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1. Introduction



Leaderboard
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https://www.vellum.ai/llm-leaderboard



Opensource LLMs
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https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/



2. How LLMs work: The Attention Mechanism



Attention
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Attention
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Token Embeddings
 By using tokens rather 
than full words, GPT 
models can achieve a 
balance between linguistic 
flexibility and 
computational efficiency

 Still problems with 
numbers and code 

Tokenizer matter a lot
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Attention
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She decided to set the table for dinner before the guests arrived. 
(To arrange or place something)

The sun began to set, painting the sky with hues of orange and pink. (To sink 
below the horizon)

He bought a set of tools to fix the broken chair. (A group of items)

2025-03-11   |   HPC Café   |   NHR@FAU  |   hpc-support@fau.de



Attention
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Attention
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Attention
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setdecided to set the table

a set of

 Embeddingvectors
get influenced by 
surrounding words 
through attention
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Example 

 Imagine the input text is an entire crime story all the way up 
to a point towards the end. ”The reason of his death was 
????”

 The final word of the sequence is: was

 The embedding vector of ”was” has been updated by all the 
other words before

 Only that’s why the model can accurately predict the next 
word
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Attention

a watercooled overclocked gpu increased the performance

Ε0 Ε1 Ε2 Ε3 Ε4 Ε5 Ε6
→ → → → → → →

𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄

𝑄𝑄0
→ 𝑄𝑄1

→ 𝑄𝑄2
→ 𝑄𝑄3

→ 𝑄𝑄4
→ 𝑄𝑄5

→ 𝑄𝑄6
→

What comes before me?

Embeddings get mapped to Q vectors 
Q vector is in a smaller dim. space

𝑊𝑊𝑄𝑄 Ε𝑖𝑖
→ = 𝑄𝑄𝑖𝑖

→
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Attentionpattern

- inf

-inf -inf

-inf -inf -inf

Ε0
→

𝑊𝑊𝑄𝑄

𝑄𝑄0
→

a watercooled … GPU
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𝐾𝐾2
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GPU

 Dotproduct K and Q
 Big values -> relevance
 Size of this matrix is 
equal to the square of 
context size

Apply softmax
normalization (normalized 
exponential function)
-inf will turn into 0 after 
normalization
We want to prevent later 
tokens to influence earlier 
ones
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Valuevector
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 Values are getting 
added to original 
embedding producing a 
sequence of changes
More refined 
embeddings are the 
result

Which words are 
relevant to which 
other words
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Example GPT3
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Multi-Head-Attention
 How can we run these operations in parallel?
 GPT3 has 96 attention heads in each attention 

block
 96 disctinct key and query matrices
 96 disctinct attention patterns
 Each head has his own disctinct value 

matrices producing 96 sequences of value 
vectors

 They are all added together using the attention 
patterns as weights

 For each token and position, everyone of these 
heads proposes a change to the embeddings

 We sum together all the proposed changes 
and add them together to the embedding

18

https://bbycroft.net/llm
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https://bbycroft.net/llm


Multi-Head-Attention
 Each Head Sees All Tokens: Every attention head 

processes the entire input sequence rather than just a 
subset of tokens. 

 Distinct Q/K/V Matrices: Each head has its own 
learned linear transformations for Queries, Keys, and 
Values. 

 Different Specializations: Because the heads have 
separate weights, they naturally learn different “roles” 
or patterns of attention. 

 Random Initialization Leads to Diversity: Heads 
start with different random weights, so they converge 
on diverse solutions. 

 Shared Final Output: The model sums the 
contributions from all heads (after concatenation and 
projection) to produce the final token embeddings.

19

https://bbycroft.net/llm
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3. Scaling of LLMs



Scaling Laws
 More data, more parameters => better performance
 Idea: predict model performance based on amount of data and parameters

 How well will we perform when we add compute and data?

 No signs of plateau!

21

Scaling Laws for Neural Language Models
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https://arxiv.org/pdf/2001.08361


Why are scaling laws important?
Question: you will have 2.000 GPUs next year, what model do you train?

Find scaling recipes:
 Compute is constant on the figure
 You adapt number of tokens and

parameters

22

Isoflop and vary tokens/parameters

Best parameters for each isoflop

Best tokens for each isoflop

 Optimal would be 
20 tokens per 
parameter
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https://arxiv.org/pdf/2001.08361


Scaling law

23

 “The only thing that matters in the long run is the leveraging of 
computation” Sutton 2019 

 Training Llama 405B
 Data 15T tokens, Parameters 405B

 Flops 6 NP = 6 x NP x Data = 6 * 15,6e12 * 405e9 = 3.8e25 FLOPS
 Compute 16k H100 with average of 400 TFLOPS
 Time 3.8e25 (400e12*3600) = 26M GPU hour / (16e3*24)=70 days

 From paper they said 30M GPU hours
 Costs rented GPU + Salary = 2$/h 26Mh + 500.000$ per Employee (50)

75M$

 Next model 10x? 

2025-03-11   |   HPC Café   |   NHR@FAU  |   hpc-support@fau.de



4. Training of LLMs



Types of trainings
 Pretraining 
 Finetuning

 Fullfinetuning (SFT)
 RLHF, DPO, GRPO (Preference 

Optimization)
 PEFT (Parameter Efficient 

Finetuning)
 Adapters like LoRA
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Pretraining
 Idea: Use all data available (internet
 Download everything

 Extract from HTML
 Clean Data from undesired 

material
 Deduplication
 Filtering (NSFW)
 Datamix
 Quality ranking (Wikipedia)
 Format: Parquet files, JSONL

 Right now best models are trained 
with 15T Tokens
 Fineweb-edu Dataset 
 Usually Wikipedia is ranked high
 Entertainment ranked low
 GPT4 probably trained 13T tokens

26

Example Llama 2
• 2 trillion tokens of data (good performance–

cost trade-off)
• Chunked into fixed size (2048 or 4096 for 

example)
• Trained with Megatron
• NVIDIA A100 Clusters

Llama 2: Open Foundation and Fine-Tuned Chat Models
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Instructiontuning
 Instruction Datasets

 Most of them created syntheticly
and also filtered afterwards

 Reranked and filtered collection of 
datasets with a focus on instruction 
following

 Type: Conversation, Input/Ouput
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5. Evaluation of LLMs



Evaluation of LLMs
 “As the model size increases, the validation 

perpelixity decreases and reaches a validation 
perplexity of 9.27 for the   8.3B model”

 “We observe the trend that increasing model 
size also leads to lower perplexity on 
WikiText103 and higher cloze accuracy on 
LAMBADA”

* Megatron-LM: Training Multi-Billion Parameter 
Language Models Using Model Parallelism
https://arxiv.org/pdf/1909.08053
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Basically Perplexity is the validation loss
avg per token loss (independent of length)
Exponentiate
Perplexity between 1 and size of vocab
Number of tokens you are hesitating between
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Evaluation of LLMs
 Example MMLU

 Questions of many different domains

 What is true for a type 1a supernova?
 a)…
 b).. 
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6. Parallelism Techniques



Parallelism
1. Data Parallelism (DP) 

2. TensorParallelism (TP) 

3. PipelineParallelism (PP) 

4. Zero Redundancy Optimizer (ZeRO) 

5. Expert Parallelism - Mixture-Of-Experts (MoE)

322025-03-11   |   HPC Café   |   NHR@FAU  |   hpc-support@fau.de



Data Parallelism

33

• Data Parallelism
• Split up the 

batch data into 
smaller 
chunks and 
give each 
model on 
device one 

Megatron-LM
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Data Parallelism

 Batch gets split up between models
 Weight updates combined by Allreduce

 Shortcomings:
 Cannot scale infinitively like 3000 gpu -> 

Batchsize has to be big enough for example
 Model doesn’t fit on a single Device

That’s why we need Model Level Parallelism
Splits up the layer of a model and 

calculates only a part of the input
That’s Tensor level Parallelism
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Modelparallelism
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TP and PP
TP - each tensor is split up, each 
shard of the tensor resides on its 
designated gpu. This is what one may 
call horizontal parallelism, as the 
splitting happens on horizontal level

PP - the model is split up vertically 
(layer-level) across multiple GPUs, so 
that only one or several layers of the 
model are places on a single gpu. 
Each gpu processes in parallel 
different stages of the pipeline and 
working on a small chunk of the batch Megatron-LM
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Pipeline Parallelism
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Megatron-LM
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TP and PP optimization
 TP is much more communication intensive 

because of allreduces

 Not want TP across Nodes

 Sweetspot is maximizing TP for a Node 
(Number of GPUs per Node) 

 Pipline stages shouldn’t be too many

 Bubbles increase

 Schedule of forward and backward passes

37

Megatron-LM
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3D Parallelism
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Microsoft deepspeed
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Zero?
 is just the usual DataParallel (DP) 

 except, instead of replicating the full model 
params, gradients and optimizer states, each 
GPU stores only a slice of it

 at run-time when the full layer params are 
needed just for the given layer, all GPUs 
synchronize to give each other parts that they 
miss - this is it
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MoE Models
Mixture of Experts (MoE) in Large Language Models (LLMs)
•Purpose: Optimize compute efficiency for large-scale LLMs by activating only 
relevant model parts.
•Advantages:

• Compute Efficiency: Optimizing processing power.
• Scalability: Supports large-scale training while reducing memory bandwidth 

demands.
•Challenges:

• Memory Inefficiency: Higher VRAM usage compared to dense models.
• Fine-tuning Complexity: Trickier to fine-tune.
• Best Use Cases: Benefits are maximized in large datacenter environments.
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7. LLMs on HPC



Examples single GPU
• Model fits onto a single GPU:

• Normal use
• Model doesn't fit onto a single 

GPU:
• ZeRO + Offload CPU and 

optionally NVMe
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Nvidia A100

https://www.nvidia.com/de-de/data-center/a100/


Examples single node
• Model fits onto a single GPU:

• DDP - Distributed DP
• ZeRO - may or may not be faster depending on the situation and 

configuration used
• Model doesn't fit onto a single GPU:

• PP
• ZeRO
• TP

• With very fast intra-node connectivity of NVLINK or NVSwitch all three should be 
mostly on par, without these PP will be faster than TP or ZeRO. The degree of 
TP may also make a difference. Best to experiment to find the winner on your 
particular setup.

• TP is almost always used within a single node. That is TP size <= gpus per 
node.
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Examples multinode
 If the model fits into a single node first try ZeRO with multiple replicas, 

because then you will be doing ZeRO over the faster intra-node 
connectivity, and DDP over slower inter-node

• When you have fast inter-node connectivity:
• ZeRO - as it requires close to no modifications to the model
• PP+TP+DP - less communications, but requires massive changes to the model

• when you have slow inter-node connectivity and still low on GPU memory:
• DP+PP+TP+ZeRO-1
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Training-Frameworks 
 NVIDIA Megatron-LM: This framework is predominantly used for pretraining large 

language models, leveraging advanced model parallelism techniques to facilitate 
efficient large-scale training. Often times forked. Other frameworks like HF Nanotron
are inspired by Megatron. 

 Lit-GPT: Designed as a minimalistic implementation in PyTorch, Lit-GPT serves 
research purposes, allowing for straightforward experimentation with various LLM 
architectures.

 Axolotl: Focused on the fine-tuning aspect of LLMs, Axolotl provides a user-friendly 
interface that enables users to adapt pre-trained models to specific tasks effectively. 

 Unsloth: Optimized for single-node setups, Unsloth offers hyper-optimized QLoRA
fine-tuning for single GPUs, resulting in improved speed and reduced VRAM usage 
compared to standard industry baselines. 
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Inference-Frameworks
 vLLM: A high-performance inference engine designed for serving large language models 

efficiently. It leverages continuous batching and PagedAttention to maximize throughput and 
reduce latency, making it ideal for production-scale inference.

 EXL2 (ExLlama): Optimized for running quantized models, ExLlama and ExLlamaV2 
specialize in efficient inference for GGUF and GPTQ models, providing significant speed-ups 
on consumer GPUs.

 TGI (Text Generation Inference): An optimized inference server from Hugging Face for 
running LLMs efficiently in production, featuring features like dynamic batching, tensor 
parallelism, and continuous token streaming.

 Llama.cpp: A lightweight, C++-based inference framework optimized for CPU and low-
resource environments. It supports GGUF models and is commonly used for running models 
on edge devices and local machines.
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