trillions of particles creating TBs of data 
• Application scaling to just 25% of Frontier system would produce 1 PB of 

data every time step
• BUT Frontier’s Orion file system can write at a max of 10 TB/s

• 1 PB per time step, 1000 time steps = 1 EB of total data 
• Even if each time step only takes 0.1 to 1 second, 1 to 10 PB/s of data is being 

produced 
• That means in 100 to 1,000 seconds, the total data volume would reach 10 

EB.
• Implication: Entire file system can be exhausted in 100 to 1000 seconds

We need to circumvent the file system!!!!!!
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Reducing simulation data close to the producer lowers 
bandwidth requirements

Streaming without going through storage unlocks more 
bandwidth

Distributed producer and consumer, system topology 
presents communication paths with vastly different 
bandwidths which must be reconciled with the 
loosely-coupled application’s communication 
requirements.

Three in-transit workflow approaches on Frontier 
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• The amount of particle data produced by 
PIConGPU KHI is 5.86 GB per compute node 
and time step.

• Libfabric per-node achieved per-node 
throughput of 3.5 ∼ 4.7 GB/s  but 1.9 - 2.6 GB/s 
at 9126 compute nodes (a total of 16.5 - 23.0 
TB/s).

• Conversely, the MPI data plane yields a per-
node throughput from 2.6 - 3.7 GB/s at 4096 
compute nodes (a total of 10.5 - 14.9 TB/s) to 
2.4 - 3.3 GB/s at 9126 nodes (a total of 21.4 - 
29.5 TB/s

Data streaming on 9126 Frontier nodes  



In-transit continual learning
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• Model is continuously trained online from subsequent snapshots of the evolution of plasma and 
radiation data without storing every data point to disk

• Continuous learning circumvents lack of adequate disk capacity and bandwidth by enabling 
data to reside and distribute in-memory via network interconnects. 



ML model architecture

Finding a function that can take 
an output and reconstruct the 
input it came from

Represents the underlying characteristics 
of the original particle but in a more 
abstract, lower-dimensional form

Upsample the data back to a 
larger size, increased resolution, 
reduced dimension



Data parallelism and scaling  on Frontier

• ML model fits into 1 GCD 

• Each copy of the model receives 
different chunks of data to train on 

• Asynchronously train the model with 
that data

• Scaling depends on the optimization of 
all-to-all communication in PyTorch 
DDP

• using N/RCCL backend – hits a wall after 
100 Frontier nodes = 400 AMD GPUs

• Need to explore libfrabic backend for 
N/RCCL or PyTorch DDP’s MPI backend 



Weak scaling and observations 
• Increasing time spent in PyTorch DDP for larger runs

• Low Efficiency - Inevitable all-to-all communication between 
PyTorch ranks taking place to average gradients during each 
backward pass – deficit of 30% 

• Low Efficiency - Lack of availability of PyTorch distributed 
primitive for matrix dot product to evaluate INN

• In-transit training at very large batch size 

• Hyperparameter needs to happen at scale; doesn’t transfer 
well from small scale experiments 

• Loss functions to compare point cloud – CD vs EMD 

• Comprehensive studies between batch sizes, block learning rate 
and weights need to be studied at scale with streamed 
simulation 33

• In-transit training from 8 to 96 nodes 
(32 to 384 GCDs) 

• Reaches around 35% at 96 nodes



Take aways 
• The model clearly learned to partition the latent space 

into regions for different flow directions and vortex 
regions

• Both the parts of the ML system — the encoder (which 
compresses the data) and the inversion network (which tries to 
reconstruct or interpret it) — figured out how to handle those 
zones correctly.

• Achieved partial reconstruction of the plasma 
distribution, the ML prediction still clearly identifies the 
instability regions

• A very promising early result for using ML during a 
simulation (called in-transit learning) — especially in 
complex, changing situations (non-steady-state 
processes, like plasma evolving over time). 34
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Extracting knowledge from large scale plasma 
simulations 

Particle data 
streaming

Machine Learning



So much more to do….
• Build surrogate models of simulations of different configurations – 

classically these experiments would be  very expensive 

• Collect many time steps 

• Intelligently reduce data 

• Learning in-transit valuable information from more than just one simulation

• More sophisticated decoder to generate higher-fidelity depictions of 
particle configurations

• Encoders incorporating point transformer blocks and a deeper network 
around the bottleneck to better extract latent information from point-
features

36



Need for WORKFLOWs to tackle complex, data-intensive real-
world applications! 

37

Scaling at 
different 

levels
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