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Preamble:

What is the fastest solver for
Poisson’s equation?
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The context:

52 Scientific Computing is about efficient methods
52 Numerical algorithms require a tradeoff between
accuracy and cost
=+ If accuracy is irrelevant, cheap algorithms are
trivial to find
2 If cost is irrelevant, accuracy is trivial to
achieve

VSB TECHNICAL
|| || UNIVERSITY

|,,E/A,=\\\U _J/:IL-= Solvers for Extreme Scale Computing - Ulrich Ruede 3 1" oF 0sTRAVA RE



Setting accuracy in relation to cost:

52 We need metrics for
= cost (algorithmic complexity)
= accuracy (magnitude of error)
52 Both are surprisingly unclear

= Cost: counting #unknowns, counting #FLOPS, memory
consumption, run time, energy consumption, ....

= Accuracy: Residual vs. error? Which norm?
Often not the solution is needed, but a functional thereof, ...

s2 All this makes a difference in what is needed
52 The new kid on the block:

» Deep Learning (for PDE)
When your natural intelligence fails, use an artificial one!

VSB TECHNICAL

- f =
|,,E/A,=\\\U _/:I wmwm  Solvers for Extreme Scale Computing - Ulrich Ruede 4 I|||| gﬁloVSETRRS,fVTAY R:



Making the question more specific:

s When teaching linear algebra we insist that students learn:
# Gaussian elimination costs 2 5
s But for PDE? Let's focuson: 3" FLOPS
s Poisson’s equation unit square with
s 5-point discretization of the Laplace operator
- at this stage we thus avoid the discussion of accuracy
s Complexity metric: FLOPS
s With this: What is the cost of solving the discretized Poisson equation on a grid
with N = n, x n, = n® unknowns?
s ... what is the best algorithm known today?

s ... what is the answer for 3D? ... or more general equations?
... more advanced discretization techniques?

s In any case: | insist on the constant, multiplying the dominating term
s When the complexity is (almost) linear, the constant is the critical quantity
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f in Q:=(0,1) x (0,1)

The model problem: 0 on 60

s¢ Let's restrict ourselves to Poisson’s equation

s2 Smooth enough rhs data

s¢ Initially we’ll even simplify to the unit interval (1D) for easier illustration
s¢ Then focus on unit square with homogeneous Dirichlet BC

This is the fruitfly for studying PDE solvers

s¢ But is this a problem of practical relevance?
52 Yes and No

52 Most applications require generalizations, e.g. other domains, other bc,
variable coefficients

s¢ but this simple problem captures fundamental features that characterizes
elliptic PDE: The need for global data exchange.
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The 1D model problem
u'(0) =0 (Neumann condition)

—u'" = f(z) in (0,1) u(1) = A (Dirichlet condition)

52 Another (dimension independent) way to write this:
div grad u = f

s2 The 1D differential operator with the given boundary
conditions has the eigenfunctions

2@'177:13) for k=0,1,2,3,...

v (x) = cos(
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Visualization of the first 5 eigenfunctions

vp(z) = cos(Ztnr) for k=0,1,2,3,...

Eigenfunctions for 1D Poisson

At the right
boundary we have
a homogeneous

Dirichlet condition

0.25 1

vk

0.00 A

At the left a
homogeneous
Neumann condition
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Setting up the discretization

s¢ The matrix (without 1/h”*2 factor)
52 has tridiagonal structure
52 1s diagonally dominant
52 |Is_ symmetric positive definite

ondition on left endondition on right end

array ([ [ , 0., 0., O., O0., O0., O., , 0., 0., 0.],
[ ¢, -1., 0., 0., 0., 0., 0., Y., 0., 0., 0.1,
(0., -1., 2., -1., 0., 0., 0., 0., , 0., 0., 0.1,
(0., 0., -1., 2., -1., 0., 0., 0., ON 0., 0., 0.1,
(0., 0., 0., =1., 2., -1., 0., 0., 0.\ 0., 0., 0.1,
(0., 0., 0., 0., -1., 2., -1., 0., 0.,\o0., 0., 0.1,
(0., 0., 0., 0., 0., -1., 2., -=1., 0., Y., 0., 0.1,
[ 0., 0., 0., 0., 0., 0., 1., 2., -1., , 0., 0.1,
(0., 0., 0., 0., 0., 0., 0., =1., 2., =1\ 0., 0.1,
(0., 0., 0., 0., 0., 0., 0., 0., =1., 2.\-1., 0.1,
(0., 0., 0., 0., 0., 0., 0., 0., 0., -1., .1,
(0., 0., 0., 0., 0., 0., 0., 0., O., o.,])
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Let us look into solution algorithms
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2 The best way in 1D is to use a tridiagonal

Cholesky factorization (in this case it

recovers discrete div and grad)

s has O(N) complexity

s suffers form sequentiality in the
factorization and also in the fwd-bwd
substitution

i On a parallel system, better use cyclic
reduction as elimination order

Here let us consider Gauss-Seidel and SOR

as first iterative solvers.

Note that iterative solvers are not an

efficient choice for the 1D Poisson eqn.

Obvious change to make for SOR

Note that for these tests we do not worry
about efficiency, e.g. exploiting the
tridiagonal structure of the matrix

# Next we study iterative methods
# We start with Gauss-Seidel
def gsld fwdstep(A, u, f):

Eexcutes one step of fwd Gauss-Seided for the 1D Poisson equation -u'
with Dirichlet boundary conditions u(l) = 1 and Neumann boundary cond)

Parameters:
u (ndarray): approximate solution, Dirichlet condition at u[0]
f (ndarray): right hand side
A matrix

Returns:
u (ndarray): Numerical solution at the grid points.

n_pts= u.size
h = 1.0/(n_pts) # Grid spacing
# print(n_points, h)

for i in range(0, n _pts):
old u = u[i]

res= f[i] - A[i,:] @ u
ufi] = u[i] + 1/A[i,i] * res
return u

# Set rhs and set initial value for u

h=1/npts

u= np.zeros(npts)

f= -np.zeros(npts)*h**2

# Add Dirichlet condition value at right end in f
fl-1]=1
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Visualization of the exact solution

# Try out again exaact solution with direct solver
u_el2= np.linalg.solve(Apoisson, f)

plot 1d(u el2, 1)

1D Poisson Equation Solution

104 -

102 -

.’;.1‘00- ® L 4 4

—&— Poisson solution

The Dirichlet value (= 1)
from the right the end bc is
,propagated"” to the left
across the whole domain
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0.96 1
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What does Gauss-Seidel do?

ul= sorld_ fwdstep(Apoisson,u,f)

plot_1d(ul,1.0, tit After one step of Gauss-Seidel"

After one step of Gauss-Seidel

10 4 —®— Poisson solution

08

04

L 2 > » » * > > > - > *

1st step of GS

u2= sorld_ fwdstep(Apoisson,ul,f)

plot_1d(ul,1.0, tit= "After two steps of Gauss-Seide

After two steps of Gauss-Seidel

1"

10 { =& Poisson solution

ux)

02

007 o—o—o—0—0—0—0———¢

2nd step of GS

10

plot

10

sorld fwdstep(Apoisson,un,f)
d_fwdstep(Apoisson,un, f)

=s wds
un= sorld_ fwdstep(Apoisson,un,f)
_1d(ul,1.0, tit= "After five steps of Gauss-Seidel")

After five steps of Gauss-Seidel

00 02 04 06 08 10

5 steps of GS

52 In each step, the information from the Dirichlet point propagates by one

mesh point towards the interior of the domain.

52 There is a computational speed-of-light for propagating the information
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Now more
systematically

52 Using a grid with
16(+1) points

52 Loop taking
progressively more
and more Gauss-
Seidel steps

#setup a larger problem

npts= 16

X = np.linspace(0, 1, npts+l)

Agrad= np.eye(npts)-np.eye(npts,npts, 1)

Adiv= Agrad.T

Apoisson= Adiv @ Agrad

# Create a suitable right hand side. Initialize with 0
f= np.zeros(npts)

# Set right end to 1, corresponding to an eliminated Dirichlet condition
fl-1]= 1

u= np.zeros(npts)

uelim= np.linalg.solve(Apoisson, f)
uelim= np.append(uelim, [1])

# trying several steps of Gauss-Seidel
plt.figure(figsize=(12, 8))
plt.plot(x, uelim, label='direct solve', marker = 'x', linewidth=1)

j_start= 0
j end= 1
for ii in range(9):
# print(1i)
j _start= j _end
j _end= 2*j end
for jj in range(j_start, j end):
# print(jj)
tmp= gsld fwdstep(Apoisson, u,f)
tmp= np.append(tmp, [1])
plt.plot(x, tmp, label='step '+str(jj), marker = 'o', linewidth=1)

# Add labels, legend, and grid

plt.title('Progress of Gauss Seidel for 1D Poisson', fontsize=16)
plt.xlabel('x', fontsize=14)

plt.ylabel('u', fontsize=14)

plt.legend(fontsize=12)

plt.grid(True, linestyle='--', alpha=0.6)

plt.tight layout()

# Show the plot
plt.show()
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Visualization of results s Information propagates by

Progress of Gauss Seidel for 1D Poisson one mesh point per Gauss-
0] ey — Seidel iteration
2 However, there is
,additional slowness"“
08 - 52 15 (Npts) iterations are by
. far not enough
. s Only when the number of
6l e e iterations is roughly as large
as the square of the number
of mesh points, the solution
becomes ,qualitatively
0.4 4 1
—— direct solve COrreCt
T 2:2,2; 52 But even with 511 GS
/e step7 iterations, the remaining
021 g /% stepls error remains clearly visible
/ —e— step 31 . .
— o step 63 s The number of iterations
— . - ::zz o must be as large as
0.0 — = & —38% o ¢ o step 511
| | | b e O((4))
0.0 0.2 04 0.6 08 10
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How can this be improved?

52 Reversing the order of grid traversal (right to left)

= Helps less than one would hope, depends on
special case, and speeds up only initially, but not
in the long ,asymptotic tail”

52 More successfully, we can try:
= Qver relaxation, SOR
= Conjugate gradients
= Both can improve the number of iterations to O(\/k(A))
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Progress of SOR with omega=1.7 for 1D Poisson
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Visualization, now with over relaxation parameter omega=1.7

We see a quite
significant speedup

From about 100
iterations onwards, the
solution visually
overlaps with the exact
one

Of course, we can next
explore what the best
omega would be

could be determined
experimentally or
analytically

VSB TECHNICAL
| UNIVERSITY
OF OSTRAVA

R=



Instead, let us take a look at CG

52 Taking a CG routine from the internet

s2 We'll use the maxit parameter to study
progress of CG throughout the iterations

CG test driver routine

plt.figure(figsize=(12, 8))

[

plt.plot(x, uelim, label='direct solve', marker = 'x', linewidth=1)

j_end= 1
for ii in range(6):
uz, info= cg(Apoisson, f, max_iter= j end) #stopping CG early
ucg= np.append(uz,[1l])
plt.plot(x, ucg, label='step '+str(j_end), marker = 'o', linewidth=1)
j _end= 2*j end

# Add labels, legend, and grid

plt.title('Progress of Conjugate Gradients for 1D Poisson', fontsize=16)
plt.xlabel('x', fontsize=14)

plt.ylabel('u', fontsize=14)

plt.legend(fontsize=12)

plt.grid(True, linestyle='--', alpha=0.6)

plt.tight layout()

# Show the plot
plt.show()
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def cg (A, b, x0=None, tol=le-10, max_ iter=None):

Solves the symmetric positive definite system Ax = b using the Conjug
Parameters:

A (numpy.ndarray): Symmetric positive definite matrix.

b (numpy.ndarray): Right-hand side vector.

x0 (numpy.ndarray): Initial guess for the solution (default is zg

tol (float): Convergence tolerance (default is le-10).

max_iter (int): Maximum number of iterations (default is len(b)) |
Returns:

X (numpy.ndarray): Solution vector.

info (dict): Dictionary with additional info (e.g., iteration coy
n = len(b)
if x0 is None:

X0 = np.zeros(n)
if max_iter is None:

max_iter = n

x = x0
r=Db-A@x # Residual
p = r.copy() # Search direction

rs_old = r @ r # Dot product of residual with itself

info = {
'iterations': 0,
'residual_norm': np.linalg.norm(r)

}

for i in range(max_iter):
Ap = A @p
alpha = rs_old / (p @ Ap)
X = x + alpha * p
r = r - alpha * Ap
rs_new = r @ r

# Check convergence

if np.sqgrt(rs_new) < tol:
info[ 'iterations'] = i + 1
info[ 'residual_norm'] = np.sqrt(rs_new)
return x, info

p=r + (rs_new / rs_old) * p
rs_old = rs_new

# If we reach max iter without convergence
info[ 'iterations'] = max_iter

info[ 'residual_norm'] = np.sqrt(rs_old)
return x, info
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CG results

Progress of Conjugate Gradients for 1D Poisson

10 A1

0.8 1

|

direct solve
step 1

step 2

step 4

step 8

step 16
step 32

0.6

tt4¢

0.4 -

0.2 1

0.0 1
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s¢2 CG can be understood as a
clever implementation of
combining successive
iterates.

;2 Among all linear
combinations it finds the
best one (in terms of the
energy norm)

s¢2 From iteration 16 onwards,
CG has reached the exact
solution, since a linear
combination of 16 previous
iterates is enough to
represent the exact solution

;¢ But also CG is subject to
the speed-of-info limitation

;2 While iterate 16 is ,perfect”,
iterate 15 is still ,completely
wrong”
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What comes next

52 We see that all iterative schemes suffer from the ,propagation speed
limit"
s Gauss-Seidel, SOR, CG, GMRES, etc. are all slow

= All are subject to the limit that info can only be transported by one mesh point
per iteration

= Because of this incompressible CFD solvers based on using CG have
implicitly a nonphysiscal ,speed of sound”

52 What can help?
= Obvious answer:
= Multigrid
= In 1D, multigrid reduces to cyclic reduction and becomes a direct solver
52 Thus we will now leave the 1D toy problem and look at the situation in 2D
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Discretization

s¢ The Poisson equation must first be discretized, and ®
this can be done in many different ways

= FD, FE, FV, spectral
= h-refined meshes, p-refinement, AMR ®
@ FE: continuous or discontinuous

= Mixed formulations based on splitting the ¢

second order PDE in a system of first order ... ®
FOSLS

52 We will here stay as simple as possible and use ®

uniform cartesian meshes
52 Uniform mesh width h
3¢ n cells grid lines in x and y direction
52 n+1 grid lines
2 N=(n-1)2 ,true” unknowns

|L§/A/;\\U ZCERFACS Multigrid Beasts - Part 1
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Second order finite difference discretization @

52 We will not consider whether and when
other (e.g. higher order) discretization
can lead to more accurate solutions (in

Ay
same compute time) A @ -
Ay

52 We begin with the standard 5 point FD

stencil
2 equivalent to FE discretization with @
triangles (splitting each square along
one of the diagonals) O%u _ Uiy1; — Ui+ Ui
= note that with proper scaling all eqns, the  9z? h?
stencil can be executed with a minimal OPu  wi g1 — 2u 5 + Ui -1
number of operations dy? h?
Wit1,j + Ui—1,5 + Wi j41 + Ui j—1 — du;
AU _ +1,7 J h;‘l‘ J J 4 O(hQ)

F/A\U ZCERFACS Multigrid Beasts - Part 1 21



Matrix structure

52 The discretization leads to matrix structures like

4 -1 0,-1 0 O] O O O
-1 4 -1, 0 -1 0] 0 O O
o -1 4, 0 0 -1, 0 0 O
-1 0 0, 4 -1 0|-1 0 O
o -1 0, -1 4 -1, 0 -1 O
o 0 -1, 0 -1 4, 0 0 -1
o o o0, -1 0 0| 4 -1 O
o o0 o, 0 -1 0|-1 4 -1
o o o0,0 O -1,0 -1 4

FAU Z CERFACS

52 With N unknowns, a banded
solver will need O(N?2)
operations

52 Nested dissection can reduce
this to O(N1-2)

52 The condition number is
K = O(h_2) = O(N)

32 The condition number will
determine how many iterations
are needed.

Multigrid Beasts - Part 1



Graphical lllustration (Visualization)

= smh(:c) Sin(y)

%
et e %% 0t et gl
Ry
e etisetiou!

S nentigen

R uRAR

c/t

52 Exact Solution (of PDE)
52 Boundary values to start the iteration
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Visualization of Iterations
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View of (approximate) solution aft

1 GS iteration

2 GS iterations
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Visualization of Convergence

before any iteration
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Visualization of Convergence

127

after 100 iterations
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Geometric Multigrid: V-cycle

Goal: solve A uh = f using a hierarchy of grids

Relax on Ah h _ fh Correct ’U,h - U,h —|—6h .
Residual rh = fh' — Alyh

Restrict rH = I,flfr'h Interpolate eh = IgeH

\ Solve AHeH — rrH /

\ by recursion /
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Relax on

Relax 2 times

Correct uh — uh —+ eh .

r Interpolate 6h = I]}_l[eH

S§lve AHeH:rH
[ ] » @

y recursion

Initialized with O plus BC

enorm 24196

] A
Z

i
: _.-::-:’:’::::::::‘Ei:é{{////

=974
4 Y
TS S S e S —
B e e
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30 B e e
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Relaxon  Ahqh — fh Correct y* «— M + eh e
Residual rh = fh — Ayt

Compute residual
Restrict
Relax on coarser grid

Recursion

Restrict rH = [}IL{rh Interpolate 6h = Ih 6H

Solve AHeH = rH
» @

\ by recursion /

After 2x GS on next coarser grid After V-cycle on next coarser grid

ECERFACS =< S@mwe  Scalable Multiphysics -  Uli Ruede
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Relax on

Interpolate correction
Correct fine grid solution

Post-Smooth °

Residual

N\

enorm = 9.11869751280490e-02

H
)

H
2

(6]
1 1 1 1 1 1 1 1 1

o
|

S OS>
=< <>

Restrict H — [}Igrh

APyl = fh Correct uh — uh eh .
Th — fh _ Ahuh

Interpolate 6h = I]’_lleH

O

Solve AHeH = rH /
@ » @
\ by recursion
O
After V-cycle

on finest grid

File: c/u.29
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All steps of a
multigrid V-cycle
illustrated in one
picture.

Even with only one
V(2,1)-cycle, the e
result is qualitatively
already quite good.

It is still an iterative
method, and for
convergence, the .
complete cycle must |
be iterated.

Oe-01

FAU FIES

File  Options  Norm

enorm = 9.11869751280490e-02

File  Optio

enorm = °

File  Optior

enorm = 2

File: c/c.4/c.8/u.23

~| File: c/c.4/c.8/c.12/u.13




Relaxation and Multigrid compared

Residual convergence histories, 128 by 128 grid

10 T T T T T T T T T
— V(1,1) Cycles
—— Red-Black Relaxation
107 .
5 -4
g 10 a
LL
10° .
10° | . . . _|
Multigrid vs. Relaxation
10"+ =
Iterations
10'12 | | | | I | | | |
o} 10 20 30 40 50 60 70 80 90 100
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The Full Multi-Grid (FMG) Algorithm (nested iteration)

The multigrid V-cycle is an iterative method, and hence it requires
an initial guess for the solution. This initial approximation can be
obtained from a coarser grid, and so on recursively.

The FMG algorithm combines the grid-refinement approach with
the V-cycle.

For many problems, FMG with just a single V-cycle per level
suffices to reduce the error below truncation level. In this case, only
O(N) operations are required overall.
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F-cycle, FMG, and V-cycle

Finest grid I
! A
: |

Coarsest grid

@ Relaxation l Restriction / Prolongation
@® No relaxation
VSB TECHNICAL

|HE/A,2\\\U HL‘: Solvers for Extreme Scale Computing - Ulrich Ruede 34 I|||| gﬁloVsETRRS,fVTAY @ E:RESH



Multigrid summarized

s It alternates between

= Smoothing, i.e. a Gauss-Seidel-like
iteration with the goal to contribute the
high frequency modes

= Coarse grid correction, computed
recursively, with the goal to contribute
the low frequency modes

s¢ The recursion leads to a V-cycle structure,
alternatively W-cycle, when doing two
coarse-grid corrections

s¢ The overall cost is only a moderate factor
more than processing on the finest grid
(geometric series of flop count)

s It can be shown that the converge rate is
smaller than 1 and independent of the
mesh size

|HE/A,=\\\U _J/le—= Solvers for Extreme Scale Computing -

= not depending on condition number

= A fixed number of iterations is
sufficient to compute the result with
prescribed accuracy (but when the
mesh gets finer more accuracy might
be needed)

;¢ The method can still be improved as ,Full
Multigrid (FMG

= FMG can compute the solution to a
(simple) PDE in cost proportional to
the number of unknowns

= The accuracy automatically increases
when going to finer meshes
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Solving large linear systems
with multigrid:

An excursion to
Earth Mantle Convection
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Simple Earth Mantle convection models:
Stokes equation coupled with energy transport

=V - (2ne(u)) + Vp = p(T)g,

V-u=0,
8—T+U-VT—V-(/1VT):7.
ot
u velocity
p dynamic pressure
T temperature
v viscosity of the material
e(u) = 3(Vu+ (Vu)T) strain rate tensor
p density
Ky, 8 thermal conductivity,

heat sources, gravity vector

Gmeiner, Waluga, Stengel, Wohlmuth, UR: Performance and
Scalability of Hierarchical Hybrid Multigrid Solvers for Stokes
Systems, SIAM J. Scientific Comp., 2015.

|HE/A,;\\\U _J/:I 1) Solvers for Extreme Scale Computing -

Stokes equation: —div(Vu—pI) =f,
divu=0
FEM Discretization:
a(u;,v;) +b(vy, p;) = L(v;) Vv ey,
b(u;,q;) —c(p;,q) =0 Vg €Q,

with: a(u,v) :=J Vu: Vvdx, b(u,q):= —J divu-qgdx
Q Q

Schur-complement formulation:

A B/ || f
0 C+BA'B/ || P, | |BA
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Mantle Convection

Why Mantle Convection?

sz driving force for plate tectonics
s mountain building and earthquakes

Why Exascale?

i mantle has 1012 km3
# inversion and UQ blow up cost

Why TERRA@

3 implementation based on HYTEG
s scalable and fast
s sustainable framework

Challenges
i computer sciences: software design for exascale systems
s mathematics: HPC performance oriented metrics
32 geophysics: model complexity and uncertainty
& bridging disciplines: integrated co-design

E FRIEDRICH-ALEXANDER

£CERFACS ;===i S mesrt e Matrix-free multigrid for extreme scale - Uli Ruede 38

CENTRE EURDPEEN DE RECHERCHE ET DE FORMATION AVANCEE EN CALLLL SOENTIFOUE FACULTY OF ENGINEERING

TERRA@ Jy=s






full video on terraneo.fz

40



Geophysical in-silico experiment: dynamical topography

C) depth-dependent+whole mantle ! !
6000 |
:‘!’ e e
5500 || == A '
—8BKC | & | e
E um
= S B|m
n 20007 — C
= Im
gl o
o “:
a4
4500 B ;".
.g".
4000 3
4,'.:: .................... 2
3500 & . LTIV I graseeertttt %
o0 r nd 1019 1020 1021 1022 1023 1024
Topography [m] Viscosity [Pa S]

» Global dynamical topography Weismuller, J., Gmeiner, B., Ghelichkhan, S.,

d di diff t Huber, M., John, L., Wohlmuth, B., ... & Bunge,
ependaing on aiireren H. P. (2015). Fast asthenosphere motion in

: - assumptions high-resolution global mantle flow models.
m . H » radial viscosity variations Geophysical Research Letters, 42(18),
Topography [m] 7429_7435\)53 TECHNICAL
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HYTEG: A matrix-free architecture for FE

Structured refinement of an unstructured base mesh
Geometrical Hierarchy: Volume, Face, Edge, Vertex

|HE/A,;\\\U _-}:IL—-S Solvers for Extreme Scale Computing - Ulrich

' 2 |
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Hierarchical Hybrid Grids (HHG) and Multigrid (HYTEG)

s Parallelize multigrid for tetrahedral finite elements
= partition domain
= parallelize all operations on all grids
= use clever data structures

@e implement@
s Coarse grids

= agglomeration?

+ sequential dependency in grid hierarchy

s Elliptic problems always require global communicati
and thus coarser grids for the global data transport

B. Bergen, F. Hulsemann, UR, G. Wellein: ,Is 1.7x% 1010 unknowns the largest finite
element system that can be solved today?“, SuperComputing, 2005.

Gmeiner, UR, Stengel, Waluga, Wohlmuth: Towards Textbook Efficiency for Parallel
Multigrid, Journal of Numerical Mathematics: Theory, Methods and Applications, 2015
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Algorithms Matter!

52 Solution of Laplace equation s# lterative Methods:

in 3D wit N=n3 unkowns
s2 Direct methods:
2 banded: ~n7 = N2:33

= Jacobi: ~50 n> = 50 N166

@ CG: ~100 n4= 100 N1.33

@2 nested dissection: ~n% = N2

FAU FIES

Energy per FLOP: 1nJ

Computer Generation gigascale: 109 terascale: 1012 petascale: 1015

problem size: DoF=N 106 109

Direct method: 1*N?2 0.278 Wh

TerraNeo prototype
(est. for Juqueen)

@ Full Multigrid: ~200 n3= 200 N

exascale: 1018

278 kWh 278 GWh 278 PWh
Krylov method: 100*N1-33 10 Ws 28 Wh 278 kWh 2.77 GWh
Full Multigrid: 200 N 0.2 Ws 0.056 Wh 56 Wh 56 kWh
0.13 Wh 30 Wh 27 kWh ?
VSB TECHNICAL
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Exploring the limits

Gmeiner et al. 2016, A quantitative performance study for Stokes

solvers at the extreme scale, Journal of Computational Science.

52 matrix-free multigrid with Uzawa COB Unknowns correspond to D
TByte for the solution vector

smoother

52 optimized for minimal memory

consumption

= Juqueen had ~450 TByte memory

= matrix free implementation essential

nodes threads DoF's iter time time w.c.g. time c.g. in %
5 80  2.7-10° 10 0685.88 678.77 1.04
40 640 = 2.1-10'° | 10 703.69 686.24 2.48
320 5120 1.2-10* | 10  741.86 709.88 4.31
2560 40960 1.7-10* | 9 720.24 671.63 6.75
20480 327680 9 776.09 681.91 12.14
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Algorithms for saddle point systems

Benzi, M., Golub, G. H., & Liesen, J. (2005). Numerical solution of saddle point problems. Acta numerica, 14, 1-137.
Rozloznik, M. (2018). Saddle-point problems and their iterative solution. Basel: Birkhauser.

52 Monolithic multigrid

Gmeiner, B., Rude, U., Stengel, H., Waluga, C., & WohIimuth, B. (2015). Towards textbook efficiency for
parallel multigrid. Numerical Mathematics: Theory, Methods and Applications, 8(1), 22-46.

Drzisga, D., John, L., Rude, U., Wohimuth, B., & Zulehner, W. (2018). On the analysis of block smoothers
for saddle point problems. SIAM Journal on Matrix Analysis and Applications, 39(2), 932-960.

Kohl, N., & Rude, U. (2022). Textbook efficiency: massively parallel matrix-free multigrid for the Stokes
system. SIAM Journal on Scientific Computing, 44(2), C124-C155.

52 Exploiting block structure and/or Schur complement formulation

Darrigrand, V., Dumitrasc, A., Kruse, C., & Rude, U. (2023). Inexact inner—outer Golub—Kahan bidiagonalization
method: A relaxation strategy. Numerical Linear Algebra with Applications, 30(5), e2484.

Dumitrasc, A., Kruse, C., & Rude, U. (2024). Deflation for the off-diagonal block in symmetric saddle point systems.
SIAM Journal on Matrix Analysis and Applications, 45(1), 203-231.

VSB TECHNICAL

-4 r =
|,,|§/A,é\\\u J:IL—= Solvers for Extreme Scale Computing - Ulrich Ruede 46 I|||| g'ﬁIOVSETRRS,fVTAY R:



L HYTEG

Hy brid Tetrahedral Grids

Automatic Code Generation for Multigrid
Metaprogramming

VSB TECHNICAL )
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The HYTEG framework - code generation

Combinatorial explosion leads to many different kernels and would require
an enormous manual implementation and optimization effort!

:::2::63':89 discretization domain shape
relaxation, grid transfe,r, P1. P2, tetrahedral, triangular, .
I_:;‘))Iaeciraan,tc?i:ert;fcj, — f automated \ +— m?nr;rogo::yOUt
gradient, code generation | o
+
assembly type |—,

optimization J <+—| target platform

constant-coefficient, k X86, GPU, ...

on-the-fly, approximated, ...

VSB TECHNICAL
r
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Performance Analysis and Code Optimization
-~ |Measuements

Fritz Supercomputer at NHR@FAU

Matrix-vector multiplication (without communication)
Single socket: Intel Xeon Platinum 8360Y (’Ice Lake”)

36 cores per socket

LIKWID performance monitoring and benchmarking suite

Symmetry (S)
Inter-element vectorization (V) _ _

Loop invariants (1)

Cubes loop strategy (C) mf *  Generate all combinations wa) FOT the fastest operator:
Under-integration (U) « Determine the set of most Roofline analysis of
Fused quadrature loops (fQ) effective optimizations optimization path

Tabulation (T)

VSB TECHNICAL
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HYTEG Operator Generator (HOG)

o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

define performance

Provides option to transform
the program .

' \

properties : i

: T = wao . 1

. For(...++elZ) b For(.. ++el2) .

Weak form : _ / :

G(:L' v, w)dx — | | Tailored !
FE space | For(...++elY) optimizations For(...++elY) :

- —_p | —— > / \ |
Architecture : or 1+eIX) e.g.vectorization A b e |

AVX2 - — | |
Quadrature : A/\A Vecd S ﬁ\ l :

— —p |  SrcDoF =.. DstDoF = ... ec4 SrcDoF = |

\ \ 4 b

\\ Tmp: //

\\ coo //
‘ Print sweep bl et i

Scalable, node-level
o L o optimized, matrix-free FE
' | ’ operator

____________________________

@
IR

T
<
—
m

FTECHNICAL
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*  Symmetry (S)

= ! - Inter-element vectorization (V
Optimization Path: P2V  Loopmarants ()
* Cubes loop strategy (C)
+ Under-i ion (U
Operator P2V f 0 VU V'UJ PQ . FlTseecg g]l:zgrrzttfrr;(loc))ps (fQ)
Q * Tabulation (T)
A a
P2V T X
é 1347 o v futn P2V_S t;,.zx
O 697 | A2l P2V_SV |Bk—328x
= AN - ler x T—1.9%
) 391 QA,\/ T‘,)’ A P2V_SVU
2 Mg Y P2V _SVUI \3\1 4x
SEEL & ﬁTS P2V_SVUIC "1 1
§ | P2V_SVUICT v
g 109 101 0 500 1,000 1,500
arithmetic intensity [FLOP /byte] performance [MDoF /s]

» Starting point: already compute-bound
» Series of opts reducing arithmetic intensity
+ Compute-intense P2V becomes memory-bound with P2V_SVUI
» Cubes loop applicable -> more speed-up
58x accumulated speed-up, 50% peak, 1.4 GDoF/s
VSB TECHNICAL
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HYTEG: Scaling for the Stokes Problem

—*— FMG, avg. 4.6 x 107 unknowns p. proc. ?? 3.6 x 10" unknowns,

, 072 nodes, 73728 processes

“ 80~ —e— FMG, avg. 2.3 x 107 unknowns p. proc.
o —¥— FMG, avg. 1.1 x 107 unknowns p. proc.
3
U- 60 -
=
-
()
=
+ 40 - /
©
® 12
> 1.6:x 10°° unknowns,
920 - 3,072 nodes, 147456 processes

10'? 3.6 x 10'?

on

LI |
1010
unknowns

Kohl, N., & Rude, U. (2022). Textbook efficiency: massively parallel matrix-free multigrid for the Stokes system. SIAM Journal

on Scientific Computing, 44(2), C124-C155.

Kohl, N., Mohr, M., Eibl, S., & Rude, U. (2022). A Massively Parallel Eulerian-Lagrangian Method for Advection-Dominated
Transport in Viscous Fluids. SIAM Journal on Scientific Computing, 44(3), C260-C285.
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W(MG)

W(A) < 10

Textbook Multigrid Efficiency

VSB TECHNICAL
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Textbook Multigrid Efficiency (TME)

»Textbook multigrid efficiency means solving a
discrete PDE problem with a computational effort that
Ls only a small (less thawn 10) multiple of the operation

count associated with the discretized equations itself.”
[Brandt, 98]

This is a programmatic claim - not a theorem.
For which types of PDE is it achievable?

ZCERFACS =% SEmeo  Scalable Multiphysics - Uli Ruede 54 TERRA@ g ==



Work unit (WU)

2 Linear system Ax = b
s2 Work unit (WU) to apply operator: 1WU := 205(A)
= or perform one sweep of relaxation
s2 TME achieved, if work for MG solver(!) less than 10 WU:
W(MG)
W(A)
s2 TME defined wrt. to underlying differential equation

52 TME is (much!) more ambitious than asymptotic optimality
or mesh independent convergence of an iterative solver

52 TME requires to quantify the constant
» Hard to assess theoretically
= But systematic numerical studies possible

< 10

VSB TECHNICAL
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Cost comparison for Stokes with stabilized P1-P1 vs. P2-P1

_W(ARTPY) 23 _ wWBFTPY) 13 (APQ—Pl) 9
lim 5P . = 1o lim 5P . — lim =
l—00 Qﬂ(Aeil 1) 12 l— 00 QU(BeJil L) 24 l— 00 m}(AEH L) 10

2 AWU for P2-P1 and for P1-P1 are roughly equivalent
s¢ Velocity error after an FMG iteration with parameterization chosen to achieve
minimal error

10" 4
] —¢— 9=P,-P,, L=6
100_ +©:P2—P1,L:5
discr. error |le(u)L||2, ® =P1 — Py, L=06
E 1 discr. error |le(u)r|l2, © =P2—Py, L =5
= 107" =
=]
o
S, 1077 3
EE
1073 4
1074 4

0
= _=_E = W
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With this let’s come back to:

What is the fastest solver for
Poisson’s equation?

VSB TECHNICAL
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References from the stone age of multigrid research

[ST] Stuben, K., & Trottenberg, U. Multigrid methods: Fundamental algorithms,

model problem analysis and applications, in vol. 960 of Lecture Notes in
Mathematics. Springer Verlag, 1982

This is in the proceedings of the 1st European conf on multigrid methods that was held in
Koln in 1981.

This volume also contains Brandt’s original ,Multigrid Guide®.

ZCERFACS |HE/A\\U Fast Solvers - Uli Riide 58 TERRA@ FISS



Work estimates from [ST] for 5-pt discretization of Poisson’s eq
2-grid-method with red-black Gauss-Seidel smoothers

& : 12
v (W)Y oF | 4Add | #Mult o | #Add | # Mult
1 0.250 | 0.250 | 6.75 2.25 | 0.500 5.5 1.75
2 0.063 |[0.074 | 9.75 3.25 1| 0.125 8.5 2.75
3 0.034 | 0.053 |12.75 4.25 ||0.034 | 11.5 3.75
4 0.025 | 0.041 |[15.75 5.25 | 0.025 | 14.5 4.75

Once the dust has
been wiped off,
this is still
healthy, good,
solid numerics

Table 8.1a: u*, p*

tion (for 5-point Laplace discretization)

and computational work wﬁhﬂﬁ% in case of smoothing by RB relaxa-

" | 2h
u (v)  smoothing factor Halfoweighting 21 A 1 || }1 1
p*(v) Asymptotic 2-grid restriction (HW) “h 8 X h
convergence factor
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Work MG component # Add # Mult
i 1 n one RB st 1
optimization o St 3
I "/FW 2.75 0.75
(if preceeded by RB step)
12N/ 1.5 0.25
Igh (if followed by RB step) 1 0.5

Table 8.1c: Operation count for the individual MG components used in Tables 8.la

and 8.1b (number of operations per point of Qh). The numbers given for

Iﬁh and Igh include the work needed for the computation of the de-

_ fect and adding the correction, respectively.
;2 The RB-relaxation

= overwrites all red points using only black points, so we
need only to interpolate to black points

= Makes the residual vanish on all black points: we can
exploit this to use only black points to compute the
restriction
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And what is achieved by this

A1l following quantitative results refer to Poisson's equation and the MGPLl ver-
sion described above with

vy = 2, Vo = 1. (10.2)

If /" denotes the number of grid points of Qs the total computational work for one
iteration step of the corresponding method is less than

15 additions, 5 multiplications (for V-cycles),
(10.3)

23/ additions, 7.5 multiplications (for W-cycles),

neglecting lower order terms. These numbers are independent of the shape of the
domain.

V(2,1)-cyclé: 20 Flops/unknown
W(2,1)-cycle 30.5 Flops/unknown
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... and if we use full multigrid (FMG)?

The total computational work of MGA1l in the FMG version (r=1) 1is less than

22/ additions, 8/ multiplications (if V-cycles are used), : \
10.5

32.5 additions, 11.54 multiplications (if W-cycles are used)

s Summarizing: We should be solving the 2D Poisson equation
= to discretization error accuracy

2 with 30 Flops per unknown!

= in the model case, FMG-V(2,1) cycles are enough to
achieve asymptotic optimality
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So, what is the cost of solving the discrete Poisson equation?

;2 What is the best constant published?
= For Poisson 2D, second order:
#Flops ~ 30 n (Stiiben, 1982)

s¢2 assume computer with 1 PetaFLOPS, n=10°
2 expected time to solution: Poisson 2D
30*10-6¢ sec (microseconds!)

s2 standard computational practice in 2025 misses this by
several orders of magnitude!

s2 What is the reason for this gap between theory and practice?
s2 Do we need a failure analysis?
52 Related questions:
52 Cost of complex discretizations?
52 Has the deflation of computational cost lured us into mis-developments?
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Conclusion and Outlook
Multigrid scales!

HHG (since 2000):
« prototype implementation reaching 1013 DOF

HYTEG (since 2018):
 sustainable, flexible software architecture
* implements core concepts of HHG
« advanced discretizations

However, the efficiency seems still suboptimal
when compared with the plain old-fashioned
algorithms/software from 1982

Links:
 terraneo.fau.de
 https://i10qit.cs.fau.de/hyteg/hyteq
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http://terraneo.fau.de
https://i10git.cs.fau.de/hyteg/hyteg

