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Preamble:

What is the fastest solver for 
Poisson’s equation?

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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The context:

Scientific Computing is about efficient methods 
Numerical algorithms require a tradeoff between 
accuracy and cost 

If accuracy is irrelevant, cheap algorithms are 
trivial to find 
If cost is irrelevant, accuracy is trivial to 
achieve 

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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Setting accuracy in relation to cost:
We need metrics for 

cost (algorithmic complexity) 
accuracy (magnitude of error) 

Both are surprisingly unclear 
Cost: counting #unknowns, counting #FLOPS, memory 
consumption, run time, energy consumption, …. 
Accuracy: Residual vs. error? Which norm?  
Often not the solution is needed, but a functional thereof, … 

All this makes a difference in what is needed 
The new kid on the block: 

Deep Learning (for PDE) 
When your natural intelligence fails, use an artificial one!

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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Making the question more specific:
When teaching linear algebra we insist that students learn: 

Gaussian elimination costs  
But for PDE? Let’s focus on: 

Poisson’s equation unit square with  
5-point discretization of the Laplace operator 

• at this stage we thus avoid the discussion of accuracy  
Complexity metric: FLOPS 

With this: What is the cost of solving the discretized Poisson equation on a grid 
with 

… what is the best algorithm known today? 
… what is the answer for 3D? … or more general equations? 
… more advanced discretization techniques?  

In any case: I insist on the constant, multiplying the dominating term 
When the complexity is (almost) linear, the constant is the critical quantity 

Solvers for Extreme Scale Computing  -  Ulrich Ruede

<latexit sha1_base64="wVEFDg+2t5xoNoXXUCWsNvFWWcE="></latexit>

⇠ 2

3
n3 FLOPS

unknowns?
<latexit sha1_base64="/7hBJiDB9HEaoi+pUbUV9Pu6fFc="></latexit>

N = nx ⇥ ny = n2



The model problem:
Let’s restrict ourselves to Poisson’s equation  
Smooth enough rhs data 
Initially we’ll even simplify to the unit interval (1D)  for easier illustration  
Then focus on unit square with homogeneous Dirichlet BC

6Multigrid Beasts - Part 1

<latexit sha1_base64="Mgu/QP5LtvZrhSFJT8RlGHlqMmw="></latexit>

��u = f in ⌦ := (0, 1)⇥ (0, 1)
u = 0 on @⌦

This is the fruitfly for studying PDE solvers
But is this a problem of practical relevance? 

Yes and No 
Most applications require generalizations, e.g. other domains, other bc, 
variable coefficients  
but this simple problem captures fundamental features that characterizes 
elliptic PDE: The need for global data exchange.



We are VSB - Technical University of
Ostrava

VSB – Technical University of Ostrava has been connecting technical, economic,

natural sciences and artistic disciplines in modern study programmes for more than

175 years responding to the real problems of the present.

We carry out basic and applied research at the highest level. Thanks to tradition and

cooperation with industry as well as many domestic and foreign universities in a

wide range of sectors,

we provide innovative solutions in a number of fields and the certainty of

employment to our graduates.

Our faculties and research centres
Faculty of Mining and Geology

Faculty of Materials Science and

Technology

Faculty of Mechanical Engineering

Faculty of Economics

Faculty of Electrical Engineering and

Computer Science

Faculty of Civil Engineering

Faculty of Safety Engineering

IT4Innovations National

Supercomputing Center

 InNET  ČESKY 

Study Alumni Research Media
Partnership University

!

Strategic projects and alliances

News

Centre for Energy and Environmental

Technologies

7

The 1D model problem

Another (dimension independent) way to write this:

Solvers for Extreme Scale Computing  -  Ulrich Ruede

<latexit sha1_base64="R1eiegF5ZVD+ZoXJAHCVlCMebL8="></latexit>

�u00 = f(x) in (0, 1)

<latexit sha1_base64="WZcTlIFYFsknICwyCxvG0g9NJnk="></latexit>

u0(0) = 0 (Neumann condition)

u(1) = � (Dirichlet condition)

<latexit sha1_base64="4PLcFC9KTE8SrpUqAVBbAJTUZnQ="></latexit>

div grad u = f

The 1D differential operator with the given boundary 
conditions has the eigenfunctions

<latexit sha1_base64="uc44Chp6jibDIN1ggJhTVGolAmc="></latexit>

vk(x) = cos( 2k+1
2 ⇡x) for k = 0, 1, 2, 3, . . .
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Visualization of the first 5 eigenfunctions

At the right 
boundary we have 
a homogeneous 
Dirichlet condition 

At the left a 
homogeneous 
Neumann condition

Solvers for Extreme Scale Computing  -  Ulrich Ruede

<latexit sha1_base64="uc44Chp6jibDIN1ggJhTVGolAmc="></latexit>

vk(x) = cos( 2k+1
2 ⇡x) for k = 0, 1, 2, 3, . . .



array([[ 1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [-1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0., -1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0., -1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0., -1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0., -1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0., -1.,  1.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0., -1.,  1.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0., -1.,  1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0., -1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0., -1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0., -1.,  1.]])

array([[ 1., -1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [-1.,  2., -1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0., -1.,  2., -1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0., -1.,  2., -1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0., -1.,  2., -1.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0., -1.,  2., -1.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0., -1.,  2., -1.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0., -1.,  2., -1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0., -1.,  2., -1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0., -1.,  2., -1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0., -1.,  2., -1.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0., -1.,  2.]])

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.])

array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

# The divergence is the transpose of the gradient
# The Dirichlet condition is now at le left endpoint
#
Adiv=Agrad.T
Adiv

# The 1D Laplace operator is div*grad 
# here with a Neumann condition at left endpoint
# Dirichlet condition at right endpoint 
# this is in a formwhere the known boundary value is already eliminated from the system
# The matix becomes a symmetric pos def
#
Apoisson= Adiv @ Agrad
Apoisson

Out[354]:

# Create a suitable right hand side. Initialize with 0
f= np.zeros(npts)
# Set right end to 1, corresponding to an eliminated Dirichlet condition of the form u(1)= 1
f[-1]= 1
# look at f
f

# Now let us solve the 1D Poisson equation
# We dont worry here about the right solvers, 
# which would be a tridiagonal solver with much better complexity that a generic one
u_elim = np.linalg.solve(Apoisson, f)
# Print out solution
u_elim
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Setting up the discretization

Solvers for Extreme Scale Computing  -  Ulrich Ruede

The matrix (without 1/h^2 factor) 
has tridiagonal structure 
is diagonally dominant 
Is symmetric positive definite 
Neumann condition on left end, Dirichlet condition on right end
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Let us look into solution algorithms 
The best way in 1D  is to use a tridiagonal 
Cholesky factorization (in this case it 
recovers discrete div and grad) 

has O(N) complexity 
suffers form sequentiality in the 
factorization and also in the fwd-bwd 
substitution 
On a parallel system, better use cyclic 
reduction as elimination order 

Here let us consider Gauss-Seidel and SOR 
as first iterative solvers. 
Note that iterative solvers are not an 
efficient choice for the 1D Poisson eqn. 
Obvious change to make for SOR 
Note that for these tests we do not worry 
about efficiency, e.g. exploiting the 
tridiagonal structure of the matrix

Solvers for Extreme Scale Computing  -  Ulrich Ruede

# Next we study iterative methods
# We start with Gauss-Seidel
def gs1d_fwdstep(A, u, f):
    """
    Eexcutes one step of fwd Gauss-Seideö for the 1D Poisson equation -u''(x) = f(x) on the interval [0, 1]
    with Dirichlet boundary conditions u(1) = 1 and Neumann boundary condition at u'(0)=0 using the Gauss-Seidel method.

    Parameters:
        u (ndarray): approximate solution, Dirichlet condition at u[0]
        f (ndarray): right hand side
        A matrix

    Returns:
        u (ndarray): Numerical solution at the grid points.
    """
    
    n_pts= u.size
    h = 1.0/(n_pts)  # Grid spacing
    # print(n_points, h)

    for i in range(0, n_pts):
        old_u = u[i]
        res= f[i] - A[i,:] @ u
        u[i] = u[i] + 1/A[i,i] * res
    return u

def sor1d_fwdstep(A,u,f, omega=1.0):
    """
    Eexcutes one step of fwd Gauss-Seideö for the 1D Poisson equation -u''(x) = f(x) on the interval [0, 1]
    with Dirichlet boundary conditions u(1) = 1 and Neumann boundary condition at u'(0)=0 using the Gauss-Seidel method.

    Parameters:
        u (ndarray): approximate solution, Dirichlet condition at u[0]
        f (ndarray): right hand side
        A matrix
        omega relaxation parameter

    Returns:
        u (ndarray): Numerical solution at the grid points.
    """
    
    n_pts= u.size
    h = 1.0/(n_pts)  # Grid spacing
    # print(n_points, h)

    for i in range(0, n_pts):
        old_u = u[i]
        res= f[i] - A[i,:] @ u
        u[i] = u[i] + omega/A[i,i] * res
    return u

# Set rhs and set initial value for u
h=1/npts
u= np.zeros(npts)
f= -np.ones(npts)*h**2
# Add Dirichlet condition value at right end in f
f[-1]=1
u,f
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# We start with Gauss-Seidel
def gs1d_fwdstep(A, u, f):
    """
    Eexcutes one step of fwd Gauss-Seideö for the 1D Poisson equation -u''(x) = f(x) on the interval [0, 1]
    with Dirichlet boundary conditions u(1) = 1 and Neumann boundary condition at u'(0)=0 using the Gauss-Seidel method.

    Parameters:
        u (ndarray): approximate solution, Dirichlet condition at u[0]
        f (ndarray): right hand side
        A matrix

    Returns:
        u (ndarray): Numerical solution at the grid points.
    """
    
    n_pts= u.size
    h = 1.0/(n_pts)  # Grid spacing
    # print(n_points, h)

    for i in range(0, n_pts):
        old_u = u[i]
        res= f[i] - A[i,:] @ u
        u[i] = u[i] + 1/A[i,i] * res
    return u

def sor1d_fwdstep(A,u,f, omega=1.0):
    """
    Eexcutes one step of fwd Gauss-Seideö for the 1D Poisson equation -u''(x) = f(x) on the interval [0, 1]
    with Dirichlet boundary conditions u(1) = 1 and Neumann boundary condition at u'(0)=0 using the Gauss-Seidel method.

    Parameters:
        u (ndarray): approximate solution, Dirichlet condition at u[0]
        f (ndarray): right hand side
        A matrix
        omega relaxation parameter

    Returns:
        u (ndarray): Numerical solution at the grid points.
    """
    
    n_pts= u.size
    h = 1.0/(n_pts)  # Grid spacing
    # print(n_points, h)

    for i in range(0, n_pts):
        old_u = u[i]
        res= f[i] - A[i,:] @ u
        u[i] = u[i] + omega/A[i,i] * res
    return u

# Set rhs and set initial value for u
h=1/npts
u= np.zeros(npts)
f= -np.zeros(npts)*h**2
# Add Dirichlet condition value at right end in f
f[-1]=1
u,f



We are VSB - Technical University of
Ostrava

VSB – Technical University of Ostrava has been connecting technical, economic,

natural sciences and artistic disciplines in modern study programmes for more than

175 years responding to the real problems of the present.

We carry out basic and applied research at the highest level. Thanks to tradition and

cooperation with industry as well as many domestic and foreign universities in a

wide range of sectors,

we provide innovative solutions in a number of fields and the certainty of

employment to our graduates.

Our faculties and research centres
Faculty of Mining and Geology

Faculty of Materials Science and

Technology

Faculty of Mechanical Engineering

Faculty of Economics

Faculty of Electrical Engineering and

Computer Science

Faculty of Civil Engineering

Faculty of Safety Engineering

IT4Innovations National

Supercomputing Center

 InNET  ČESKY 

Study Alumni Research Media
Partnership University

!

Strategic projects and alliances

News

Centre for Energy and Environmental

Technologies

11

Visualization of the exact solution

The Dirichlet value (= 1) 
from the right the end bc is 
„propagated“ to the left 
across the whole domain

Solvers for Extreme Scale Computing  -  Ulrich Ruede

(array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]),
 array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0.,  1.]))

# Try out again exaact solution with direct solver
u_el2= np.linalg.solve(Apoisson, f)
plot_1d(u_el2, 1)

u1= sor1d_fwdstep(Apoisson,u,f)
plot_1d(u1,1.0, tit= "After one step of Gauss-Seidel")
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What does Gauss-Seidel do?

Solvers for Extreme Scale Computing  -  Ulrich Ruede

(array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]),
 array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0., -0.,  1.]))

# Try out again exaact solution with direct solver
u_el2= np.linalg.solve(Apoisson, f)
plot_1d(u_el2, 1)

u1= sor1d_fwdstep(Apoisson,u,f)
plot_1d(u1,1.0, tit= "After one step of Gauss-Seidel")

u2= sor1d_fwdstep(Apoisson,u1,f)
plot_1d(u1,1.0, tit= "After two steps of Gauss-Seidel")

un= u2
un= sor1d_fwdstep(Apoisson,un,f)
un= sor1d_fwdstep(Apoisson,un,f)
un= sor1d_fwdstep(Apoisson,un,f)
plot_1d(u1,1.0, tit= "After five steps of Gauss-Seidel")

u2= sor1d_fwdstep(Apoisson,u1,f)
plot_1d(u1,1.0, tit= "After two steps of Gauss-Seidel")

un= u2
un= sor1d_fwdstep(Apoisson,un,f)
un= sor1d_fwdstep(Apoisson,un,f)
un= sor1d_fwdstep(Apoisson,un,f)
plot_1d(u1,1.0, tit= "After five steps of Gauss-Seidel")

1st step of GS 2nd step of GS 5 steps of GS

In each step, the information from the Dirichlet point propagates by one 
mesh point towards the interior of the domain. 
There is a computational speed-of-light for propagating the information
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Now more 
systematically

Using a grid with 
16(+1) points 
Loop taking 
progressively more 
and more Gauss-
Seidel steps

Solvers for Extreme Scale Computing  -  Ulrich Ruede

#setup a larger problem
npts= 16
x = np.linspace(0, 1, npts+1)
Agrad= np.eye(npts)-np.eye(npts,npts,1)
Adiv= Agrad.T
Apoisson= Adiv @ Agrad
# Create a suitable right hand side. Initialize with 0
f= np.zeros(npts)
# Set right end to 1, corresponding to an eliminated Dirichlet condition of the form u(1)= 1
f[-1]= 1
u= np.zeros(npts)
uelim= np.linalg.solve(Apoisson, f)
uelim= np.append(uelim, [1])

# trying several steps of Gauss-Seidel

plt.figure(figsize=(12, 8))

plt.plot(x, uelim, label='direct solve', marker = 'x', linewidth=1)

j_start= 0
j_end= 1
for ii in range(9):
    # print(i)
    j_start= j_end
    j_end= 2*j_end
    for jj in range(j_start, j_end):
        # print(jj)
        tmp= gs1d_fwdstep(Apoisson, u,f)
        tmp= np.append(tmp, [1])
    plt.plot(x, tmp, label='step '+str(jj), marker = 'o', linewidth=1)
    

# Add labels, legend, and grid
plt.title('Progress of Gauss Seidel for 1D Poisson', fontsize=16)
plt.xlabel('x', fontsize=14)
plt.ylabel('u', fontsize=14)
plt.legend(fontsize=12)
plt.grid(True, linestyle='--', alpha=0.6)
plt.tight_layout()

# Show the plot
plt.show()

#setup a larger problem
npts= 16
x = np.linspace(0, 1, npts+1)
Agrad= np.eye(npts)-np.eye(npts,npts,1)
Adiv= Agrad.T
Apoisson= Adiv @ Agrad
# Create a suitable right hand side. Initialize with 0
f= np.zeros(npts)
# Set right end to 1, corresponding to an eliminated Dirichlet condition of the form u(1)= 1
f[-1]= 1
u= np.zeros(npts)
uelim= np.linalg.solve(Apoisson, f)
uelim= np.append(uelim, [1])

# trying several steps of Gauss-Seidel

plt.figure(figsize=(12, 8))

plt.plot(x, uelim, label='direct solve', marker = 'x', linewidth=1)

j_start= 0
j_end= 1
for ii in range(9):
    # print(i)
    j_start= j_end
    j_end= 2*j_end
    for jj in range(j_start, j_end):
        # print(jj)
        tmp= gs1d_fwdstep(Apoisson, u,f)
        tmp= np.append(tmp, [1])
    plt.plot(x, tmp, label='step '+str(jj), marker = 'o', linewidth=1)
    

# Add labels, legend, and grid
plt.title('Progress of Gauss Seidel for 1D Poisson', fontsize=16)
plt.xlabel('x', fontsize=14)
plt.ylabel('u', fontsize=14)
plt.legend(fontsize=12)
plt.grid(True, linestyle='--', alpha=0.6)
plt.tight_layout()

# Show the plot
plt.show()
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Visualization of results

Solvers for Extreme Scale Computing  -  Ulrich Ruede
 

 

Information propagates by 
one mesh point per Gauss-
Seidel iteration 
However, there is 
„additional slowness“ 
15 (Npts) iterations are by 
far not enough 
Only when the number of 
iterations is roughly as large 
as the square of the number 
of mesh points, the solution 
becomes „qualitatively 
correct“ 
But even with 511 GS 
iterations, the remaining 
error remains clearly visible 
The number of iterations 
must be as large as 
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How can this be improved? 
Reversing the order of grid traversal (right to left) 

Helps less than one would hope, depends on 
special case, and speeds up only initially, but not 
in the long „asymptotic tail“ 

More successfully, we can try: 
Over relaxation, SOR 
Conjugate gradients 
Both can improve the number of iterations to 

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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Visualization, now with over relaxation parameter omega=1.7

Solvers for Extreme Scale Computing  -  Ulrich Ruede
 

We see a quite 
significant speedup 
From about 100 
iterations onwards, the 
solution visually 
overlaps with the exact 
one 
Of course, we can next 
explore what the best 
omega would be  
could be determined 
experimentally or 
analytically
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Instead, let us take a look at CG
Taking a CG routine from the internet 
We’ll use the maxit parameter to study 
progress of CG throughout the iterations

Solvers for Extreme Scale Computing  -  Ulrich Ruede

def cg (A, b, x0=None, tol=1e-10, max_iter=None):
    """
    Solves the symmetric positive definite system Ax = b using the Conjugate Gradient method.
    Parameters:
        A (numpy.ndarray): Symmetric positive definite matrix.
        b (numpy.ndarray): Right-hand side vector.
        x0 (numpy.ndarray): Initial guess for the solution (default is zero vector).
        tol (float): Convergence tolerance (default is 1e-10).
        max_iter (int): Maximum number of iterations (default is len(b)).
    Returns:
        x (numpy.ndarray): Solution vector.
        info (dict): Dictionary with additional info (e.g., iteration count, residual norm).
    """
    n = len(b)
    if x0 is None:
        x0 = np.zeros(n)
    if max_iter is None:
        max_iter = n

    x = x0
    r = b - A @ x  # Residual
    p = r.copy()   # Search direction
    rs_old = r @ r # Dot product of residual with itself

    info = {
        'iterations': 0,
        'residual_norm': np.linalg.norm(r)
    }

    for i in range(max_iter):
        Ap = A @ p
        alpha = rs_old / (p @ Ap)
        x = x + alpha * p
        r = r - alpha * Ap
        rs_new = r @ r

        # Check convergence
        if np.sqrt(rs_new) < tol:
            info['iterations'] = i + 1
            info['residual_norm'] = np.sqrt(rs_new)
            return x, info

        p = r + (rs_new / rs_old) * p
        rs_old = rs_new

    # If we reach max_iter without convergence
    info['iterations'] = max_iter
    info['residual_norm'] = np.sqrt(rs_old)
    return x, info

plt.figure(figsize=(12, 8))

plt.plot(x, uelim, label='direct solve', marker = 'x', linewidth=1)

j_end= 1
for ii in range(6):
    uz, info= cg(Apoisson, f, max_iter= j_end) #stopping CG early
    ucg= np.append(uz,[1])
    plt.plot(x, ucg, label='step '+str(j_end), marker = 'o', linewidth=1)
    j_end= 2*j_end

# Add labels, legend, and grid
plt.title('Progress of Conjugate Gradients for 1D Poisson', fontsize=16)
plt.xlabel('x', fontsize=14)
plt.ylabel('u', fontsize=14)
plt.legend(fontsize=12)
plt.grid(True, linestyle='--', alpha=0.6)
plt.tight_layout()

# Show the plot
plt.show()

 

CG test driver routine
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CG results

Solvers for Extreme Scale Computing  -  Ulrich Ruede

plt.figure(figsize=(12, 8))

plt.plot(x, uelim, label='direct solve', marker = 'x', linewidth=1)

j_end= 1
for ii in range(6):
    uz, info= cg(Apoisson, f, max_iter= j_end) #stopping CG early
    ucg= np.append(uz,[1])
    plt.plot(x, ucg, label='step '+str(j_end), marker = 'o', linewidth=1)
    j_end= 2*j_end

# Add labels, legend, and grid
plt.title('Progress of Conjugate Gradients for 1D Poisson', fontsize=16)
plt.xlabel('x', fontsize=14)
plt.ylabel('u', fontsize=14)
plt.legend(fontsize=12)
plt.grid(True, linestyle='--', alpha=0.6)
plt.tight_layout()

# Show the plot
plt.show()

 

CG can be understood as a 
clever implementation of 
combining successive 
iterates. 
Among all linear 
combinations it finds the 
best one (in terms of the 
energy norm) 
From iteration 16 onwards, 
CG has reached the exact 
solution, since a linear 
combination of 16 previous 
iterates is enough to 
represent the exact solution 
But also CG is subject to 
the speed-of-info limitation 
While iterate 16 is „perfect“, 
iterate 15 is still „completely 
wrong“
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What comes next
We see that all iterative schemes suffer from the „propagation speed 
limit“  

Gauss-Seidel, SOR, CG, GMRES, etc. are all slow  
All are subject to the limit that info can only be transported by one mesh point 
per iteration 
Because of this incompressible CFD solvers based on using CG have 
implicitly a nonphysiscal „speed of sound“ 

What can help? 
Obvious answer: 
Multigrid 
In 1D, multigrid reduces to cyclic reduction and becomes a direct solver 

Thus we will now leave the 1D toy problem and look at the situation in 2D

Solvers for Extreme Scale Computing  -  Ulrich Ruede



Discretization

The Poisson equation must first be discretized, and 
this can be done in many different ways 

FD, FE, FV, spectral 
h-refined meshes, p-refinement, AMR 
FE: continuous or discontinuous 
Mixed formulations based on splitting the 
second order PDE in a system of first order … 
FOSLS 

We will here stay as simple as possible and use 
uniform cartesian meshes 

Uniform mesh width h 
n cells grid lines in x and y direction 
n+1 grid lines 
N= (n-1)2  „true“ unknowns

20Multigrid Beasts - Part 1
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Second order finite difference discretization
We will not consider whether and when 
other (e.g. higher order) discretization 
can lead to more accurate solutions (in 
same compute time) 
We begin with the standard 5 point FD 
stencil  

equivalent to FE discretization with 
triangles (splitting each square along 
one of the diagonals) 
note that with proper scaling all eqns, the 
stencil can be executed with a minimal 
number of operations

21Multigrid Beasts - Part 1
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Matrix structure
The discretization leads to matrix structures like

and

As can be seen, the boundary 's are brought to the right-hand-side of the equation.[3] The
entire system is 9 × 9 while  and  are 3 × 3 and given by:

and

Because  is block tridiagonal and sparse, many methods of solution have been developed to
optimally solve this linear system for . Among the methods are a generalized Thomas
algorithm with a resulting computational complexity of , cyclic reduction, successive

Methods of solution

22Multigrid Beasts - Part 1

With N unknowns, a banded 
solver will need O(N2) 
operations 
Nested dissection can reduce 
this to O(N1.5) 
The condition number is 

The condition number will 
determine how many iterations 
are needed.
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Exact Solution (of PDE)  
Boundary values to start the iteration

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Graphical Illustration (Visualization)
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View of (approximate) solution after first and 
after second Gauss-Seidel Iteration

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Visualization of Iterations

1 GS iteration 2 GS iterations
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Visualization of Convergence

Solvers for Extreme Scale Computing  -  Ulrich Ruede

after 2 iterations

after 1 iterations

after 10 iterations

before any iteration
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after 100 iterations after 1000 iterations

overlayed with true 
solution

overlayed with true 
solution

Visualization of Convergence
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Relax 2 times

Scalable Multiphysics         -        Uli Ruede
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Initialized with 0 plus BC

1 x GS 2 x GS



Compute residual 
Restrict 
Relax on coarser grid 
Recursion

Scalable Multiphysics         -        Uli Ruede
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Interpolate correction 
Correct fine grid solution 
Post-Smooth

Scalable Multiphysics         -        Uli Ruede
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After V-cycle 
on finest grid

  File: c/u.29  
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All steps of a 
multigrid V-cycle 
illustrated in one 
picture. 
Even with only one 
V(2,1)-cycle, the 
result is qualitatively 
already quite good. 
It is still an iterative 
method, and for 
convergence, the 
complete cycle must 
be iterated.  

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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Relaxation and Multigrid compared

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Multigrid vs. Relaxation

Iterations

E
rr

or
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The Full Multi-Grid (FMG) Algorithm (nested iteration)

Solvers for Extreme Scale Computing  -  Ulrich Ruede

The multigrid V-cycle is an iterative method, and hence it requires 
an initial guess for the solution. This initial approximation can be 
obtained from a coarser grid, and so on recursively. 

The FMG algorithm combines the grid-refinement approach with 
the V-cycle. 

For many problems, FMG with just a single V-cycle per level 
suffices to reduce the error below truncation level. In this case, only 
O(N) operations are required overall.
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F-cycle, FMG, and V-cycle

Solvers for Extreme Scale Computing  -  Ulrich Ruede

No relaxation

Coarsest grid

Finest grid

ProlongationRestrictionRelaxation
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Multigrid summarized
It alternates between 

Smoothing, i.e. a Gauss-Seidel-like 
iteration with the goal to contribute the 
high frequency modes 
Coarse grid correction, computed 
recursively, with the goal to contribute 
the low frequency modes 

The recursion leads to a V-cycle structure, 
alternatively W-cycle, when doing two 
coarse-grid corrections 
The overall cost is only a moderate factor 
more than processing on the finest grid 
(geometric series of flop count) 
It can be shown that the converge rate is 
smaller than 1 and independent of the 
mesh size  

not depending on condition number 
A fixed number of iterations is 
sufficient to compute the result with 
prescribed accuracy (but when the 
mesh gets finer more accuracy might 
be needed) 

The method can still be improved as „Full 
Multigrid (FMG 

FMG can compute the solution to a 
(simple) PDE in cost proportional to 
the number of unknowns 
The accuracy automatically increases 
when going to finer meshes

Solvers for Extreme Scale Computing  -  Ulrich Ruede



Solving large linear systems 
with multigrid: 

An excursion to 
Earth Mantle Convection

TERRA NEO

TERRA 36Computational Science at Extreme Scale   -    Uli Ruede
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Simple Earth Mantle convection models: 
Stokes equation coupled with energy transport

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Solution of the Stokes equations

Boussinesq model for mantle convection problems

derived from the equations for balance of forces, conservation of
mass and energy:

�r · (2⌘✏(u)) +rp = ⇢(T )g,

r · u = 0,

@T

@t
+ u ·rT �r · (rT ) = �.

u velocity
p dynamic pressure
T temperature
⌫ viscosity of the material
✏(u) = 1

2 (ru+ (ru)T ) strain rate tensor
⇢ density
, �, g thermal conductivity,

heat sources, gravity vector

Gmeiner, Waluga, Stengel, Wohlmuth, UR: Performance and 
Scalability of Hierarchical Hybrid Multigrid Solvers for Stokes 
Systems, SIAM J. Scientific Comp., 2015.



Mantle Convection

driving force for plate tectonics 
mountain building and earthquakes 

Matrix-free multigrid for extreme scale   -    Uli Ruede

TERRA NEO

TERRA 

mantle has 1012 km3

inversion and UQ blow up cost

Why Exascale?

Why 

Why Mantle Convection?

implementation based on HYTEG 

scalable and fast

sustainable framework

Challenges

computer sciences: software design for exascale systems 

mathematics: HPC performance oriented metrics

geophysics: model complexity and uncertainty

bridging disciplines: integrated co-design

38

TERRA NEO

TERRA 

TERRA NEO

TERRA 



39

HYTEG  - application 
Dissertation N. Kohl
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Hierarchical Hybrid Grids (HYTEG) - discretization
full video on terraneo.fau.de
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Geophysical in-silico experiment: dynamical topography

Global dynamical topography 
depending on different 
assumptions 
radial viscosity variations

Solvers for Extreme Scale Computing  -  Ulrich RuedeFigure 6: Surface dynamic topography for Case: A - assum-
ing an only radially varying viscosity; B - with the addition
of viscosity variations due to varying thickness of the litho-
sphere; C - with additional temperature-dependent viscosity
in the lower mantle.

topography for Case C is plotted, where additional
temperature-dependent viscosity variations were in-
cluded in the lower-most mantle. The only minor
di↵erence with respect to Case B, are the slight in-
crease of Pacific and African dynamic topography.1080

In Fig. 7 we plot the di↵erences in the surface dy-
namic topography of Cases B and C using Case A
as reference. In Case B, there is an increase in the
positive signal over southern Africa in western Zam-
bia. In the North-Atlantic there is an excess dy-1085

namic topography around Scandinavia and north-

western Africa. The same excess uplift is visible
in the Pacific region. The subsidence over North-
America and Mediterranean is amplified, while the
mid-ocean ridge related uplift is less in amplitude.1090

In Case C, however, di↵erences with respect to
Case B are minor.

Figure 7: Di↵erences in surface dynamic topography for
Cases B and C w.r.t. Case A.

Finally, Fig. 8 shows the spectral intensity of to-
pography at the surface (top) and the CMB (bot-
tom) for the three cases. At the CMB Case A and1095

B yield the same intensity at all spherical harmonic
degrees, expect for l = 2, 3 where the intensity is
reduced, though only marginally. In Case C the
spectral intensity of topography for l > 9 is signif-
icantly higher than in the other two cases. For the1100

surface topography, the situation is di↵erent. For
spherical degrees 9 < l < 25 all three cases produce
almost the same intensity. For l > 25 we observe
a slight intensity reduction in B and C, while for
l 6 9, Case A yields smaller intensities than the1105

other two cases. The pattern of intensity remains
the same, however.
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employ the continental lithospheric thickness model
TC1, [53]. Oceanic lithosphere is then modeled
by a half-space cooling model. As demonstrated
in Fig. 11, the thickness of the lithosphere ranges
from 20 km down to more than 350 km penetrating
the asthenospheric layer. That is, while in Case A
the lithosphere is a channel with a fixed thickness,
in Case B its actual shape varies between oceans
and continents. To account for this, we remove the
lithosphere layer from our model in Case A, and in-
stead prescribe lithosphere thickness via a 3D func-
tion �. The later is a scalar field ranging from 1
to 103, where we set �(x) = 103 for all points x

that are part of the lithosphere. Beneath the litho-
sphere the value smoothly decreases from 103 to 1,
as a result of a lateral spectral Gaussian filtering,
as shown in Fig. 11. Finally, we get

⌫B(x, T ) = �(x)

(
1/10 · 6.3713d3b rA 6 r

1 otherwise.

Case C: In our final test case, we include lateral
viscosity variations also in the lower mantle. In ad-
dition to the a priori radial profile from Case A,
lateral variations are inferred from an exponential
temperature dependence, consistent with a labora-
tory derived creep law [54]. In the upper mantle,
lateral variations remain identical to Case B. The
viscosity model now reads

⌫C(x, T ) = �(x)

8
<

:

1/10 · 6.3713d3b rA 6 r

e
�µLM (1/T�1/T0) otherwise

with radial reference temperature T0, �µLM = 5.75.
The value of �µLM is chosen specifically to yield
three orders of magnitude of variation in the lower
mantle. Both, T0 and T , are scaled by the max-1035

imum temperature value obtain form the conver-
sion of shear velocities, see above. The shape of the
three viscosity models is illustrated in Fig. 5.

The simulations are carried out on Hazel Hen
(Case A) and SuperMUC Phase 1 (B, C). For sim-1040

ulations on SuperMUC, the setup is as described in
Sec. 5, namely 1.1·1012 DoFs on 47 250 cores with a
global resolution of ⇠1.7 km. On Hazel Hen, we had
access to an even larger number of cores which al-
lowed us to run simulations with a global resolution1045

of less than 1.5 km (1.6 · 1012 DoFs) on 75 810 com-
pute cores. For post-processing and visualization
of the dynamic topographies, all results were inter-
polated to the same longitude-latitude grid. In all

Figure 5: Radial viscosity profiles for Cases A (red), B
(black-dashed), and C (black-dotted). The lateral variations
in Cases B and C are visualized by the min/max values in
each layer. In the upper mantle (um), the profiles of B and
C are identical (solid line). In the lower mantle (lm), the
dashed line shows the radial profile of Case B, and the dot-
ted min/max curves the temperature dependent variations
of Case C. Values are scaled by reference viscosity 1022 Pa s.

cases, free-slip boundary conditions were imposed1050

on surface and CMB.

The results of our simulations are shown in Fig. 6.
Fig. 6-A provides the surface dynamic topography
for Case A. Here, we assumed a purely depth-
dependent viscosity. We find positive topography1055

at the mid-ocean ridges in the Indian, Pacific and
Atlantic oceans, where seismic tomography images
warm asthenospheric upwellings. In the North-
Atlantic realm, over Iceland, the surface is also pos-
itively deflected, by ⇠ 1000m. The maximum pos-1060

itive dynamic topography is located above the Afar
region in Africa and the Pacific super-plume, both
with an amplitude of ⇠ 2000m. North and Central
America are negatively deflected by ⇠ 1000m in
correspondence with the ancient Farallon subduc-1065

tion system.

Fig. 6-B shows results for Case B, which in-
cludes lateral variations of viscosity due to litho-
spheric thicknesses. The main features are sim-
ilar to Case A, with di↵erences only in details.1070

The positive topography above Afar now extends
southwards covering most of southeastern Africa.
The amplitudes are also increased above the Pa-
cific superswell, and Northeastern Africa, as well
as Scandinavia. In Fig. 6-C, the surface dynamic1075

17

Weismüller, J., Gmeiner, B., Ghelichkhan, S., 
Huber, M., John, L., Wohlmuth, B., ... & Bunge, 
H. P. (2015). Fast asthenosphere motion in 
high-resolution global mantle flow models. 
Geophysical Research Letters, 42(18), 
7429-7435.
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HYTEG: A matrix-free architecture for FE

Structured refinement of an unstructured base mesh 
Geometrical Hierarchy: Volume, Face, Edge, Vertex 

Solvers for Extreme Scale Computing  -  Ulrich Ruede

In this article, we consider the Stokes system as model problem. Discretization
with finite-elements yields a linear system with saddle-point structure. Section 2
covers the discretization and introduces the parallel data structures of the matrix-
free implementation. After definition of the multigrid components in section 3, we
quantify the computational cost of the resulting FMG iteration in section 4. Finally,
in section 5, we present numerical benchmarks to find optimal solver configurations in
the sense of TME, and demonstrate the node-level performance as well as the parallel
scalability of the implementation.

2 Finite element discretization for the Stokes sys-
tem

As model problem we consider the constant-coe�cient Stokes system that describes
viscous fluid motion on a bounded, polyhedral domain ⌦ ⇢ R3, defined by

��u+rp = f (3)

r·u = 0

where u = (u1, u2, u3)> represents the vector-valued velocity field, p the scalar pres-
sure field, and f = (f1, f2, f3)> an external force acting on the fluid. We consider
Dirichlet, and natural Neumann outflow boundary conditions on @⌦ = @⌦D [ @⌦N

u = w on @⌦D,
@u

@n
= np on @⌦N

where n is the outward pointing normal at the boundary. If @⌦ = @⌦D, the pres-
sure is defined up to a constant and the Dirichlet boundary function w must satisfy
compatibility conditions [26]. We fix p to a mean value of 0 by setting

R
⌦ p dx = 0.

Let T0 denote an unstructured partitioning of the computational domain into
tetrahedral elements. Each of the elements in T0 is then successively and uniformly
refined according to [16], yielding a hierarchy of tetrahedral meshes T = {T`, ` =
0, ..., L}. The structured refinement of a single coarse grid tetrahedron is illustrated
in fig. 1. The mesh hierarchy is discussed in more detail in sections 2.1 and 2.2.

Figure 1: Uniform, structured refinement of a single tetrahedron of the unstructured mesh. From
left to right: initial tetrahedron, refinement level ` = 1, refinement level ` = 2.

We define the solution and test spaces H1
E

and H
1
E0

H
1
E
:= {u 2 H1(⌦)3 : u = w on @⌦D}, H

1
E0

:= {v 2 H1(⌦)3 : v = 0 on @⌦D},

and standard conforming finite element spaces V
`

0 ⇢ H
1
E0

, V`

E
⇢ H

1
E
, and Q

` ⇢
L2(⌦) defined by polynomial functions on each tetrahedron for each level ` of the
mesh hierarchy.

3



Hierarchical Hybrid Grids (HHG) and Multigrid (HYTEG)
Parallelize multigrid for tetrahedral finite elements 

partition domain 
parallelize all operations on all grids 
use clever data structures 
matrix free implementation  

Coarse grids 
agglomeration? 
sequential dependency in grid hierarchy 

Elliptic problems always require global communication 
and thus coarser grids for the global data transport

Scalable Multiphysics         -        Uli Ruede

TERRA NEO

TERRA 

Bey‘s Tetrahedral 
Refinement

B. Bergen, F. Hülsemann, UR, G. Wellein: „Is 1.7× 1010 unknowns the largest finite 
element system that can be solved today?“, SuperComputing,  2005. 
Gmeiner, UR, Stengel, Waluga, Wohlmuth: Towards Textbook Efficiency for Parallel 
Multigrid, Journal of Numerical Mathematics: Theory, Methods and Applications, 2015
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Algorithms Matter!

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Energy per FLOP: 1nJ

Computer Generation gigascale: 109 terascale: 1012 petascale: 1015 exascale: 1018

problem size: DoF=N 106 109 1012 1015

Direct method: 1*N2 0.278 Wh 278 kWh 278 GWh 278 PWh

Krylov method: 100*N1.33 10 Ws 28 Wh 278 kWh 2.77 GWh

Full Multigrid: 200 N 0.2 Ws 0.056 Wh 56 Wh 56 kWh

TerraNeo prototype 
(est. for Juqueen) 0.13 Wh 30 Wh 27 kWh ?

Solution of Laplace equation 
in 3D wit N=n3 unkowns 
Direct methods: 

banded: ~n7 = N2.33 
nested dissection: ~n6 = N2 

Iterative Methods: 
Jacobi: ~50 n5 = 50 N1.66 

CG: ~100 n4 = 100 N1.33 

Full Multigrid: ~200 n3= 200 N



matrix-free multigrid with Uzawa 
smoother 
optimized for minimal memory 
consumption 

1013 Unknowns correspond to 80 
TByte for the solution vector 
Juqueen had ~450 TByte memory 
matrix free implementation essential

Extreme Scale Computing    -    Uli Rüde

TERRA NEO

TERRA 

Exploring the limits

typically appear in simulations for molecules, quantum mechanics, or geophysics. The initial mesh

T�2 consists of 240 tetrahedrons for the case of 5 nodes and 80 threads. The number of degrees of

freedoms on the coarse grid T0 grows from 9.0 · 103 to 4.1 · 107 by the weak scaling. We consider

the Stokes system with the Laplace-operator formulation. The relative accuracies for coarse grid

solver (PMINRES and CG algorithm) are set to 10�3 and 10�4, respectively. All other parameters

for the solver remain as previously described.

nodes threads DoFs iter time time w.c.g. time c.g. in %

5 80 2.7 · 109 10 685.88 678.77 1.04

40 640 2.1 · 1010 10 703.69 686.24 2.48

320 5 120 1.2 · 1011 10 741.86 709.88 4.31

2 560 40 960 1.7 · 1012 9 720.24 671.63 6.75

20 480 327 680 1.1 · 1013 9 776.09 681.91 12.14

Table 10: Weak scaling results with and without coarse grid for the spherical shell geometry.

Numerical results with up to 1013 degrees of freedom are presented in Tab. 10, where we observe

robustness with respect to the problem size and excellent scalability. Beside the time-to-solution

(time) we also present the time excluding the time necessary for the coarse grid (time w.c.g.) and

the total amount in % that is needed to solve the coarse grid. For this particular setup, this

fraction does not exceed 12%. Due to 8 refinement levels, instead of 7 previously, and the reduction

of threads per node from 32 to 16, longer computation times (time-to-solution) are expected,

compared to the results in Sec. 4.3. In order to evaluate the performance, we compute the factor

t nc n
�1, where t denotes the time-to-solution (including the coarse grid), nc the number of used

threads, and n the degrees of freedom. This factor is a measure for the compute time per degree of

freedom, weighted with the number of threads, under the assumption of perfect scalability. For

1.1 · 1013 DoFs, this factor takes the value of approx. 2.3 · 10�5 and for the case of 2.2 · 1012 DoFs

on the unit cube (Tab. 5) approx. 6.0 · 10�5, which is of the same order. Thus, in both scaling

experiments the time-to-solution for one DoF is comparable. The reason why the ratio is even

smaller for the extreme case of 1.1 · 1013 DoFs is the deeper multilevel hierarchy. Recall also that

the computational domain is di↵erent in both cases.

The computation of 1013 degrees of freedom is close to the limits that are given by the shared

memory of each node. By (8), we obtain a theoretical total memory consumption of 274.22 TB,

and on one node of 14.72 GB. Though 16 GB of shared memory per node is available, we employ

one further optimization step and do not allocate the right-hand side on the finest grid level. The

right-hand side vector is replaced by an assembly on-the-fly, i.e., the right-hand side values are

evaluated and integrated locally when needed. By applying this on-the-fly assembly, the theoretical

18

Gmeiner et al. 2016, A quantitative performance study for Stokes 
solvers at the extreme scale, Journal of Computational Science.
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Algorithms for saddle point systems

Monolithic multigrid

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Darrigrand, V., Dumitrasc, A., Kruse, C., & Rüde, U. (2023). Inexact inner–outer Golub–Kahan bidiagonalization 
method: A relaxation strategy. Numerical Linear Algebra with Applications, 30(5), e2484. 
Dumitrasc, A., Kruse, C., & Rüde, U. (2024). Deflation for the off-diagonal block in symmetric saddle point systems. 
SIAM Journal on Matrix Analysis and Applications, 45(1), 203-231.

Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., & Wohlmuth, B. (2015). Towards textbook efficiency for 
parallel multigrid. Numerical Mathematics: Theory, Methods and Applications, 8(1), 22-46. 
Drzisga, D., John, L., Rude, U., Wohlmuth, B., & Zulehner, W. (2018). On the analysis of block smoothers 
for saddle point problems. SIAM Journal on Matrix Analysis and Applications, 39(2), 932-960. 
Kohl, N., & Rüde, U. (2022). Textbook efficiency: massively parallel matrix-free multigrid for the Stokes 
system. SIAM Journal on Scientific Computing, 44(2), C124-C155.

Exploiting block structure and/or Schur complement formulation 
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Automatic Code Generation for Multigrid 
Metaprogramming 

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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kernel type 
matrix-free BLAS, 

relaxation, grid transfer, …

operator type 
Laplacian, divergence, 

gradient, …

assembly type 
constant-coefficient,  

on-the-fly, approximated, …

discretization 
P1, P2, …

domain shape 
tetrahedral, triangular, …

memory layout 
linear, colored, …

target platform 
X86, GPU, …

Combinatorial explosion leads to many different kernels and would require  
an enormous manual implementation and optimization effort!

automated 
code generation 

+ 
optimization

The HYTEG framework - code generation



• Symmetry (S)
• Inter-element vectorization (V)
• Loop invariants (I)
• Cubes loop strategy (C)
• Under-integration (U)
• Fused quadrature loops (fQ)
• Tabulation (T)

Generated optimizations

For the fastest operator:
Roofline analysis of 
optimization path

Optimization path

• Generate all combinations
• Determine the set of most 

effective optimizations

Optimization search
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Performance Analysis and Code Optimization

Solvers for Extreme Scale Computing  -  Ulrich Ruede

• Fritz Supercomputer at NHR@FAU 
• Matrix-vector multiplication (without communication)
• Single socket: Intel Xeon Platinum 8360Y (”Ice Lake”)
• 36 cores per socket
• LIKWID performance monitoring and benchmarking suite
 

Measurements



Provides option to transform 
the program 

Abstract syntax tree

For(…++elZ)

For(…++elY)

SrcDoF = ... DstDoF = ...

Tmp = ...

For(…++elX)

For(…++elZ)

Vec4 SrcDoF = ...

Tmp = ...

For(…++elX)For(…elX +=4 )

For(…++elY)

...

...

...

Transformed AST

Tailored 
optimizations

e.g. vectorization

Python Code Generator

Quadrature

Weak form

FE space

define performance 
properties 

Inputs to HOG

AVX2
Architecture
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HYTEG Operator Generator (HOG)

Solvers for Extreme Scale Computing  -  Ulrich Ruede



• Starting point: already compute-bound
• Series of opts reducing arithmetic intensity
• Compute-intense P2V becomes memory-bound with P2V_SVUI
• Cubes loop applicable -> more speed-up 
• 58x accumulated speed-up, 50% peak, 1.4 GDoF/s
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Optimization Path: P2V

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Operator P2V:  

• Symmetry (S)
• Inter-element vectorization (V)
• Loop invariants (I)
• Cubes loop strategy (C)
• Under-integration (U)
• Fused quadrature loops (fQ)
• Tabulation (T)



HYTEG: Scaling for the Stokes Problem

Solvers for Extreme Scale   -    Uli Rüde

TERRA NEO
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Kohl, N., & Rüde, U. (2022). Textbook efficiency: massively parallel matrix-free multigrid for the Stokes system. SIAM Journal 
on Scientific Computing, 44(2), C124-C155. 

Kohl, N., Mohr, M., Eibl, S., & Rüde, U. (2022). A Massively Parallel Eulerian-Lagrangian Method for Advection-Dominated 
Transport in Viscous Fluids. SIAM Journal on Scientific Computing, 44(3), C260-C285.
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FMG, avg. 4.6⇥ 107 unknowns p. proc.
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Fig. 11. Weak and strong scaling of the FMG solver for the P2 � P1 with
(⌫pre, ⌫post, ⌫inc,, Â, ⇠) = (0, 2, 1, 1, Âf , 3). The largest run solves a Stokes system with approxi-
mately 3.6 · 1012 unknowns.

Extreme-scaling. Finally, we demonstrate strong and weak scaling results of the
FMG implementation for the P2 � P1 discretization. The experiments are conducted
again on the thin nodes of SuperMUC-NG. We run the same cube benchmark on
refinement level L = 7.

Figure 11 shows the wall time for the FMG solver for the P2 � P1 discretization,
and (⌫pre, ⌫post, ⌫inc,, Â, ⇠) = (0, 2, 1, 1, Âf , 3). A weak scaling of three configura-
tions is presented: 1.1 · 107, 2.3 · 107, and 4.6 · 107 unknowns per process on average.
For the latter scenario, the number of processes per node is reduced from 48 to
24.

We demonstrate scalability to all available 147,456 processes and, in the largest
scenario, solve a Stokes system with more than 3.6 · 1012 unknowns in about 90
seconds. The solution vector alone requires more than 28 TB of main memory. The
monolithic multigrid solver with inexact Uzawa relaxation is especially suited for large-
scale computations, as it can be implemented with only one additional temporary
vector, on top of the solution and right-hand side.

We emphasize that such extreme scalability can only be achieved with matrix-free
solvers, and careful choice and implementation of the corresponding algorithms and
data structures [32].

6. Conclusion. In this article we analyzed an HHG-based massively parallel
matrix-free multigrid solver for the Stokes equations with respect to the notion of
TME. We extended the HHG data structures to higher-order finite elements and
compared the numerical and computational performance of a stabilized equal-order
and a Taylor–Hood discretization. The operation count of the employed monolithic,
geometric multigrid solver was derived and used as a first model to evaluate its e�-
ciency with respect to TME. Regarding operation count as a metric, we achieve or are
close to TME for both evaluated discretizations and benchmark problems. In a series
of studies we then present the computational e�ciency of our implementation to iden-
tify and quantify the gaps toward achieving TME in massively parallel applications.
Finally we demonstrate extreme scalability of the multigrid solver to up to 147,456
parallel processes and systems with more than 3.6 · 1012 unknowns. This article may
serve as a basis for further analysis of the e�ciency of Stokes solvers, in particular for
the case of varying coe�cients and for coupled, possibly nonlinear applications.
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Fig. 4. Minimal achievable velocity error after an FMG iteration with parameterization
s 2 S that requires a maximum work of W , plotted for W 2 {0} [ {1.5, 2, . . . , 12}. Precisely,
mins2S̃(||e(ũL)||0) with S̃ := {s 2 S : WD(FMG(s))  W}, and discretization D on level L.

Fig. 5. Domain and computed solution of the flow through a y-shaped junction.

5.1.2. Flow through a junction. As a second benchmark problem, we consider
a y-shaped junction that is slightly bent in the z-direction, with a single, sinusoidal
inflow and two natural outflow (Neumann) boundaries; cf. Figure 5. The domain
consists of 336 coarse grid tetrahedra that are successively refined. The relaxation
parameter ! is again determined by a parameter study and set to 0.3 and 0.4 for the
P1 � P1 and P2 � P1 discretizations, respectively.

Since no analytical solution is known, we consider asymptotical convergence rates
by comparison of computed solutions on di↵erent refinement levels as in [2]. Given
two approximations x̃

`
and x̃

`�1, ||x̃`
� I

`

`�1x̃`�1||0 is expected to converge at the
same rate as the discretization error for increasing `.

In Figure 6 we plot ||ũ
`
� I

`

`�1ũ`�1||0 for both discretizations, increasing re-
finement levels, and two di↵erent solver configurations. For each discretization, we
additionally show results for the algebraic solution, computed by reducing the resid-
ual to machine precision on each level (denoted by alg. exact). We observe that the
expected asymptotic order of convergence is not achieved, even for the exact solu-
tion of the linear system. However, the FMG solvers are able to reduce the error to
discretization accuracy for settings that reach TME or are at least close to TME.
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Textbook Multigrid Efficiency 

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Textbook e�ciency: massively parallel matrix-free
multigrid for the Stokes system

Nils Kohl∗ Ulrich Rüde∗†

Abstract

We employ textbook multigrid e�ciency (TME), as introduced by Achi

Brandt, to construct an asymptotically optimal monolithic multigrid solver for

the Stokes system. The geometric multigrid solver builds upon the concept

of hierarchical hybrid grids (HHG), which is extended to higher-order finite-

element discretizations, and a corresponding matrix-free implementation. The

computational cost of the full multigrid (FMG) iteration is quantified, and the

solver is applied to multiple benchmark problems. Through a parameter study,

we suggest configurations that achieve TME for both, stabilized equal-order,

and Taylor-Hood discretizations. The excellent node-level performance of the

relevant compute kernels is presented via a roofline analysis. Finally, we demon-

strate the weak and strong scalability to up to 147, 456 parallel processes and

solve Stokes systems with more than 3.6⇥ 10
12

(trillion) unknowns.

Key words multigrid, textbook e�ciency, hierarchical hybrid grids, parallel com-
puting, finite element method, Stokes problem

AMS subject classifications 65F10, 65N30, 65N55

1 Introduction

Textbook multigrid e�ciency (TME), a term coined by Achi Brandt in [18, 48], sug-
gests that an ideal multigrid algorithm should solve a discrete system with less than
10 times the computational work that is required to apply the corresponding operator.

The computational work W(M) required to employ a numerical method M , in
order to solve a linear system Ax = b, is conveniently expressed in multiples of a
work unit (WU). One WU amounts to the computational work W(A) required for
application of the considered linear operator, i. e.

1WU := W(A). (1)

Consequently, we achieve TME if we design a multigrid method MG, that solves
Ax = b, with

W(MG)

W(A)
< 10. (2)

We emphasize that TME is defined with respect to the underlying di↵erential equa-
tion. Solving the partial di↵erential equation (PDE) with optimal complexity is a

∗
Chair for System Simulation (LSS), Friedrich-Alexander Universität Erlangen-Nürnberg, Ger-

many (nils.kohl@fau.de, ulrich.ruede@fau.de)
†
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS),

France
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Textbook Multigrid Efficiency (TME)

„Textbook multigrid efficiency means solving a 
discrete PDE problem with a computational effort that 
is only a small (less than 10) multiple of the operation 
count associated with the discretized equations itself.“  
[Brandt, 98]

Scalable Multiphysics         -        Uli Ruede
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This is a programmatic claim - not a theorem. 
For which types of PDE is it achievable?
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Work unit (WU)
Linear system 
Work unit (WU) to apply operator: 

or perform one sweep of relaxation 
TME achieved, if work for MG solver(!) less than 10 WU: 

TME defined wrt. to underlying differential equation 
TME is (much!) more ambitious than asymptotic optimality 
or mesh independent convergence of an iterative solver 
TME requires to quantify the constant 

Hard to assess theoretically 
But systematic numerical studies possible 
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Abstract

We employ textbook multigrid e�ciency (TME), as introduced by Achi

Brandt, to construct an asymptotically optimal monolithic multigrid solver for

the Stokes system. The geometric multigrid solver builds upon the concept

of hierarchical hybrid grids (HHG), which is extended to higher-order finite-

element discretizations, and a corresponding matrix-free implementation. The

computational cost of the full multigrid (FMG) iteration is quantified, and the

solver is applied to multiple benchmark problems. Through a parameter study,

we suggest configurations that achieve TME for both, stabilized equal-order,

and Taylor-Hood discretizations. The excellent node-level performance of the

relevant compute kernels is presented via a roofline analysis. Finally, we demon-

strate the weak and strong scalability to up to 147, 456 parallel processes and
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12

(trillion) unknowns.

Key words multigrid, textbook e�ciency, hierarchical hybrid grids, parallel com-
puting, finite element method, Stokes problem

AMS subject classifications 65F10, 65N30, 65N55

1 Introduction

Textbook multigrid e�ciency (TME), a term coined by Achi Brandt in [18, 48], sug-
gests that an ideal multigrid algorithm should solve a discrete system with less than
10 times the computational work that is required to apply the corresponding operator.
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Abstract

We employ textbook multigrid e�ciency (TME), as introduced by Achi
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the Stokes system. The geometric multigrid solver builds upon the concept

of hierarchical hybrid grids (HHG), which is extended to higher-order finite-

element discretizations, and a corresponding matrix-free implementation. The

computational cost of the full multigrid (FMG) iteration is quantified, and the

solver is applied to multiple benchmark problems. Through a parameter study,

we suggest configurations that achieve TME for both, stabilized equal-order,
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Cost comparison for Stokes with stabilized P1-P1 vs. P2-P1

A WU for P2-P1 and for P1-P1 are roughly equivalent 
Velocity error after an FMG iteration with parameterization chosen to achieve 
minimal error

Scalable Multiphysics         -        Uli Ruede
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on refinement level `. The number of unknowns in the interior of a tetrahedron is
calculated using eq. (7) and table 1.

For the application of a stencil with n entries, we account n multiplications and
n� 1 additions. We approximate this with 2n operations for each stencil application.
Where necessary, the number of operations is then multiplied by three, accounting
for the three velocity components.

The computational costs for the application of the block operators of eq. (5) for
the P2 �P1 discretization on level ` are (cf. tables 1 and 2)

W(BP2�P1
`

) =

vel. components

z}|{
3 · ( 2|{z}

add + mul

·
stencil sizez}|{

65 ) · Ntet(2
` � 3)| {z }

inner unknowns

(12)

W(AP2�P1
`

) = 3 ·
�
(2 · 65) ·Ntet(2

` � 3) + (2 · 146) ·Ntet(2
` � 2) (13)

+(2 · 19) ·Ntet(2
` � 1)

�

W(CP2�P1
`

) = 0. (14)

The P1 � P1 finite-element discretization leads to a 15-point stencil in the interior
of a refined tetrahedron [30]. It corresponds to the vertex-centered stencil in fig. 3(a)
without the entries on the edges. The computational costs for the individual blocks
are therefore
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P1 �P1, L = 6, mins2Ŝ(W(FMG(s))), Ŝ := {s 2 S :  = 1 ^ �(uL)  �̂u ^ �(p
L
)  �̂p}

(�̂u, �̂p) (1.1, 2) (1.1, 5) (2, 10)

s (2, 3, 2, 1, Âs, 1) (3, 1, 3, 1, Âs, 1) (1, 0, 2, 1, Âs, 1)

W(FMG(s)) 10.77 9.55 3.97

�(uL) 1.10 1.10 1.62

�(p
L
) 1.51 2.91 8.52

P2 �P1, L = 5, mins2Ŝ(W(FMG(s))), Ŝ := {s 2 S :  = 1 ^ �(uL)  �̂u ^ �(p
L
)  �̂p}

(�̂u, �̂p) (1.1, 2) (1.1, 5) (2, 10)

s (1, 3, 2, 1, Âf , 3) (1, 2, 1, 1, Âf , 3) (0, 2, 1, 1, Âf , 3)

W(FMG(s)) 14.91 11.08 8.11

�(uL) 1.01 1.02 1.47

�(p
L
) 1.99 4.55 9.81

Table 3: Results for some parameterizations from the search space S, optimized towards minimal
work with fixed upper bounds for �(uL) and �(p

L
), and  = 1.
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Figure 4: Minimal achievable velocity error after an FMG iteration with parameterization s 2 S that
requires a maximum work of W , plotted for W 2 {0}[{1.5, 2, . . . , 12}. Precisely, mins2S̃(||e(ũL)||2)
with S̃ := {s 2 S : WD(FMG(s))  W}, and discretization D on level L.

iteration. For both discretizations, a looser bound to the pressure error significantly
reduces the required work. If only a very accurate velocity solution is of interest, very
e�cient parameterizations may be chosen. We note that no configuration could reduce
the pressure error so that �(p

L
)  1.4. Similar results for the P1 �P1 discretization

are presented and discussed in [31, 30].
Table 3 lacks a direct comparison of the e�ciency among the two discretizations.

Again, we are interested in solving the PDE, and not in the exact solution of the dis-
crete problem. To this end, the ratios �(u

`
) and �(p

`
) fail to express a discretization-

invariant, quantitative measure for accuracy of the computed solution. The ratio
eq. (17) suggests, that a similar amount of work is required to apply either AP2�P1

`
or

AP1�P1
`+1 . We compare therefore the error ||e(ũ

L
)||2 as defined in eq. (19) after apply-

ing the FMG iteration to solve eq. (5) with AL = AP2�P1
L

, L = 5, and AL = AP1�P1
L

with L = 6. In particular, we plot in fig. 4 the minimal velocity error ||e(ũ
L
)||2

that can be achieved with an FMG configuration that requires a certain maximum
amount of work W . For the considered example, the P1 �P1 discretization accuracy
on level L = 6 is reached even for really e�cient configurations of the FMG solver
when employing the P2 � P1 discretization on level L = 5. For example, a 10-fold
reduction of the low-order discretization error is achieved with WP2�P1(FMG) ⇡ 5.

5.1.2 Flow through a junction

As a second benchmark problem, we consider a y-shaped junction, that is slightly bent
in z-direction, with a single, sinusoidal inflow and two natural outflow (Neumann)

14
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With this let’s come back to:

What is the fastest solver for 
Poisson’s equation?
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Work estimates from [ST] for 5-pt discretization of Poisson’s eq 
2-grid-method with red-black Gauss-Seidel smoothers
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p (Iv1£) < 0.081

110

(£ = 1,2, ... ).

Proof: The estimate in (8.16) follows by a recursive estimation analogous to the one
used in Corollary 4.4 but now applied to (8.15). One only has to observe that

k+1 kII Bk lis· IIBk+11Is :O: 1 (k=1,2, ... ) where

Bk\l .- Sblack Ak I .
k k+1 G( rI )

k+1

This estimate can be verified by use of the Fourier representations of
k

Bk+1•

and

o

(8.17)

8.3.

Remarks: (1) If we replace the FW operator used above by the operator of half weight�

ing (HW), i. e .

q 1r
we obtain a method which is still more efficient than the one using FW. For the cor-
responding two-grid operator we can make a similar analysis with respect to
p* and as above. We do not give the details of the corresponding analysis here,
but show the most important values in Table 8.1 of the next section. (See also Figu-
re 8.2: This Figure corresponds to Figure 8.1 and it shows how the function F in
(8.13) changes, if the FW operator used there is replaced by the HW operator.) The
FORTRAN program listed in the appendix is the MG version corresponding to this two-
grid method.

(2) In contrast to the HW operator, the operator of straight injection (INJ, see
(3.41)) does not lead to a reasonable two-grid method here. This follows immediately
from the observation that the defect after one RB step is zero at all black points
and nonzero otherwise.

8.2 Further results for Poisson's equation

In this section, we give some more (h,2h)-results on Poisson's equation with
Dirichlet boundary conditions on rectangular domains. As before, we restrict ourselves
to the case of square grids h=h =h . For the case of non-square grids, see Section

xl x2

The first Table 8.1a recalls results on and p* already given in Sections
7.5 and 8.1. In addition, corresponding convergence factors are given for the case
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that the FW operator (3.3) is replaced by the HW operator (B.17). One can see that
the use of the HW operator (for leads to a method which is both more rapidly
convergent and cheaper. In the table, the operation count is given in terms of

(cf. Section 4.4). (Details on the operation count of the single MG components
are given in Table B.1c.) Using the efficiency measure (4.26), (4.27) (and counting
additions and multiplications weighted equally), we compute from Table 8.1a that the
optimal values v for FW and HW are given by v=2 and v=3, respectively.

Remark: Note that after one RB relaxation step the defect is zero at all black points.
This means that the fine-to-coarse transfers become fairly simple. In particular, the
application of the HW operator simply means that residuals are transfered from the
finer to the coarser grid by multiplying them by a factor of 0.5. (This kind of trans-
fer operator is also called half injection (HI) in the following.) Similarly, the per-
formance of the coarse-to-fine transfer is simplified if it is followed by one step
of RB relaxation: interpolation then has to be carried out explicitly only at black
points.

Table B.1b shows the quantities and for the respective methods. In
order to obtain values less than one for all these quantities, we see that one should
choose neither v 1=0 nor v2=0. As for the optimal v-values mentioned above, one
should choose v1=1, v2=1 and v1=2, v2=1 in case of FW and HW, respectively, in or-
der to obtain the smallest norm values.

Remark: For v1=0 and HW, we see from the table that The reason for this
can easily be seen by a similar consideration as for Jacobi's method in connection
with the INJ operator (cf. (3.43)). In contrast to Jacobi's method, this effect va-
nishes here if A similar behavior does not occur in connection with the FW
restriction operator; this is due to the fact that the FW operator acts like a "fil-
ter": High frequencies are essentially damped by the FW operator, more precisely, we
have for Ci;t (0,0) (cf. (7.33), (7.34))

q(eCi
) = 0(leI 2) (lei -+ 0). (8.18)

: FW : HW

(It)v * # Add # Mult * # Add # Multv p p

1 0.250 0.250 6.75 2.25 0.500 5.5 1. 75
2 0.063 10.074 9.75 3.25 I 0.125 8.5 2.75
3 0.034 0.053 12.75 4.25 I 0.034 11.5 3.75 I
4 0.025 0.041 15.75 5.25 0.025 14.5 4.75

Table 8.1a: y*, p* and computational work in case of smoothing by RB relaxa-
tion (for 5-point Laplace discretization)

Half-weighting  
restriction (HW)

and

96

* v/ 2v 1 I 2v-l I(v) Isup {max {IAOO- (1-AOO)I/2, AlO (l-AlO) /2} lelO>1T/2} (7.62)

(E ..,. 0)

(E ..,. 00).
(7.63)

Thus RB relaxation has, with respect to x2-coarsening and for small E, the same
smoothing properties as in Example (1) if (For v=l or 2 they are even bet-
ter.) For large E. however, RB cannot be used in connection with x2-coarsening:
Then xl-coarsening has to be used instead. This result is in full accordance with
the heuristic explanation given in (2).

(4) We have seen above that - for the anisotropic model equation with E considerab-
ly different from 1 - RB has good smoothing properties only if it is combined with
semi-coarsening. (In fact, this is true for any pointwise relaxation method by the
same heuristic argument which was given in Example (2).) In order to use standard
coarsening, the smoothing process has to be changed: One can use, for instance, ZEBRA
relaxation. The matrix representation of ZEBRA relaxation can be computed from Table
7.2 (also see (7.45)). Let us consider x2-ZEBRA. With

(7.64)

one obtains the same formula as (7.58) with AlO replaced by All and by that

(E ..,. 0)

(E ..,. 00).
(7.65)

In particular, x2-ZEBRA has, in connection with standard coarsening and for small E,

the same good smoothing properties as RB had in connection with x2-coarsening (7.63).
For large E, however, x2-ZEBRA is not suitable: xl-ZEBRA has to be used instead.
If one smoothing step is defined by one step of alternating ZEBRA, one can show that
this kind of a smoother has very good smoothing properties, independent of the size
of E. Some explicit values are given in Table 7.4 (also see Table 8.4b). In the
judgement of alternating ZEBRA one has, of course, to take into account that this
smoother needs twice the work per step as one single ZEBRA step.

We want to make one final remark on coarsening by quadrupling h. This kind of
coarsening leads to multigrid algorithms which are (slightly) cheaper per cycle than
corresponding ones obtained by, for example, standard coarsening (cf. (4.24)). On
the other hand, the smoothing factors shown in Table 7.4 indicate that this saving
of computational work does not pay: the smoothing factors which correspond to coarse-
ning by quadrupling h are much worse than those which correspond to standard co-
arsening.

smoothing factor

102

Each of the model problems represents a considerably larger class of more general
"standard" problems (with variable coefficients, on more general domains etc.) to
which the quantitative theoretical results obtained for the corresponding model prob�
lem carryover in practice. This "stable behavior" of multigrid methods is a general
experience familiar to multi grid experts and has been demonstrated by a great number
of systematical experiments. It is because of this behavior that the model problem
analysis becomes really worthwhile for practical purposes.

The above behavior is heuristically explained by the fact that the spectral pro�
perties of by which the two­grid convergence behavior is determined, are "ro�
bust" with respect to small changes of a given model problem (for example, with re�
spect to changes of Lh or the domain). In particular, the influence of a given re�
laxation technique is nearly the same for neighboring problems; this is mainly due
to the local nature of relaxation processes.

8.1 Analytic results for an efficient two­grid method

We consider an (h,2h) two­grid method for model problem (P) which is very simi�
lar to the sample method treated in Chapter 3. The only difference is that now RB
relaxation (with relaxation parameter w=l) is used instead of Jacobi w­relaxation.
This small change of the algorithm will prove to be essential for the resulting ef�
ficiency. We obtain for the asymptotic convergence factor p*(v)=sup
h*=1/4:

Theorem 8.1: Let

(8.3)

where Lh, L2h are defined as in Section 3.1 and Sh characterizes one
complete step of RB relaxation (cf. Section 7.3). Then we have for v=v1+v2

In particular,

1/4

1 ( v )v+1
"2V V+I

(v 1)

(v ;> 2).

(8.4)

p*(2) = 2/27 = 0.074 •.. , 0.0521 .. ; vp*(v) + 1/2e (v + 00). (8.5)

Remark: We obtain the same result on p* if Poisson's equation is considered on a
rectangular domain (with h hx ) rather than on a square. The necessary changes

xl 2
in the proof below are obvious.

Asymptotic 2-grid 
convergence factor

Once the dust has 
been wiped off, 

this is still 
healthy, good, 
solid numerics
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: FW : HW

(vl'v2) * * * * * *aS °E ad aS °E ad

(1,0) 0.559 0.500 1.414 0.707 0.514 1.414
(0,1) 1.414 0.500 0.559 00 00 1.000

(2,0) 0.200 0.285 1.414 0.191 0.300 1.414
(1,1) I 0.141 0.125 0.141 I 0.707 0.257 0.280
(0,2) 1.414 0.285 0.212 00 00 1.000

(3,0) 0.137 0.226 1.414 0.115 0.233 1.414
(2,1) 0.081 0.062 0.081 10.070 0.064 0.0961
(1,2) 0.081 0.062 0.081 0.707 0.165 0.108
(0,3) 1.414 0.226 0.144 00 00 1.000

(4,0) 0.105 0.193 1.414 0.082 0.197 1.414
(3,1) 0.062 0.046 0.062 0.039 0.036 0.063
(2,2) 0.062 0.046 0.062 0.038 0.029 0.037
(1,3) 0.062 0.046 0.062 0.707 0.131 0.073
(0,4) 1.414 0.193 0.109 00 00 1.000

Table 8.1b: Norm values corresponding to the method in Table 8.1a

MG component # Add # Mult

one RB step 3 1

1 2.75 0.75
(if preceeded by RB step)

I2h/HW 1.5 0.25h
h (if followed by RB step) 1 0.5I2h

Table 8.1c: Operation count for the individual MG components used in Tables 8.1a
and 8.1b (number of operations per point of Qh). The numbers given for

and include the work needed for the computation of the de�
fect and adding the correction, respectively.

As in the case of Jacobi w­relaxation, one could try to introduce one (or more)
parameters into the process of RB relaxation. In contrast to Jacobi's method, however,
this results only in a non­significant improvement of the quantities in Table 8.1.
Taking also work into account, the corresponding methods are even less efficient:
w=l is indeed the best value here. Also see Figure 9.1, where the dependence on w
is shown for the case of GauB­Seidel relaxation with lexicographic ordering of the
grid points. The dependence shown there is typical for RB relaxation, also.

work  
optimization 

The RB-relaxation 
overwrites all red points using only black points, so we 
need only to interpolate to black points 
Makes the residual vanish on all black points: we can 
exploit this to use only black points to compute the 
restriction
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And what is achieved by this
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injection (HI, see Section 8.1) and linear interpolation, respectively.

- Structure of cycles: Alternatively, V- or W-cycles (see Section 4.1) may be used.

Figure 10.1: "Reasonable" coarsest grids

All following quantitative results refer to Poisson's equation and the MG01 ver-
sion described above with

(10.2)

If4"denotes the number of grid points of nh, the total computational work for one
iteration step of the corresponding method is less than

15JY additions, 5 JY multiplications (for V-cycles),

23JY additions, 7.5JY multiplications (for W-cycles),
(10.3)

neglecting lower order terms. These numbers are independent of the shape of the
domain.

Table 10.1 shows some numerically calculated asymptotic convergence factors of
the multigrid iteration (for both V- and W-cycles) for several domains. All domains
are comparable in size with the unit square. The convergence factors have been com-
puted by a v. Mises vector iteration.

We recall that on rectangular domains for h =hx the corresponding asymptotic
xl 2

two-grid convergence factor is given by p*(3) 0.034 (see Section 8.2). As far
as W-cycles (y=2) are concerned, Table 10.1 shows that the multigrid convergence
factors (for h=1/128) are nearly the same as p*. This is also true for general
domains, as long as there are no reentrant corners. The worst convergence factor,
namely 0.097 instead of can be observed for the domain with a cut. Here
a singular behavior like is typical for the solution u(x) near the singular
point (where R denotes the distance of x to the singular point). Clearly, for
such problems Poisson's equation on a rectangle is no longer a model case. Never-
theless, the W-cycle convergence turns out to be very satisfactory even in such
cases. We point out that the given convergence factors remain essentially unchanged

V(2,1)-cycle: 20    Flops/unknown  
W(2,1)-cycle 30.5 Flops/unknown   



… and if we use full multigrid (FMG)?

Summarizing: We should be solving the 2D Poisson equation 
to discretization error accuracy 
with 30 Flops per unknown!  
in the model case, FMG-V(2,1) cycles are enough to 
achieve asymptotic optimality

Fast Solvers   -    Uli Rüde

TERRA NEO

TERRA 62

146

for respective reentrant corners. Here denote polar coordinates with respect
to the singular point; an is the inner angle of the domain at this point (see Ta�
ble 10.2).

As we have seen in Table 10.1, the convergence factors of the multigrid iteration
deteriorate with increasing a for the domains with reentrant corners (1 < a 2).
The question arises, whether the corresponding convergence speed is still sufficient
for the satisfactory performance of FMG (cf. the influence of nr in the estimation
(6.10)). For this, one should notice that the discretization error becomes larger
for increasing a also. This means that the value of K1 in (6.7) is smaller than
2 in these cases. More precisely, the following estimate is valid [66J: For any
1 a 2 and any s>o there exists a constant C such that

2 2s
2 2s ­ 1. + O(ha ) ifR fixeds

­ I C ha R a 1 (10.4)s
O(ha ) if R = O(h).

Therefore, the loss of MG convergence speed is ­ so to say ­ compensated by a loss
of discretization accuracy. The errors given in Table 10.2 show indeed that the
main objective of the FMG method, namely to obtain approximate solutions uh with
II uh ­ uh 11 2 II uh ­ u 11 2, is achieved for all examples considered. The same is
true for highly oscillatory solutions, see Table 10.3.

All results in Tables 10.2 and 10.3 refer to W­cycles. We have computed corre�
sponding errors II uh ­ uh 11 2 for V­cycles also (maintaining r = 1). The ratio
II uh ­ uh 11 2 / II uh ­ u 11 2 is larger then, but in all cases still 1. This means,
that V­cycles may also be employed in the cases considered.

The total computational work of MG01 in the FMG version (r=l) is less than

32.5JY additions, multiplications (if W­cycles are used)

22.ff additi ons, 8Jf multiplications (if V­cycles are used),
(10.5)

(neglecting lower order terms), where Jr is the number of grid points on the finest
grid. These numbers are independent of the shape of the domain. In particular, they
are the same as for a corresponding special program for rectangular domains. Concer�
ning the real computing times, this special program is, of course, faster than MG01
(for a given reasonableJr), as in MG01 additional work has to be performed due to
the more complicated grid structure. (As for computing times concerning programs on
rectangular domains, see MG00 [36J.)



So, what is the cost of solving the discrete Poisson equation?
What is the best constant published? 

For Poisson 2D, second order: 
#Flops ~ 30 n          (Stüben, 1982) 

assume computer with 1 PetaFLOPS,  n=109  
expected time to solution: Poisson 2D 
30*10-6 sec (microseconds!) 

standard computational practice in 2025 misses this by 
several orders of magnitude! 
What is the reason for this gap between theory and practice?  
Do we need a failure analysis? 
Related questions: 

Cost of complex discretizations? 
Has the deflation of computational cost lured us into mis-developments? 
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Conclusion and Outlook

Multigrid scales!

HHG (since 2000): 
• prototype implementation reaching 1013 DOF

HYTEG (since 2018): 
• sustainable, flexible software architecture 
• implements core concepts of HHG 
• advanced discretizations

Links: 
• terraneo.fau.de 
• https://i10git.cs.fau.de/hyteg/hyteg

However, the efficiency seems still suboptimal 
when compared with the plain old-fashioned 
algorithms/software from 1982

http://terraneo.fau.de
https://i10git.cs.fau.de/hyteg/hyteg

