
THE PARALLEL RESEARCH KERNELS

AND THEIR USE IN CO-DESIGN

Jeff Hammond

NVIDIA Helsinki

Acknowledgements
• Tim Mattson and Rob van der Wijngaart (Intel)

• Apo Kayi, Gabi Jost, Tom St John, Srinivas Sridharan, Kiran Pamnany, Alex Duran, Alexey Kukanov,
Pablo Reble, Xinmin Tian, Jim Cownie, Martyn Corden, Steve Lionel, James Brodman (Intel)

• John Abercrombie, Jacob Nelson (U. Washington)

• Wonchan Lee (Stanford)

• Yijian (Tim) Hu, (Georgia Tech)

• Lisandro Dalcin and Marcin Rogowski (KAUST)

• Brad Chamberlain (Cray)

• Christian Trott (Sandia), Tom Scogland (LLNL)

• Alessandro Fanfarillo (NCAR)

• Thomas Hayward-Schneider (MPG)

• Sajid Ali (NYU)

• Cedric Augonnet (NVIDIA)

• Carsten Bauer (NHR)

• Many others, not listed here.

PARALLEL RESEARCH KERNELS
https://github.com/ParRes/Kernels/ has all the goods

https://github.com/ParRes/Kernels/

Project History

• Created by Tim Mattson a long time ago to understand CPU architecture.

• C89-based MPI-1 and OpenMP-3 ports by Tim and Rob.

• Used for Intel exascale software study in 2014-2016.
• UPC is C99, Charm++ and Grappa are C++ - we should move beyond C89.

• Chapel vs C89/MPI is not a useful comparison (hence “pretty” versions).

• Extended to C++ and Fortran (2016-2018) with offload models because
exascale was always going to be heterogeneous.

• Non-HPC language ports started as a hobby project (2017-2020).

• GPU studies (2019-present).

Programming model evaluation

Standard methods

• NAS Parallel Benchmarks

• Mini Applications
(e.g. Mantevo, LULESH)

• HPC Challenge

There are numerous examples of
these on record, covering a wide
range of programming models, but
is source available and curated?

What is measured?

• Productivity (?), elegance (?)

• Implementation quality
(runtime or application)

• Asynchrony/overlap

• Semantics:
• Automatic load-balancing (AMR)
• Two-sided vs. one-sided, collectives

“You can't manage what you can't measure”
- Peter Drucker

Goals of the Parallel Research Kernels

Universal: Cover broad range of performance critical application

patterns.

Simple: Concise pencil-and-paper definition and transparent reference

implementation. No domain knowledge required.

Portable: Should be implementable in any sufficiently general

programming model.

Extensible: Parameterized to run at any scale. Other knobs to adjust

problem or algorithm included.

Verifiable: Automated correctness checking and built-in performance

metric evaluation.

Outline of PRK Suite

• Dense matrix transpose

• Synchronization: global

• Synchronization: point to point (p2p)

• Scaled vector addition (nstream)

• Vector reduction

• Sparse matrix-vector multiplication

• Random access update

• Stencil computation

• Dense matrix-matrix multiplication

• Branch

• Particle-in-cell

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

A B C+= + S *

PRK has 50-100 variants of the common kernels.

https://link.springer.com/book/10.1007/978-3-319-41321-1

https://link.springer.com/book/10.1007/978-3-319-41321-1

p2p on Cray XC30

transpose on Cray XC30

1536:
8 KiB/PE (flat)
4.5 MiB/PE (hybrid)

12288:
128 B/PE (flat)
72 KiB/PE (hybrid)

MPI for Exascale! Now what?
Something tells me that C89 and OpenMP 3.0 aren’t enough…

Language Seq. OpenMP MPI PGAS Threads Others?

C89 √ √ √√√ SHMEM

C11 √ √√√ UPC √ Cilk, ISPC, PETSc

C++ √ √√√
RMA
(WIP)

Grappa √
Kokkos, RAJA, TBB, PSTL,

SYCL, OpenCL, CUDA, HIP,
…

Fortran √ √√√ √√√
Coarrays,

GA
“pretty”, OpenACC

Python √ √ √√√ SHMEM Numpy/CuPy, Numba

Chapel √ ? √

√√√ = OpenMP: traditional, task-based, and target are implemented similarly in Fortran, C and C++.
√√√ = MPI: two-sided, collective, one-sided (for transpose, at least).

PRK stencil: C++ implementations on KNL

0

62500

125000

187500

250000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000

Pe
rf

o
rm

an
ce

 (
M

F/
s)

Grid Dimension

C++11/Kokkos

C++11/OpenMP

C++11/RAJA

C++11/Taskloop

C++11/TBB

C++17/PSTL

TBB wins because of blocking.

PSTL @ TBB is not using blocking because it wasn‘t (easily) expressible.

OpenMP taskloop dynamic scheduling is worse than TBB.

OpenMP wins because
of static scheduling, affinity.

Improved PRK stencil on KNL

0

55000

110000

165000

220000

275000

1000 4000 7000 10000 13000 16000

p
e

rf
o

rm
an

ce
 (

M
F/

s)

grid dimension

OpenMP no affinity

OpenMP scatter

OpenMP compact

TBB

Taskloop(1)

OpenMP wins because
of static scheduling, affinity.

"This research was supported by the NSF MRI award #1828187: "MRI: Acquisition of an HPC System for Data-Driven Discovery in Computational

Fujitsu A64fx

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1828187&HistoricalAwards=false

Wavefront Parallelism

// sequential C implementation

for (int i=1; i<m; ++i) {

for (int j=1; j<n; ++j) {

A[i][j] = A[i-1][j] + A[i][j-1] - A[i-1][j-1];

}

}

This pattern appears in a range of applications:
• Deterministic neutron transport (DOE-NNSA mission science)
• Smith-Waterman/PairHMM (bioinformatics), dynamic programming

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Changing the iteration space exposes parallelism

Sequential

Seq
uen

tial

I-loop goes to the right,
J-loop goes down

Sequential

Pa
ra

lle
l

Loop over anti-diagonals
(see next slide)

OpenMP inner-loop parallelism

// sequential loop

for (int i=2; i<=2*n-2; ++i) {

int start = max(2,i-n+2);

int stop = min(i,n);

#pragma omp for simd

for (int j=start; j<=stop; ++j) {

const int x = i-j+2-1;

const int y = j-1;

A[x][y] = A[x-1][y]

+ A[x][y-1]

- A[x-1][y-1];

}

// implicit barrier (required)

}

• Very low parallel efficiency once
data spills private cache.

• CPU SIMD doesn’t work because
data access is non-contiguous.

Amortizing synchronization overheads

• Sequential execution requires no
synchronization.

• Formally, there are O(n2) element-
wise dependencies.

• Antidiagonal implementation uses
O(n) barriers to enforce deps.

• Hyperplane amortizes barriers
across many antidiagonals:
O(n/unroll) barriers.

• Task-based has O(n2/block2)
dependencies.

Parallel loop

Task dependency

OpenMP task-based parallelism

#pragma omp parallel

#pragma omp master

for (int i=1; i<m; i+=mc) {

for (int j=1; j<n; j+=nc) {

#pragma omp task depend(in:grid[i-mc][j],grid[i][j-nc]) \

depend(out:grid[i][j])

for (int ii=i; ii<std::min(m,i+mc); ii++) {

for (int jj=j; jj<std::min(n,j+nc); jj++) {

A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];

}

}

}

}

#pragma omp taskwait

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

OpenMP “doacross” parallelism

#pragma omp for collapse(2) ordered(2)

for (int i=0; i<ib; i++) {

for (int j=0; j<jb; j++) {

#pragma omp ordered depend(sink: i-1,j) depend(sink: i,j-1)

for (int ii=i; ii<std::min(m,i+mc); ii++) {

for (int jj=j; jj<std::min(n,j+nc); jj++) {

A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];

}

}

#pragma omp depend(source)

}

}

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

OpenMP hyperplane parallelism

#pragma omp parallel

for (int i=2; i<=2*(nb+1)-2; i++) {

#pragma omp for

for (int j=std::max(2,i-(nb+1)+2); j<=std::min(i,nb+1); j++) {

const int ib = nc*(i-j)+1;

const int jb = nc*(j-2)+1;

for (int ii=ib; ii<std::min(m,ib+nc); ii++) {

for (int jj=jb; jj<std::min(n,jb+nc); jj++) {

A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];

}

}

}

}

This is only implemented for square grids to keep the polyhedral arithmetic simpler.

Intel Skylake Xeon 8180 (1S)

0

2

5

7

9

0 4 8 12 16 20 24 28

s
p

e
e
d

u
p

threads = cores

PRK wavefront: grid=5000

C++11/OMP-DOACROSS

C++11/OMP-HYPERPLANE

C++11/OMP-TASKS

C++11/TBB-FLOWGRAPH

C++11/TBB-HYPERPLANE

C89/OpenMP

Further analysis

Evaluating data parallelism in C++ programming models using the Parallel Research
Kernels

2018:
https://github.com/ParRes/Kernels/blob/main/doc/IXPUG_Invited2_Hammond.pdf

2019:
https://github.com/ParRes/Kernels/blob/main/doc/Hammond-PPP2019.pdf

https://dl.acm.org/doi/10.1145/3318170.3318192

Shifting through the Gears of GPU Programming: Understanding Performance and
Portability Trade-offs

2022:

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41620/

https://github.com/ParRes/Kernels/blob/main/doc/IXPUG_Invited2_Hammond.pdf
https://github.com/ParRes/Kernels/blob/main/doc/Hammond-PPP2019.pdf
https://dl.acm.org/doi/10.1145/3318170.3318192
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41620/

What if we used the same methods to
evaluate more programming languages?

Language Nstream Transpose Stencil Synch_p2p Dgemm

Ada √ √

C# √ √

Go √ √ √

Java √ √ √ √

Julia √√√ √√ √ √ √√

Lua √

Octave (Matlab) √√ √√ √√ √

Python √√√ √√√ √√√ √ √√o

Ruby √

Rust √√ √ √ √ √√

Scala √

√√ = Traditional (loops) and Pretty (higher-level)
√√√ = Traditional (loops), Numpy, MPI (mpi4py)

Do not assume that Jeff knew what he was doing when he wrote Go, Lua,
Rust, … well anything frankly. Outside contributions are more reliable.

Nstream language showdown
Language MB/s

C89 31,906

Fortran 33,221

C11 34,529

C++11 33,460

Rust 21,576

Java 32,264

Go 24,546

Julia loops 34,193

Julia pretty 34,645

Numpy 17,229

Octave colon 9,804

Lua 273

Python 262

Octave loops 4

Left: N=1Mi, GCC 9, Ubuntu 20.04, Tiger Lake CPU
Right: N=128Mi, NVHPC 24.9, Ubuntu 24.04, Zen4 CPU

Language MB/s

C89 (OpenMP) 43,977

Fortran pretty 42,399

Fortran loops 42,186

Fortran (GPU) 959,310

C11 40,540

C++ 39,356

C++ vector 41,801

C++ valarray 41,849

C++ range-for 40,301

C++ for_each (GPU) 957,674

Ada 8,912

Rust 37,566

Rust unsafe 39,265

Rust iter 38,907

Rust rayon 43,334

Java 35,753

Go 24,882

Julia loops 40,037

Julia pretty 39,098

Numpy 17,003

CuPy (GPU) 469,728

Numba 41,159

GPU memory systems

GPU Nstream
A100
40G

A100
80G

H100
SMX5

GH200
480GB

MI-100 MI-210
MI-250x

1 GCD only
PVC 1110
1 tile SKU

Base
Language

Programming
Environment

NVHPC NVHPC NVHPC NVHPC ROCM ROCM
Cray PE or

HIP
oneAPI

C++ OpenCL 1,359,420 1,797,890 3,130,630 3,758,870 976,608 1,178,010 N/A 785,072

C++ CUDA / HIP / DPC++ 1,376,040 1,806,090 3,137,810 3,786,340 985,792 1,247,460 1,271,440 786,219

C++
CUDA / HIP / DPC++

MM / USM
1,352,760 1,793,550 3,127,140 3,745,890 34,477 31,015

28,095
1,282,240

(xnack 1Gi)
788,243

C++ StdPar / oneDPL 1,783,730 3,122,440 3,735,440 - - - 786,460

C++ OpenMP target 1,331,240 1,696,960 3,011,500 3,736,180 813,976 1,032,640 1,279,560 788,934

Fortran OpenMP target 1,318,457 1,695,184 3,123,503 3,624,402 750,497 748,734 1,211,633 674,388

Fortran OpenACC 1,396,610 1,775,602 3,137,305 3,713,856 N/A N/A 1,215,681 N/A

Fortran StdPar 1,625,644 3,122,048 3,627,525 N/A N/A N/A 11,049

See also: https://github.com/UoB-HPC/BabelStream/

https://github.com/UoB-HPC/BabelStream/

NWChem Co-Design Insight w/ PRK DGEMM

Matrix
Dimension

Compute Time (ms) Transfer Time (ms)
Compute Rate (TF/s)

post-transfer

5000 4.0 29.6 62.0

10000 31.4 36.1 63.6

20000 248.5 27.9 64.5

DGX-H100 running PRK DGEMM with managed memory.
Transfer time is the compute time of the first iteration minus the second iteration; there is some
overlap between GPU page faults and compute.

Other notable activities of late…

• CUDASTF single- and multi-GPU evaluation.

• Julia and Rust updates, including parallel dialects.

• Fortran MPI, mpi4py, shmem4py

• NCCL and NVSHMEM (just started)

• <your amazing contribution here>

Summary

• The PRK project is a research project for understanding:
• Communication semantics and implementation details, e.g. MPI vs SHMEM

• Toolchain implementation quality, e.g. GCC vs LLVM

• Programming model semantics and syntax, e.g. SYCL vs Kokkos

• Programming language differences, e.g. Fortran vs Julia, C++ vs Python

• The PRK project is not particularly useful for understanding absolute
performance or hardware characteristics unless you tune the code
appropriately.

• PRK kernels run in cycle-accurate chip simulators, Raspberry Pi, all the
GPUs, and large-scale supercomputers. You can use them to co-
design anything!

https://github.com/ParRes/Kernels

https://github.com/ParRes/Kernels

The End

	Slide 1: The Parallel Research Kernels and Their Use in Co-design
	Slide 3: Acknowledgements
	Slide 4: Parallel Research Kernels
	Slide 5: Project History
	Slide 6: Programming model evaluation
	Slide 7: “You can't manage what you can't measure” - Peter Drucker
	Slide 8: Goals of the Parallel Research Kernels
	Slide 9: Outline of PRK Suite
	Slide 11
	Slide 12
	Slide 13
	Slide 14: MPI for Exascale! Now what?
	Slide 15
	Slide 16: PRK stencil: C++ implementations on KNL
	Slide 17: Improved PRK stencil on KNL
	Slide 20
	Slide 22: Wavefront Parallelism
	Slide 23: Changing the iteration space exposes parallelism
	Slide 24: OpenMP inner-loop parallelism
	Slide 25: Amortizing synchronization overheads
	Slide 26: OpenMP task-based parallelism
	Slide 27: OpenMP “doacross” parallelism
	Slide 28: OpenMP hyperplane parallelism
	Slide 29: Intel Skylake Xeon 8180 (1S)
	Slide 30: Further analysis
	Slide 31: What if we used the same methods to evaluate more programming languages?
	Slide 32
	Slide 33: Nstream language showdown
	Slide 34: GPU memory systems
	Slide 35: GPU Nstream
	Slide 36: NWChem Co-Design Insight w/ PRK DGEMM
	Slide 37: Other notable activities of late…
	Slide 38: Summary
	Slide 39
	Slide 40: The End

