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Brief overview of CSCS and its activities in scientific software and 
libraries development
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Swiss National Supercomputing Centre – CSCS

CSCS develops and operates a high performance computing and data research 
infrastructure that supports world-class science in Switzerland
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Accelerated computing at CSCS

K20X P100 GH200
Peak performance 1.17 TFlop/s 4.8 TFlop/s 34 TFlop/s (67 with TC)

GPU memory 6 Gb 16 Gb 96 Gb
GPU memory BW 250 Gb/s 732 Gb/s 4000 Gb/s
H-D transfer speed 32 Gb/s 32 Gb/s 900 Gb/s

2013 2016 2024
#3 in Top500 
~20 PFlop/s

#7 in Top500 
~434 PFlop/s

#6 in Top500 
~6.27 PFlop/s
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ETH Zürich is a swiss partner of LUMI consortium

2019
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Platform for Advanced Scientific Computing - PASC
PI 

scientific vision and goals 

Application scientist
input cases, analysis and 
interpretation of results

Performance and SW engineer
Parallelization, hardware specific know-how (GPUs), 

development best practices

Computational scientist
translation of formulae to 

algorithms

Academia

CSCS
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Scientific software development at CSCS

CSCS vision: complexity of current and emerging HPC platforms and programming 
models should be reflected in the way we develop scientific software. 
Encapsulation of common, reusable components of the large scientific codes into 
domain specific libraries leads to a better software engineering of such codes. 

Domain scientists

Scientific code

“Classic” HPC platform

Journey from monolithic 
to modular applications

Architecture 1

Library 1

HPC SW engineers

…

Domain scientists

Scientific code

Library M
…

Architecture N
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Pros and cons of monolithic and modular applications

Pros
• usually works well on your “home”cluster 
• few dependencies 
• full control of the source code

• separation of concerns 
• reusability of code 
• less own code to maintain

Cons

• supporting multiple architectures is close to 
impossible 

• hard to maintain and on-board new developers 
• often a hacky build process on other platforms 

and environments 

• long-term support of libraries 
• lag in bug fixes 
• requesting new features takes time  
• need to install many dependencies, which is 
hard to do manually
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Common traits for CSCS software development

• Use C++ as a programming language 
• Use CUDA/ROCm or Kokkos as a GPU programming model 
• Use CMake as a build system 
• Use spack to build dependencies 
• CI/CD pipeline that runs both on Github/Gitlab VMs and at CSCS 

Each of our libraries: 
• supports CMake/spack 
• provides C/Fortran API, examples and documentation



SIRIUS: domain-specific electronic structure library



“Delta DFT” effort

Science, Volume 351, Issue 6280, Mar 2016

Code Basis Electron 
treatment

Wien2k LAPW+lo Full-potential
FLEUR LAPW+lo Full-potential
Exciting LAPW+lo Full-potential
Elk LAPW+lo Full-potential
FHI-aims Numeric atom-centered 

orbitals
Full-potential

FPLO Local orbitals Full-potential
RSPt Linear Muffin-Tin Orbitals Full-potential
Abinit Plane-waves Pseudopotential
Quantum 
ESPRESSO

Plane-waves Pseudopotential

VASP Plane-waves Pseudopotential
GPAW Plane-waves Pseudopotential
CASTEP Plane-waves Pseudopotential
DACAPO Plane-waves Pseudopotential
BigDFT Daubechies wavelet Pseudopotential
OpenMX Pseudo-atomic localized 

basis functions
Pseudopotential



Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid 
▪ All functions are expanded in plane-waves 
▪ Atomic potential is replaced by a pseudopotential

Basis functions:

Potential and density:
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Pseudopotential plane-wave method

▪ Approximation to atomic potential 
▪ Core states are excluded 
▪ Number of basis functions: ~1000 / atom 
▪ Number of valence states: ~0.001 - 0.01% of the total basis size 
▪ Efficient iterative subspace diagonalization schemes exist 
▪ Atomic forces can be easily computed 
▪ Stress tensor can be easily computed



Full-potential linearized augmented plane-wave method

Interstitial

atom #1
atom #2

▪ Unit cell is partitioned into “muffin-tin” spheres and interstitial region 
▪ Inside MT spheres spherical harmonic expansion is used 
▪ In the interstitial region functions are expanded in plane-waves

Basis functions:

Potential and density:
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Full-potential linearized augmented plane-wave method

▪ No approximation to atomic potential 
▪ Core states are included 
▪ Number of basis functions: ~100 / atom 
▪ Number of valence states: ~15-20% of the total basis size 
▪ Large condition number of the overlap matrix 
▪ Full diagonalization of dense matrix is required (iterative subspace 

diagonalization schemes are not efficient) 
▪ Atomic forces can be easily computed 
▪ Stress tensor can’t be easily computed (N-point numerical scheme is required)



Common features of the FP-LAPW and PP-PW methods
▪ Definition of the unit cell (atoms, atom types, lattice vectors, symmetry 

operations, etc.) 

▪ Definition of the reciprocal lattice, plane-wave cutoffs, G vectors, G+k vectors 

▪ Definition of the wave-functions as a 2D array of basis expansion coefficients 

▪ FFT driver 

▪ Generation of the charge density on the regular grid 

▪ Generation of the XC-potential 

▪ Symmetrization of the density, potential and occupancy matrices 

▪ Low-level numerics (spherical harmonics, Bessel functions, Gaunt coefficients, 
spline interpolation, Wigner D-matrix, linear algebra wrappers, etc.) 



Motivation for a common plane-wave DFT library
▪ Many similar full-potential LAPW codes (Exciting, Elk, FLEUR, Wien2k) 
▪ Many similar pseudopotential PW codes (Quantum ESPRESSO, Abinit, VASP, …) 
▪ Core DFT functionality is the same (compute total energy, magnetic moments, 

stress tensor, forces) 
▪ A lot of common functionality between FP-LAPW and PP-PW methods

Accelerating and writing architecture backends for individual DFT codes is a 
repetition of work!

It is beneficial to develop a common DFT functionality and establish interfaces 
with various electronic-structure codes.



Where to draw the line?

Effective potential construction

Density mixing

Density generation

Eigen-value problem⇣
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SIRIUS library
programming 
model

• C++17 with OpenMP 
• MPI 
• CUDA/ROCm

build system • CMake 
• Spack

methods • FP-LAPW (APW, LAPW + any combination of 
local orbitals) 

• ZORA, IORA 
• PP-PW (NC, USPP, PAW) 

• DFT+U, DFT+U+V
core 
functionality 

• DFT ground state, energy, forces, stress 
tensor 

• spin-orbit 
• non-collinear magnetism 
• local lattice relaxation (VC-SQNM module)

bindings • Fortran 90 (ISO_C_BINDING) 
• Pybind11 (at different granularity) 
• Julia

data formats • JSON 
• XML 
• HDF5

https://github.com/electronic-structure/SIRIUS 
https://electronic-structure.github.io/SIRIUS-doc/ 



Fortran API example
! initialize the library
call sirius_initialize(call_mpi_init=.true.)

! create simulation context using a specified communicator
call sirius_create_context(MPI_COMM_WORLD, handler)

call sirius_import_parameters(handler, &
    '{"parameters" : {"electronic_structure_method" : "pseudopotential"},&
      "control" : {"verbosity" : 1, "verification" : 0}}')

! atomic units are used everywhere
! plane-wave cutoffs are provided in a.u.^-1
call sirius_set_parameters(handler, pw_cutoff=40.d0, gk_cutoff=7.d0)

lat_vec = 0.d0
do i = 1, 3
  lat_vec(i,i) = 7.260327248
enddo
! disturb the lattice a little bit
lat_vec(1,3) = 0.001

call sirius_set_lattice_vectors(handler, lat_vec(:, 1), lat_vec(:, 2), lat_vec(:, 3))

call sirius_add_atom_type(handler, "Sr", fname=“Sr.UPC")
call sirius_add_atom_type(handler, "V", fname="V.UPF")
call sirius_add_atom_type(handler, "O", fname="O.UPF")



Interoperability with the host code (high level overview)
SIRIUS setup phase 

Create, set and initialize Simulation_context instance
• set lattice vectors, atom types and atomic positions 
• set pseudopotential or LAPW basis description 
• set plane-wave cutoffs and other simulation parameters 
• set XC potential type 

Create and initialize K_point_set instance
Create and initialize DFT_ground_state instance

SIRIUS execution phase 
Run DFT_ground_state and compute total energy, stress 
and forces components

SIRIUS update phase 
Update lattice vectors and atomic positions and recompute 
dependent variables

Host code interacts with SIRIUS via API 
(C and Fortran90 bindings are provided) 

Example: 
! create context of simulation
CALL sirius_create_context(intra_image_comm, sctx,&
    &fcomm_k=inter_pool_comm,&
    &fcomm_band=intra_pool_comm, error_code=ierr)
IF (ierr .NE. 0) THEN
  STOP 'error in sirius_create_context()' 
END IF

Once the simulation parameters are set up, host 
code calls SIRIUS to find the ground state and 
get back total energy, lattice stress and atomic 
forces. 

Host code performs the lattice relaxation step and 
finds new lattice parameters and atomic positions.  



GPU backend
▪ wrappers for cublas and rocblas linear algebra functions 
▪ GPU kernels are written  in CUDA/ROCm and compiled separately by nvcc/hip 
▪ main C++ code calls GPU kernels using  extern “C”  interface 
▪ math primitive functions and types are substituted at compile time

#if defined(SIRIUS_CUDA)
using acc_complex_double_t = cuDoubleComplex;
#define make_accDoubleComplex make_cuDoubleComplex
#define accCadd cuCadd
#define accCmul cuCmul
…  
#define ACC_DYNAMIC_SHARED(type, var) extern __shared__ type var[];

#elif defined(SIRIUS_ROCM)
using acc_complex_double_t = hipDoubleComplex;
#define make_accDoubleComplex make_hipDoubleComplex
#define accCadd hipCadd
#define accCmul hipCmul
…  
#define ACC_DYNAMIC_SHARED(type, var) HIP_DYNAMIC_SHARED(type, var)
#endif



CUDA / ROCm kernels
/* CUDA runtime calls and definitions */
#ifdef __CUDA
#define accLaunchKernel(kernelName, numblocks, numthreads, memperblock, streamId, ...)                                 \
    do {                                                                                                               \
        kernelName<<<numblocks, numthreads, memperblock, streamId>>>(__VA_ARGS__);                                     \
    } while (0)
#endif
/* ROCM runtime calls and definitions */
#ifdef __ROCM
#define accLaunchKernel(...)                                                                                           \
    do {                                                                                                               \
        hipLaunchKernelGGL(__VA_ARGS__);                                                                               \
    } while (0)
#endif  

 
__global__ void add_pw_ekin_gpu_kernel(int num_gvec__, double alpha__, double const* pw_ekin__, acc_complex_double_t const* phi__,
                                       acc_complex_double_t const* vphi__, acc_complex_double_t* hphi__)
{
    int ig = blockIdx.x * blockDim.x + threadIdx.x;
    if (ig < num_gvec__) {
        acc_complex_double_t z1 = accCadd(vphi__[ig], make_accDoubleComplex(alpha__ * pw_ekin__[ig] * phi__[ig].x,
                                                                            alpha__ * pw_ekin__[ig] * phi__[ig].y));
        hphi__[ig] = accCadd(hphi__[ig], z1);
    }
}

/// Update the hphi wave functions.
extern "C" void add_pw_ekin_gpu(int num_gvec__, double alpha__, double const* pw_ekin__, acc_complex_double_t const* phi__,
                                acc_complex_double_t const* vphi__, acc_complex_double_t* hphi__)
{
    dim3 grid_t(64);
    dim3 grid_b(num_blocks(num_gvec__, grid_t.x));

    accLaunchKernel((add_pw_ekin_gpu_kernel), dim3(grid_b), dim3(grid_t), 0, 0, num_gvec__, alpha__, pw_ekin__, phi__, vphi__, hphi__);
}
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Software stack

Quantum 
ESPRESSO

CP2K DFT-KExciting

SIRIUS

ELPA

spglib

GSL

libvdwxc

LibXCSpFFT
MAGMAGPU backends

NVIDIA CUDA 
cuBLAS/cuSOLVER/cuFFT

AMD ROCm 
rocBLAS/rocSOLVER/rocFFT

SpLANLCGLIB

System and vendor libraries 
BLAS | LAPACK | ScaLAPACK | HDF5 | FFTW

DLA-F

Umpire

pugixml

COSTA

Native C++ interface Fortran interface using ISO_C_BINDING Julia bindings Python bindings

Sirius DFT mini-app



CP2K
▪ Starting from v7.1 CP2K supports interface to SIRIUS. Details are available in “CP2K: An 

electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate 
electronic structure calculations”  // J. Chem. Phys. 152, 194103 (2020) 

▪ Possible use cases: 
▪ Extend CP2K with plane-wave DFT capabilities; use CP2K native or UPF pseudopotentials 
▪ Run FP-LPAW calculations using CP2K input file without a need to switch to a different code 

and a different input file. For example, get a reference full-potential total energy in “Delta-
DFT” benchmarks within CP2K



Equation of states with CP2K/Sirius

In collaboration with Hossein Mirhosseini, PhD 

Center for Advanced Systems Understanding (CASUS) 
Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) 
Conrad-Schiedt-Straße 20, 02826 Görlitz 
https://www.casus.science

Oxides

Unaries



Exciting code
▪ PoC interface with SIRIUS was implemented in Exciting long time ago 
▪ Finally! SIRIUS bindings were integrated in the main Exciting branch 
▪ WIP: benchmark and tweak 

▪ Use cases: 
▪ Enable a GPU backed for Exciting (for both NVIDIA and AMD GPU cards) 
▪ Enable distributed Hamiltonian setup and diagonalization 
▪ Enable simulations of large unit cells (>200 atoms)
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Exciting benchmark of Mn-MOF

Number of atoms: 96 
Number of k-points: 24 
Number of basis functions: ~16300 
Number of bands: ~180

Intel Broadwell 
nodes

NVIDIA GH200 
nodes

Number of sockets / node 2 4
Node performance (TFlop/s) ~1.2 ~200
Total number of nodes 12 1
One SCF iteration time (sec.) 1000.4 91.065
Computational cost of a single 
SCF iteration (node-hours) 3.33 0.025

1:166

1:133

Exciting Exciting/SIRIUS



Embedded DFT
▪ If your project requires a “black box” DFT solver, SIRIUS can help!

Submitted to “Physical Review Materials.”
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QE/Sirius

Number of atoms: 144 
Number of k-points: 112 
Number of basis functions: ~60000 
Number of bands: ~700

https://github.com/electronic-structure/q-e-sirius

We can run on LUMI-G and Frontier!

https://github.com/electronic-structure/q-e-sirius
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Where Sirius is used
Roadmap on electronic structure codes in the exascale era.  
DOI: 10.1088/1361-651X/acdf06 

All-electron APW+lo calculation of magnetic molecules with the SIRIUS domain-specific package 
DOI: 10.1063/5.0139497 

CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations 
DOI: 10.1063/5.0007045 

The ternary phase diagram of nitrogen doped lutetium hydrides can not explain its claimed high Tc superconductivity 
DOI: 10.1088/1367-2630/ad0e1a 

Efficient variable cell shape geometry optimization 
https://doi.org/10.1016/j.jcpx.2023.100131 

Expansion of the Materials Cloud 2D Database 
DOI: 10.1021/acsnano.2c11510 

How to verify the precision of density-functional-theory implementations via reproducible and universal workflows 
https://doi.org/10.1038/s42254-023-00655-3 

Materials Cloud three-dimensional crystals database (MC3D) 
DOI: 10.24435/materialscloud:rw-t0 

Trends in Atomistic Simulation Software Usage 
DOI: 10.33011/livecoms.3.1.1483



A quick introduction to the most important backend libraries of 
SIRIUS



SpLA

Short description

Specialized parallel linear algebra operations. The library is designed to work with 
particular matrix distribution, corresponding to wave-function storage in plane-wave 
codes. 

Key features

• MPI and OpenMP parallel 
• Effective MPI ring communication avoiding allreduce 
• Accepts any combination of pointers (host or device) 
• Backends for Nvidia and AMD GPUs via CUDA and ROCm

Use cases
• Iterative subspace methods 
• Distributed tall-and-skinny matrix multiplication (for example, Green’s function 

construction)
URL https://github.com/eth-cscs/spla

https://github.com/eth-cscs/spla
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SpLA benchmark

<latexit sha1_base64="fy+cJYrlDfLzg2uF4hUpZEk4fBY="></latexit>

Oij =
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Compute inner product for 2 spins, 8000 bands 
and ~700K plane-waves

~1.5 PFlop/s



SpFFT

Short description SpFFT - A 3D FFT library for sparse  
frequency domain data 

Key features

• MPI and OpenMP parallel backends for Nvidia and AMD GPUs via CUDA 
and ROCm 

• Slab decomposition in space domain and pencil decomposition in 
frequency domain (1D-2D FFT split, single MPI_Alltoall data exchange) 

• Gamma-point support 
• Unified interface for calculations on CPUs and GPUs

Use cases Plane-wave codes where FFT is a bottleneck 

URL https://github.com/eth-cscs/SpFFT

https://github.com/eth-cscs/SpFFT


SpFFT benchmark

Test: local potential application to 1000 wave-functions 

FFT grid size : 450 x 450 x 450 

Number of G-vectors : 23’167’857

 i(G)
FFT�1

�����!  i(r) !  i(r) · Vloc(r)
FFT���! [ iV ](G)
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DLA-Future

Short 
description

DLA-Future is a distributed linear algebra library implemented using C++ 
std::execution which provides generalized symmetric / hermitian 
eigenvalue solver

Key 
features

• Fully asynchronous task based approach, written in modern C++ 
• MPI parallel 
• Modern C++ and C/Fortran ScaLAPACK-like interfaces 
• ELSI interface 
• Backends for Nvidia and AMD GPUs via CUDA and ROCm

Use cases • Dense matrix diagonalization (arising, for example, in FP-LAPW method)

URL https://github.com/eth-cscs/DLA-Future

https://github.com/eth-cscs/DLA-Future
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DLA-F benchmark
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Summary

▪ CSCS develops and supports several libraries that can be of use to electronic 
structure community 

▪ Sirius is an open-source plane-wave electronic structure library that is best 
suited for embedded DFT calculations 

▪ It implements pseudo-potential and full-potential DFT ground state solvers and 
can run on NVIDIA and AMD GPU accelerators



Thank you for your attention.



Q & A


