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• Five PIs at UTK:
— Dr. Ahmed Aziz (Devices)
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(Architectures and Devices)
— Dr. Jim Plank (Software and 

Applications)
— Dr. Katie Schuman (Algorithms 

and Applications)
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(Applications)

• Affiliated faculty at:
— University at Albany
— George Mason University
— University of Mississippi
— Florida International University
— Oak Ridge National Laboratory https://neuromorphic.eecs.utk.edu/



Why should you care 
about novel computer 

architectures?



?

Looming End of 
Moore’s Law 

(And the end of Dennard scaling)

Artificial 
Intelligence 

and 
Machine Learning

Rise of the 
Internet of Things



Neural Hardware and Neuromorphic Computing

Neural Hardware

Accelerates 
traditional 
neural network 
and deep 
learning 
computation

• Well-suited to existing algorithms
• Fast computation or low power
• Currently deployed in cloud or 

mobile devices
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Neural Hardware and Neuromorphic Computing

Neural Hardware

Accelerates 
traditional 
neural network 
and deep 
learning 
computation

• Well-suited to existing algorithms
• Fast computation or low power
• Currently deployed in cloud or 

mobile devices

Neuromorphic Computing

Implements 
spiking recurrent 
neural network 
computation and 
can be suitable for 
neuroscience 
simulation

• Significant promise for future 
algorithmic development 

• Fast computation and low power
• Still in development



Spiking Neural Networks

• Time component 
on neurons and  
synapses

• More complex 
network 
structures than 
feed-forward, 
but typically not 
fully connected 
like Hopfield

• Temporal 
input

• Temporal 
output



Spiking Neural Networks
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Neuromorphic Hardware Research

G. Chakma, et al, "Memristive Mixed-Signal Neuromorphic Systems: Energy-Efficient 
Learning at the Circuit-Level," in IEEE Journal on Emerging and Selected Topics in Circuits 
and Systems, vol. 8, no. 1, pp. 125-136, March 2018.

Buckley, Sonia, et al. "Design of superconducting optoelectronic networks for 
neuromorphic computing." In 2018 IEEE International Conference on Rebooting 
Computing (ICRC), pp. 1-7. IEEE, 2018.

Najem, Joseph S., et al. "Memristive ion channel-doped biomembranes as synaptic 

mimics." ACS nano 12, no. 5 (2018): 4702-4711.

Neuromorphic device research includes 
metal-oxide memristors, 

superconducting optoelectronics, and biomimetic devices 



Neuromorphic Computing “Stack”

Materials

Devices

Microarchitecture

System Architecture/Organization

System Software and Communications

Algorithms

Applications

My Research

Influences



Algorithms



Algorithms for Neuromorphic Systems
• Key considerations for algorithm 

development on neuromorphic 
hardware:
— Realizable network structures

— Reduced precision in the synaptic weights

— On-chip training, chip-in-the-loop, or off-chip 
training performance

— Dealing with noise, process variations, cycle-to-
cycle variation 

— Hardware optimized for training or inference

— Reconfigurability of the neuromorphic hardware

Schuman, Catherine D., et al. "A survey of neuromorphic computing and neural networks in 

hardware." arXiv preprint arXiv:1705.06963 (2017).



Algorithms: Back-Propagation-Like 
Approaches
• Dense connectivity

• Algorithm adaptations for:

– Non-differentiability of spiking 
neurons

– Low precision weights

– Non-standard approach to delays

 

Error
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Algorithms: Back-Propagation-Like 
Approaches
• Dense connectivity

• Algorithm adaptations for:

– Non-differentiability of spiking 
neurons

– Low precision weights

– Non-standard approach to delays

 

Error

Key Advantage:

Decades of knowledge about 

traditional ANNs

Key Disadvantage:

Doesn’t work natively on many 

features of SNNs
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Algorithms: Synaptic Plasticity
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Biologically-inspired and 

unsupervised



Algorithms: Synaptic Plasticity

Key Advantage:

Biologically-inspired and 

unsupervised

Key Disadvantage:

Not well understood and not 

scalable



Random 
Initialization

Parents

Select
Evaluate 

and Rank

Ordered Population

Best

Worst

Reproduce

Child 
Population

EONS: Evolutionary Optimization for Neuromorphic Systems



Why Evolutionary Optimization?

• Applicable to a wide variety of tasks

• Applicable to different architectures and 
devices

• Operates within the characteristics and 
constraints of the architecture/device

• Can learn topology and parameters (not just 
synaptic weights)

• Can interact with software simulations or 
directly with hardware

• Parallelizable/scalable on HPC



Applications



Data from MINERvA 
(Main Injector Experiment for v-A)

• Neutrino scattering experiment at Fermi 
National Accelerator Laboratory

• The detector is exposed to the NuMI 
(Neutrinos at the Main Injector) neutrino 
beam

• Millions of simulated neutrino-nucleus 
scattering events were created

• Classification task is to classify the 
horizontal region where the interaction 
originated

Source: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017.



Best Results: Single View
x-view 

(127x50)
conv1 
(8x3)

pool1 
(2x1)

conv2 
(7x3)

pool2 
(2x1)

conv3 
(6x3)

pool3 
(2x1)

conv4 
(6x3)

pool4 
(2x1)

fc1 
(196)

Convolutional Neural Network Result: ~80.42%

drop 
out

fc2 
(98)

drop 
out

fc3 
(11)

classification

Spiking Neural Network Result: ~80.63%

Source for CNN results: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017.

• 90 neurons, 86 synapses

• Estimated energy for a single 
classification for mrDANNA 
implementation: 1.66 μJ



Neuromorphic Radiation Detection
• Radiation detection algorithms must be able to detect low-SNR anomalies in a very 

noisy and dynamic data environment.

• Neuromorphic computing enables the ability to combine the computational 
performance of machine learning with massive reductions in power consumption for 
this task

• K-sigma performance on DOE Urban Search Challenge: F1-Score: 0.080

• Current SNN trained with EONS performance: F1-Score: 0.436

EONS 

Training

DOE Urban 

Search 

Challenge 

Dataset
SNN to 

evaluate

Fitness

Score
Trained SNN 

for 

Deployment

James Ghawaly, Aaron Young, Brett Witherspoon, Dan Archer, Nick Prins and Catherine Schuman.  “A Neuromorphic Algorithm for Radiation 

Anomaly Detection.” In preparation. 



Neuromorphic Engine Control for Fuel Efficiency
• Developed a complete workflow to train a spiking neural network 

(SNN) to deploy to an FPGA-based neuromorphic hardware system 
for internal combustion engine control.   

• SNN-based approach outperforms fixed control strategies in terms of 
fuel efficiency in simulation while still meeting acceptable 
performance metrics.

• Currently deploying SNN trained on Summit to neuromorphic 
hardware in-the-loop with engine at National Transportation Research 
Center.

Internal 

Combustion 

Engine

EONS 

Training on 

Summit

Closed Loop 

Control

SNN to 

evaluate

Fitness

Score
Trained SNN 

for 

Deployment

Observations

Action

Catherine D. Schuman, Steven R. Young, J. Parker Mitchell, J. Travis Johnston, Derek Rose, Bryan P. Maldonado, Brian C. Kaul.  “Low Size, Weight, and Power 
Neuromorphic Computing to Improve Combustion Engine Efficiency.” International Conference on Green and Sustainable Computing 2020.  



Neuromorphic Engine Control for Fuel Efficiency



F1Tenth: Autonomous Racing
• Fully autonomous 1/10th 

scale racing of Formula 
One (https://f1tenth.org/)

• Like full scale vehicles, 
the need for low size, 
weight, and power is 
critical

• Relatively inexpensive 
real-world demonstration 
of what neuromorphic 
computing can provide

Slamtec RLIDAR A3

Power Distribution Board

UM7 IMU Board

μCaspian

Nvidia Jetson TX2

Traxxas Ford Fiesta Chassis and Drivetrain



F1Tenth: Autonomous Racing

F1Tenth 
Simulator

EONS-
Produced 

SNNs

SNN input:
LIDAR 

Sensors

SNN 
output:

Steering 
Angle, 
Speed

Jetson

uCaspian

Best Evolved SNN

LIDAR Sensors

Steering Angle, Speed

• We use EONS to train SNNs for uCaspian 
deployment using the F1Tenth Simulator.

• We deployed the trained SNN to a Jetson first 
(CPU will simulate uCaspian) and then to the 
actual uCaspian to control the physical car.



Training Tracks



Physical Deployment

Robert Patton, Catherine Schuman, Shruti R. Kulkarni, John Mitchell, N. Quentin Haas, Christopher Stahl, Spencer Paulissen, Prasanna Date, Thomas Potok, Shay Snyder and Maryam Parsa, 
“Neuromorphic Computing for Autonomous Racing.” International Conference on Neuromorphic Systems (ICONS) 2021.  



Autonomous Racing Senior Design



A Brief Detour….



Properties of Spiking Neuromorphic Systems
• Massively parallel computation

• Collocated processing and memory

• Simple processing elements that perform specific computations

• Simple communication between elements

• Event driven computation

• Stochastically firing neurons for noise

• Inherently scalable architectures

These properties are useful for more than just machine learning algorithms!



Calculating Shortest Paths

• Graphs are converted 
into networks

• Distances are converted 
to delays

• Spikes travel throughout 
the network and give 
single-source shortest 
path lengths

Schuman, Catherine D., Kathleen Hamilton, Tiffany Mintz, Md Musabbir Adnan, Bon Woong Ku, Sung-Kyu Lim, and Garrett S. Rose. "Shortest 

path and neighborhood subgraph extraction on a spiking memristive neuromorphic implementation." In Proceedings of the 7th Annual Neuro-

inspired Computational Elements Workshop, pp. 1-6. 2019.



Modeling Epidemic Spread

• Neurons are individuals in a 
population

• Synapses are shared social 
connections

• Spikes are transmission of 
infection

• Parameters allow for different 
conditions

Kathleen Hamilton, Prasanna Date, Bill Kay, and Catherine Schuman D. "Modeling epidemic spread with spike-based models." 
In International Conference on Neuromorphic Systems 2020, pp. 1-5. 2020.



Graph Neural Networks

• Node classification task, without features
— Citation networks as benchmark datasets for GNNs

Cora Citeseer Pubmed

Node2Vec 0.71 0.48 0.70

Node2Vec-a 0.68 0.51 -

Planetoid-G 0.69 0.49 0.66

GraphSAGE 0.71 0.48 0.64

GCN 0.59 0.34 0.42

Neuromorphic 0.67 0.51 0.79

Guojing Cong, Seung-Hwan Lim, Shruti Kulkarni, Prasanna Date, Thomas Potok, Shay Snyder, Maryam Parsa, and Catherine Schuman. 

2018. Semi-Supervised Graph Structure Learning on Neuromorphic Computers. In Proceedings of International Conference on 

Neuromorphic Systems (ICONS ’22). ACM, New York, NY, US



Summary

• Neuromorphic computers are a new type of computer inspired by 
biological brains

• They are “programmed” using spiking neural networks, a more 
biologically inspired neural network

• There are a variety of ways that spiking neural networks can be 
trained, and there is not one clear ”winner” 

• We have successfully applied neuromorphic to a wide variety of 
applications, including scientific data analysis and robotics 

• Neuromorphic computers are useful for more than just neural network 
computation!



Work supported by:

Department of Energy
Air Force Research Lab
Army Research Lab
Missile Defense Agency
Accenture



Thank you!

Questions?

Contact:
Email: cschuman@utk.edu
TENNLab: neuromorphic.eecs.utk.edu
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