
LLM for Dummies: Functionality, Scaling, and HPC
Training

HPC Services, NHR@FAU

hpc-support@fau.de

https://doc.nhr.fau.de

mailto:hpc-support@fau.de
https://doc.nhr.fau.de/

Agenda

1. Introduction

2. How LLMs work: The Attention Mechanism

3. Scaling Laws

4. Training of LLMs

5. Evaluation of LLMs

6. Parallelization Techniques

7. LLMs on HPC

1. Introduction

Leaderboard

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de 4

https://www.vellum.ai/llm-leaderboard

Opensource LLMs

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de 5

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/

2. How LLMs work: The Attention Mechanism

Attention

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de 7

HPC is all we ____

Transformer

0

20

40

60

80

100

need want have use

probabilities

Attention

8

HPC is all we ????

5.8
4.2
9.9
3.7

.

.

.
2.1

6.2
7.1
8.3
5.7

.

.

.
0.1

2.8
3.5
4.2
8.1

.

.

.
1.4

2.0
8.2
5.2
3.9

.

.

.
8.1

Token Embeddings
 By using tokens rather
than full words, GPT
models can achieve a
balance between linguistic
flexibility and
computational efficiency

 Still problems with
numbers and code

Tokenizer matter a lot

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Attention

9

She decided to set the table for dinner before the guests arrived.
(To arrange or place something)

The sun began to set, painting the sky with hues of orange and pink. (To sink
below the horizon)

He bought a set of tools to fix the broken chair. (A group of items)

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Attention

10

She decided to set The sun began to set, painting He bought a set of

2.8
3.2
4.9
6.7

.

.

.
3.1

2.8
3.2
4.9
6.7

.

.

.
3.1

2.8
3.2
4.9
6.7

.

.

.
3.1

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Attention

11

She decided to set

3.8
1.2
6.9
9.7

.

.

.
2.1

3.4
6.1
7.7
1.3

.

.

.
2.5

2.5
3.6
5.7
6.8

.

.

.
1.0

4.2
2.1
7.5
2.4

.

.

.
3.7

Attention

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Attention

12

setdecided to set the table

a set of

 Embeddingvectors
get influenced by
surrounding words
through attention

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

13

Example

 Imagine the input text is an entire crime story all the way up
to a point towards the end. ”The reason of his death was
????”

 The final word of the sequence is: was

 The embedding vector of ”was” has been updated by all the
other words before

 Only that’s why the model can accurately predict the next
word

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

14

Attention

a watercooled overclocked gpu increased the performance

Ε0 Ε1 Ε2 Ε3 Ε4 Ε5 Ε6
→ → → → → → →

𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄 𝑊𝑊𝑄𝑄

𝑄𝑄0
→ 𝑄𝑄1

→ 𝑄𝑄2
→ 𝑄𝑄3

→ 𝑄𝑄4
→ 𝑄𝑄5

→ 𝑄𝑄6
→

What comes before me?

Embeddings get mapped to Q vectors
Q vector is in a smaller dim. space

𝑊𝑊𝑄𝑄 Ε𝑖𝑖
→ = 𝑄𝑄𝑖𝑖

→

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

15

Attentionpattern

- inf

-inf -inf

-inf -inf -inf

Ε0
→

𝑊𝑊𝑄𝑄

𝑄𝑄0
→

a watercooled … GPU
Ε1
→

𝑊𝑊𝑄𝑄

𝑄𝑄1
→

Ε2
→

𝑊𝑊𝑄𝑄

𝑄𝑄2
→

Ε3
→

𝑊𝑊𝑄𝑄

𝑄𝑄3
→

Ε0
𝑊𝑊𝑘𝑘

𝐾𝐾0
→→a

Ε1
𝑊𝑊𝑘𝑘

𝐾𝐾1
→→

Ε2
𝑊𝑊𝑘𝑘

𝐾𝐾2
→→

Ε3
𝑊𝑊𝑘𝑘

𝐾𝐾3
→→

watercooled

overclocked

GPU

 Dotproduct K and Q
 Big values -> relevance
 Size of this matrix is
equal to the square of
context size

Apply softmax
normalization (normalized
exponential function)
-inf will turn into 0 after
normalization
We want to prevent later
tokens to influence earlier
ones

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

16

Valuevector

0

0 0

0 0 0

Ε0
→

a watercooled … GPU

Ε1
→ Ε2

→
Ε3
→

Ε0
𝑊𝑊𝑣𝑣

𝑉𝑉0
→→a

Ε1
𝑊𝑊𝑣𝑣

𝑉𝑉1
→→

Ε2
𝑊𝑊𝑣𝑣

𝑉𝑉2
→→

Ε3
𝑊𝑊𝑣𝑣

𝑉𝑉3
→→

watercooled

overclocked

GPU

 Values are getting
added to original
embedding producing a
sequence of changes
More refined
embeddings are the
result

Which words are
relevant to which
other words

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Example GPT3

17

Query Key

12288 12288

128 128

->

->

12
28

8

12288

Valuematrix

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Multi-Head-Attention
 How can we run these operations in parallel?
 GPT3 has 96 attention heads in each attention

block
 96 disctinct key and query matrices
 96 disctinct attention patterns
 Each head has his own disctinct value

matrices producing 96 sequences of value
vectors

 They are all added together using the attention
patterns as weights

 For each token and position, everyone of these
heads proposes a change to the embeddings

 We sum together all the proposed changes
and add them together to the embedding

18

https://bbycroft.net/llm

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://bbycroft.net/llm

Multi-Head-Attention
 Each Head Sees All Tokens: Every attention head

processes the entire input sequence rather than just a
subset of tokens.

 Distinct Q/K/V Matrices: Each head has its own
learned linear transformations for Queries, Keys, and
Values.

 Different Specializations: Because the heads have
separate weights, they naturally learn different “roles”
or patterns of attention.

 Random Initialization Leads to Diversity: Heads
start with different random weights, so they converge
on diverse solutions.

 Shared Final Output: The model sums the
contributions from all heads (after concatenation and
projection) to produce the final token embeddings.

19

https://bbycroft.net/llm

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://bbycroft.net/llm

3. Scaling of LLMs

Scaling Laws
 More data, more parameters => better performance
 Idea: predict model performance based on amount of data and parameters

 How well will we perform when we add compute and data?

 No signs of plateau!

21

Scaling Laws for Neural Language Models

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://arxiv.org/pdf/2001.08361

Why are scaling laws important?
Question: you will have 2.000 GPUs next year, what model do you train?

Find scaling recipes:
 Compute is constant on the figure
 You adapt number of tokens and

parameters

22

Isoflop and vary tokens/parameters

Best parameters for each isoflop

Best tokens for each isoflop

 Optimal would be
20 tokens per
parameter

Scaling Laws for Neural Language Models2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://arxiv.org/pdf/2001.08361

Scaling law

23

 “The only thing that matters in the long run is the leveraging of
computation” Sutton 2019

 Training Llama 405B
 Data 15T tokens, Parameters 405B

 Flops 6 NP = 6 x NP x Data = 6 * 15,6e12 * 405e9 = 3.8e25 FLOPS
 Compute 16k H100 with average of 400 TFLOPS
 Time 3.8e25 (400e12*3600) = 26M GPU hour / (16e3*24)=70 days

 From paper they said 30M GPU hours
 Costs rented GPU + Salary = 2$/h 26Mh + 500.000$ per Employee (50)

75M$

 Next model 10x?

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

4. Training of LLMs

Types of trainings
 Pretraining
 Finetuning

 Fullfinetuning (SFT)
 RLHF, DPO, GRPO (Preference

Optimization)
 PEFT (Parameter Efficient

Finetuning)
 Adapters like LoRA

252025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Pretraining
 Idea: Use all data available (internet
 Download everything

 Extract from HTML
 Clean Data from undesired

material
 Deduplication
 Filtering (NSFW)
 Datamix
 Quality ranking (Wikipedia)
 Format: Parquet files, JSONL

 Right now best models are trained
with 15T Tokens
 Fineweb-edu Dataset
 Usually Wikipedia is ranked high
 Entertainment ranked low
 GPT4 probably trained 13T tokens

26

Example Llama 2
• 2 trillion tokens of data (good performance–

cost trade-off)
• Chunked into fixed size (2048 or 4096 for

example)
• Trained with Megatron
• NVIDIA A100 Clusters

Llama 2: Open Foundation and Fine-Tuned Chat Models

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://arxiv.org/pdf/2307.09288

Instructiontuning
 Instruction Datasets

 Most of them created syntheticly
and also filtered afterwards

 Reranked and filtered collection of
datasets with a focus on instruction
following

 Type: Conversation, Input/Ouput

272025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

5. Evaluation of LLMs

Evaluation of LLMs
 “As the model size increases, the validation

perpelixity decreases and reaches a validation
perplexity of 9.27 for the 8.3B model”

 “We observe the trend that increasing model
size also leads to lower perplexity on
WikiText103 and higher cloze accuracy on
LAMBADA”

* Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism
https://arxiv.org/pdf/1909.08053

29

Basically Perplexity is the validation loss
avg per token loss (independent of length)
Exponentiate
Perplexity between 1 and size of vocab
Number of tokens you are hesitating between

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Evaluation of LLMs
 Example MMLU

 Questions of many different domains

 What is true for a type 1a supernova?
 a)…
 b)..

302025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

6. Parallelism Techniques

Parallelism
1. Data Parallelism (DP)

2. TensorParallelism (TP)

3. PipelineParallelism (PP)

4. Zero Redundancy Optimizer (ZeRO)

5. Expert Parallelism - Mixture-Of-Experts (MoE)

322025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Data Parallelism

33

• Data Parallelism
• Split up the

batch data into
smaller
chunks and
give each
model on
device one

Megatron-LM

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://arxiv.org/pdf/1909.08053

Data Parallelism

 Batch gets split up between models
 Weight updates combined by Allreduce

 Shortcomings:
 Cannot scale infinitively like 3000 gpu ->

Batchsize has to be big enough for example
 Model doesn’t fit on a single Device

That’s why we need Model Level Parallelism
Splits up the layer of a model and

calculates only a part of the input
That’s Tensor level Parallelism

342025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Modelparallelism

35

TP and PP
TP - each tensor is split up, each
shard of the tensor resides on its
designated gpu. This is what one may
call horizontal parallelism, as the
splitting happens on horizontal level

PP - the model is split up vertically
(layer-level) across multiple GPUs, so
that only one or several layers of the
model are places on a single gpu.
Each gpu processes in parallel
different stages of the pipeline and
working on a small chunk of the batch Megatron-LM

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://arxiv.org/pdf/1909.08053

Pipeline Parallelism

36

Megatron-LM

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://arxiv.org/pdf/1909.08053

TP and PP optimization
 TP is much more communication intensive

because of allreduces

 Not want TP across Nodes

 Sweetspot is maximizing TP for a Node
(Number of GPUs per Node)

 Pipline stages shouldn’t be too many

 Bubbles increase

 Schedule of forward and backward passes

37

Megatron-LM

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://arxiv.org/pdf/1909.08053

3D Parallelism

38

Microsoft deepspeed

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

Zero?
 is just the usual DataParallel (DP)

 except, instead of replicating the full model
params, gradients and optimizer states, each
GPU stores only a slice of it

 at run-time when the full layer params are
needed just for the given layer, all GPUs
synchronize to give each other parts that they
miss - this is it

392025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

40

MoE Models
Mixture of Experts (MoE) in Large Language Models (LLMs)
•Purpose: Optimize compute efficiency for large-scale LLMs by activating only
relevant model parts.
•Advantages:

• Compute Efficiency: Optimizing processing power.
• Scalability: Supports large-scale training while reducing memory bandwidth

demands.
•Challenges:

• Memory Inefficiency: Higher VRAM usage compared to dense models.
• Fine-tuning Complexity: Trickier to fine-tune.
• Best Use Cases: Benefits are maximized in large datacenter environments.

2025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

7. LLMs on HPC

Examples single GPU
• Model fits onto a single GPU:

• Normal use
• Model doesn't fit onto a single

GPU:
• ZeRO + Offload CPU and

optionally NVMe

2024-07-10 | NHR@FAU | hpc-support@fau.de 42

Nvidia A100

https://www.nvidia.com/de-de/data-center/a100/

Examples single node
• Model fits onto a single GPU:

• DDP - Distributed DP
• ZeRO - may or may not be faster depending on the situation and

configuration used
• Model doesn't fit onto a single GPU:

• PP
• ZeRO
• TP

• With very fast intra-node connectivity of NVLINK or NVSwitch all three should be
mostly on par, without these PP will be faster than TP or ZeRO. The degree of
TP may also make a difference. Best to experiment to find the winner on your
particular setup.

• TP is almost always used within a single node. That is TP size <= gpus per
node.

432025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Examples multinode
 If the model fits into a single node first try ZeRO with multiple replicas,

because then you will be doing ZeRO over the faster intra-node
connectivity, and DDP over slower inter-node

• When you have fast inter-node connectivity:
• ZeRO - as it requires close to no modifications to the model
• PP+TP+DP - less communications, but requires massive changes to the model

• when you have slow inter-node connectivity and still low on GPU memory:
• DP+PP+TP+ZeRO-1

442025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Training-Frameworks
 NVIDIA Megatron-LM: This framework is predominantly used for pretraining large

language models, leveraging advanced model parallelism techniques to facilitate
efficient large-scale training. Often times forked. Other frameworks like HF Nanotron
are inspired by Megatron.

 Lit-GPT: Designed as a minimalistic implementation in PyTorch, Lit-GPT serves
research purposes, allowing for straightforward experimentation with various LLM
architectures.

 Axolotl: Focused on the fine-tuning aspect of LLMs, Axolotl provides a user-friendly
interface that enables users to adapt pre-trained models to specific tasks effectively.

 Unsloth: Optimized for single-node setups, Unsloth offers hyper-optimized QLoRA
fine-tuning for single GPUs, resulting in improved speed and reduced VRAM usage
compared to standard industry baselines.

452025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

Inference-Frameworks
 vLLM: A high-performance inference engine designed for serving large language models

efficiently. It leverages continuous batching and PagedAttention to maximize throughput and
reduce latency, making it ideal for production-scale inference.

 EXL2 (ExLlama): Optimized for running quantized models, ExLlama and ExLlamaV2
specialize in efficient inference for GGUF and GPTQ models, providing significant speed-ups
on consumer GPUs.

 TGI (Text Generation Inference): An optimized inference server from Hugging Face for
running LLMs efficiently in production, featuring features like dynamic batching, tensor
parallelism, and continuous token streaming.

 Llama.cpp: A lightweight, C++-based inference framework optimized for CPU and low-
resource environments. It supports GGUF models and is commonly used for running models
on edge devices and local machines.

462025-03-11 | HPC Café | NHR@FAU | hpc-support@fau.de

	LLM for Dummies: Functionality, Scaling, and HPC Training
	Agenda�
	1. Introduction�
	Leaderboard
	Opensource LLMs
	2. How LLMs work: The Attention Mechanism��
	Attention
	Attention
	Attention
	Attention
	Attention
	Attention
	Example
	Attention
	Attentionpattern
	Valuevector
	Example GPT3
	Multi-Head-Attention
	Multi-Head-Attention
	3. Scaling of LLMs
	Scaling Laws
	Why are scaling laws important?
	Scaling law
	4. Training of LLMs
	Types of trainings
	Pretraining
	Instructiontuning
	5. Evaluation of LLMs
	Evaluation of LLMs
	Evaluation of LLMs
	6. Parallelism Techniques
	Parallelism
	Data Parallelism
	Data Parallelism
	Modelparallelism
	Pipeline Parallelism
	TP and PP optimization
	3D Parallelism
	Zero?
	MoE Models
	7. LLMs on HPC
	Examples single GPU
	Examples single node
	Examples multinode
	Training-Frameworks
	Inference-Frameworks

