
Efficient and Robust Hardware for Neural

Networks

Grace Li Zhang

Assistant Professor on Hardware for AI

TU Darmstadt, Germany

https://www.etit.tu-darmstadt.de/hwai/

grace.zhang@tu-darmstadt.de

+49 6151 16-20256

https://www.etit.tu-darmstadt.de/hwai/
mailto:grace.zhang@tu-darmstadt.de

Neural Networks

2

Synapse Network A Simple Neural Network

Massive multiplication

and addition operations
(MAC) in neural
networks

▪ GPT-3 in ChatGPT: 96 layers with 175 billion weights → trillions of

MAC operations

▪ Training GPT-3 consumed 1287 MWh energy → 552 tons CO2

equivalent emission → comparable to the electricity consumption of

120 years for an average U.S. household

Energy Reduction Techniques

3

Pruning

Logic-based DesignDigital Accelerators

MAC

MAC

MAC

MAC

MAC

MAC

MAC MAC MAC

P
a

rtia
l

S
u

m
s

MAC unit

A
c
tiv

a
tio

n
W

e
ig

h
t

Partial sum..

In
p

u
ts

Weights

Neuron Outputs

Class Exclusion

0
.1

7
0
.2

4
0

.0
3

0
.0

6

L
a

y
e

r 1

E
x
it p

o
in

t

L
a

y
e

r 2

E
x
it p

o
in

t

L
a
y
e
r 3

E
x
it p

o
in

t

L
a

y
e

r 4

cat

dog

car

0
.1

5
0
.4

0
0

.0
2

0
.0

8

N
o

n
-e

x
c
lu

d
. c

la
s
s

E
x
c
lu

d
e

d
 c

la
s
s

T
a

rg
e

t c
la

s
s

truck

: c
a

n
 m

a
k
e

 th
e
 fin

a
l d

e
c
is

io
n

 in
 th

is
 la

y
e

r

Crossbar Array

4

Early-Exit with Class Exclusion for Efficient Inference of

Neural Networks

Class-Aware Pruning for Efficient Neural Networks

Outlines

Power Reduction for Digital Accelerators of Neural

Networks

Logic-Based Design of Neural Networks

Robustness Enhancement of RRAM-based Neural Network

Acceleration

A New Pruning Perspective: Class-Based Criteria

5

• Different neurons

contribute to different

number of classes

• Neurons contribute to a

few number of classes

can be pruned

• Retraining to

compensate accuracy

loss

Filter Importance Evaluation

6

• Importance evaluation of

a filter with respect to

one class → adding the

importance for all

classes

• Importance of a filter for

one class: sensitivities of
the resulting activations

to cost function

…

Cat Deer Horse Airplane

activation output 𝑎1
2 set to zero

Filter Importance Evaluation

7

• First-order Taylor

expansion approximation:

• Score of one activation

output with one image:

10−50

10.04

Filter Importance Evaluation

8

• Score of one activation

output for one class:

• Importance score of one

filter for one class:
Maximum

1

0

1

…

1

10
1 + 0 +⋯+ 1 = 0.6

0.9

Filter Importance Evaluation

9

• Score of one activation

output for all classes:

Sum

…

Cat Deer Horse Airplane

Total importance

score for filter 1 is (0.9 + + 0.4 + 0.5 + 0.8) = 6.5 …

Regularization In Training

10

• Polarized scores facilitate pruning

• Cost function:

• Convolutional-orthogonality regularization: Penalize

similarity between filters

• L1 regularization: Penalty the number of weights, sparse

the weight matrix

[Convolutional-orthogonality]: J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu, “Orthogonal convolutional neural networks,” in IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2020

11

Pruning Workflow

• Iterative pruning:

• Evaluation

• Pruning

• Fine-tune

• Whether to loop

Importance Score Distribution

12

• Before pruning: lower importance scores

Filter importance scores distribution before pruning: VGG16-CIFAR10

Importance Score Distribution

13

• After pruning: shift right, higher average score

Filter importance scores distribution before and after pruning: VGG16-CIFAR10

14

Experimental Results

Table

NN-Dataset

Accuracy comparison Pruning performance

Original Pruned Pruning ratio FLOPs
reduction

VGG16-CIFAR10 93.90% 92.99% 95.6% 77.1%

VGG19-
CIFAR100

73.49% 72.56% 85.4% 75.2%

ResNet56-
CIFAR10

93.71% 92.89% 77.9% 62.3%

ResNet56-
CIFAR100

72.36% 71.49% 50.0% 43.8%

Mengnan Jiang, Jingcun Wang, Amro Eldebiky, Xunzhao Yin, Cheng Zhuo, Ing-Chao Lin and Grace Li

Zhang, “Class-Aware Pruning for Efficient Neural Networks”, Design Automation and Test in Europe,

2024, Nominated as Best Paper Award

15

Early-Exit with Class Exclusion for Efficient Inference of

Neural Networks

Class-Aware Pruning for Efficient Neural Networks

Outlines

Power Reduction for Digital Accelerators of Neural

Networks

Logic-Based Design of Neural Networks

Robustness Enhancement of RRAM-based Neural Network

Acceleration

Early-Exit with Class Exclusion

16

• Previous early-exit discard intermediate results if an

intermediate cannot decide the correct class

• Proposed: Learned features in early layers are used to

exclude as many irrelevant classes as possible

(a)

0.170.24 0.03 0.06

Layer1

Exit point

Layer2

Exit point

Layer3

Exit point

Layer4

c
a

t

d
o

g

c
a

r

0.150.55 0.02 0.08

Non-exclud. class

Excluded class

0.380.33 0.25 0.04

Layer1

Exit point

Layer2

Exit point

Layer3

Exit point

Layer4

c
a
t

d
o
g

c
a
r

tru
c
k

0.410.42 0.12 0.05

0.300.60 0.08 0.02

Target class

Non-tar. class

tru
c
k

(b)

: cannot make the final decision in this layer

: can make the final decision in this layer

Jingcun Wang, Bing Li and Grace Li Zhang, Early-Exit with Class Exclusion for Efficient Inference of Neural Networks, International

Conference on Artificial Intelligence Circuits and Systems (AICAS), 2024

Class-Exclusion Neural Network Construction

17

• Individual class-exclusion network to each class

• A fully-connected network + Sigmoid function for class
exclusion

Global average
pooling

0.170.24 0.03 0.06

F
e

a
t u

re
 m

a
p

s

o
f la

y
e

r 1

0.170.24 0.03 0.06

Layer1

Exit point

Layer2

Exit point

Non-exclud. class

Excluded class
Layern

c
a
t

d
o

g

c
a
r

tru
c
k

Sig

Class-Exclusion Strategy for Dynamic Inference

18

• Relative magnitude of probabilities generated by class-

exclusion networks used to exclude classes

• A search algorithm is used to determine a class-exclusion

coefficient, denoted as β

Target class

0.020.06 0.10 0.04

Layer1

Exit point

Layer2

Exit point

Layer3

Layer4

c
a
t

d
o

g

c
a
r

0.120.03 0.35 0.50

Non-exclud. class

Excluded class

tru
c
k

Exit point

0.030.02 0.55 0.80

class-exclud. param.

class-exclud. param.

class-exclud. param.

re
c
o

v
e
re

d
 to

n
o

n
-e

x
c
lu

d
. c

la
s
s

Experimental Results

19

NN Original Proposed
FLOPs(G)

Ori.

FLOPs(G)

Pro.
Red.

AlexNet-

CIFAR10 90.54% 89.34% 1.4386 1.0375 27.88%

VGGs-

CIFAR10
93.89% 91.93% 1.5460 1.0668 31%

VGGs-

CIFAR100
72.19% 71.11% 1.5463 1.1535 25.4%

ResNet50-

CIFAR100
76.46% 74.39% 2.6008 1.7411 33.06%

Experimental Results

20

The average number of

excluded classes in each exit
point of intermediate layers in
neural networks.

The number of input images

that can be classified in the
intermediate exit point of
neural networks.

21

Early-Exit with Class Exclusion for Efficient Inference of

Neural Networks

Class-Aware Pruning for Efficient Neural Networks

Outlines

Power Reduction for Digital Accelerators of Neural

Networks

Logic-Based Design of Neural Networks

Robustness Enhancement of RRAM-based Neural Network

Acceleration

Digital Hardware Acceleration of Neural Networks

22

• Weights and inputs pipelined through a systolic array

for a better performance

• MAC operations implemented in digital circuits ➝ need

to balance PPA

MAC

MAC

MAC

MAC

MAC

MAC

MAC MAC MAC

P
a

rtia
l

S
u

m
s

MAC unit

A
c
tiv

a
tio

n
W

e
ig

h
t

Partial sum..

In
p

u
ts

Weights

Neuron Outputs

N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,” Int. Symp. Comput.

Arch. (ISCA), 2017.

Power-driven Weight Selection

23

• Power consumption of a MAC unit determined by input

transitions

• Select weight values according to average power

consumption

Activation

Weight determined

by training

Partial sum
Input-driven, transitions

cause power consumption

MAC unit

R. Petri, L. Zhang, Y. Chen, U. Schlichtmann, B. Li, “PowerPruning: Selecting Weights and Activations for

Power-Efficient Neural Network Acceleration”, ACM/IEEE Des. Autom. Conf. (DAC), 2023

Delay-driven Weight Selection

24

• Select weight values and activations according to the delays

of circuit paths triggered in the MAC units

• Voltage scaling V↓ to reduce power consumption P∼V2

Activation

Weight determined

by training

Partial sum
Input-driven, transitions

cause power consumption

MAC unit

Structural critical paths
may not be activated.

R. Petri, L. Zhang, Y. Chen, U. Schlichtmann, B. Li, “PowerPruning: Selecting Weights and Activations

for Power-Efficient Neural Network Acceleration”, ACM/IEEE Des. Autom. Conf. (DAC), 2023

Power Reduction Results

25

R. Petri, L. Zhang, Y. Chen, U. Schlichtmann, B. Li, “PowerPruning: Selecting Weights and Activations

for Power-Efficient Neural Network Acceleration”, ACM/IEEE Des. Autom. Conf. (DAC), 2023

NN Original PowerPruning
Power

reduction

selected

weights

#selected

actiations

LeNet-5-

CIFAR-10 80.6% 78.5% 78.3% 35 210

ResNet-20-

CIFAR-10
91.9% 89.6% 56.6% 35 210

ResNet-50-

CIFAR-100
79.9% 78.5% 77.6% 41 223

EfficientNet

-B0-Lite-

ImageNet

73.8% 72.9% 20.8% 50 236

• Powerpruning can reduce power significantly with a slight

accuracy loss.

26

Early-Exit with Class Exclusion for Efficient Inference of

Neural Networks

Class-Aware Pruning for Efficient Neural Networks

Outlines

Power Reduction for Digital Accelerators of Neural

Networks

Logic-Based Design of Neural Networks

Robustness Enhancement of RRAM-based Neural Network

Acceleration

Logic Implementation: Multiplier

27

Logic circuit of a 2-bit signed multiplier. (a) The original circuit; (b) The logic
circuit simplified with a fixed quantization weight (decimal: -2, binary: 10).

• Use the fixed weights after training to simplify the logic of the
multipliers at neurons.

• Example of a 2-bit signed multiplier after embedding a weight:
• Delay: 57.72% Power consumption: 66.12% Number of

transistors: 60%

Logic Implementation: Adder and MAC

28

(a) MAC operations at a neuron; (b) 2-bit signed

multipl iers simpli fied with the fixed quantized

weights; (c) 4-bit signed adder circuit before logic

simplification, FA is a 1-bit full adder; (d) Circuit of

the simplified MAC.

MAC after weight
embedding：
• Delay: 70.07%
• Power consumption:

60.94%
• Transistors: 65%

Hardware-Aware Training

29

Area of multipliers simplified with 8-bit quantized weights.

Weight Selection

① Rank the weight values according to the area of the simplified multipliers

② Select the top n weights that lead to the smallest multiplier area

③ If the validation accuracy is much lower, more weight values are selected

Power and Area Results

30

• Power Consumption:

• 83.60% for the OFC task

• 76.46% for the JSC task

• 66.26% for the NID task

Concatenate MAC units without weight embedding

Embedding weights into multipliers

Simplification between different logics

Hardware-aware training

Optical Fiber Communication (OFC); Jet Substructure Classification (JSC); Network Intrusion Detection (NID)

(a) Power consumption; (b) Area overhead; (c) Accuracy comparison.
Neurons in layers: OFC-B 21, 50, 25; JSC-B 64, 32, 32, 32; NID-B 593, 20, 20

K. Xu, L. Zhang, U. Schlichtmann, B. Li, “Logic Design of Neural Networks for High-Throughput and

Low-Power Applications”, IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-

DAC), 2024

(u
w

)

31

Early-Exit with Class Exclusion for Efficient Inference of

Neural Networks

Class-Aware Pruning for Efficient Neural Networks

Outlines

Power Reduction for Digital Accelerators of Neural

Networks

Logic-Based Design of Neural Networks

Robustness Enhancement of RRAM-based Neural Network

Acceleration

32

RRAM-based Neural Network Acceleration

▪ Weights and inputs are represented with RRAM conductances

and voltages, respectively.

▪ Vector-matrix multiplication is implemented based on Ohm’s law

and Kirchhoff’s law.

𝑖 = 𝑉𝑥𝑔, assume 𝑉𝑦 = 0

Accumulated

current as
result of
multiplication

33

• Process variations

→ weight deviations

→ erroneous feature

maps → error

amplification across

layer → accuracy

loss

• Log-normal model of

weight distribution

𝑊𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑊𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∗ 𝑒
𝜃

𝜃~𝑁 0, 𝜎2

Accuracy Degradation due to Process Variations

Inference accuracy degradation of

neural networks under variations.

34

Structural Error Compensation Countering Variations

Error compensation for a convolutional layer

• Generator: generate error compensation data

• Compensator: correct the erroneous feature map with the

compensation data

Original convolution layer

Amro Eldebiky, Grace Li Zhang, Georg Boecherer, Bing Li, Ulf Schlichtmann, “CorrectNet: Robustness Enhancement of
Analog In-Memory Computing for Neural Networks by Error Suppression and Compensation”, Design, Automation and
Test in Europe (DATE), April 2023, Nominated as Best Paper Award

Error Suppression

35

• Uncertainty propagation suppression in a layer with Lipschitz

Constant Regularization, θ~N(0,σ)

𝑠𝑢𝑝
𝒘 ∘ 𝒆𝜽 ∙ 𝒙𝟏 − 𝒙𝟐 𝑝

𝒙𝟏 − 𝒙𝟐 𝑝
= 𝒘 ∘ 𝒆𝜽

𝑝
≤ 𝑘

𝒘 ∘ 𝒆𝜽 ∙ 𝒙𝟏 + 𝒃 − 𝒘 ∘ 𝒆𝜽 ∙ 𝒙𝟐 + 𝒃
𝑝
≤ 𝑘 𝒙𝟏 − 𝒙𝟐 𝑝 , k<1

𝒘 𝑝 ≤
𝑘

𝜇
𝑒𝜃
+3𝜎

𝑒𝜃
= 𝜆Bound 𝑒𝜃 by 𝜇𝑒𝜃 + 3𝜎𝑒𝜃 :

Error Suppression

36

• Using the 2-norm (spectral norm) → the maximum singular

value of the matrix

• Singular values of W are the square roots of the eigenvalues of

WTW
𝐿 = 𝐿𝐶𝐸 + 𝛽 ∗

𝑤𝑙∈𝑾

𝒘𝒍
𝑻𝒘𝒍 − 𝜆2𝑰

2

λ =
𝑘

𝜇𝑒𝜃 + 3𝜎𝑒𝜃
=

𝑘

𝑒
𝜎2

2 + 3 𝑒𝜎
2
− 1 𝑒(𝜎

2)

37

Experimental Results

Network/

Dataset

Original model

Accuracy

CorrectNet

Accuracy
CorrectNet Overhead

σ= 0 σ= 0.5 σ= 0.5 Weight #Layers

VGG16/

Cifar100
70.52% 1.69% 67.01% 1.03% 4

VGG16/

Cifar10
93.2% 16.01% 91.29% 0.58% 3

LeNet/

Cifar10
80.89% 25.29% 74.9% 3.47% 1

LeNet/

MNIST
98.79% 84.58% 97.74% 5% 2

Thank you for your attention!

	Slide 1: Efficient and Robust Hardware for Neural Networks
	Slide 2
	Slide 3
	Slide 4
	Slide 5: A New Pruning Perspective: Class-Based Criteria
	Slide 6: Filter Importance Evaluation
	Slide 7: Filter Importance Evaluation
	Slide 8: Filter Importance Evaluation
	Slide 9: Filter Importance Evaluation
	Slide 10: Regularization In Training
	Slide 11: Pruning Workflow
	Slide 12: Importance Score Distribution
	Slide 13: Importance Score Distribution
	Slide 14
	Slide 15
	Slide 16: Early-Exit with Class Exclusion
	Slide 17: Class-Exclusion Neural Network Construction
	Slide 18: Class-Exclusion Strategy for Dynamic Inference
	Slide 19: Experimental Results
	Slide 20: Experimental Results
	Slide 21
	Slide 22: Digital Hardware Acceleration of Neural Networks
	Slide 23: Power-driven Weight Selection
	Slide 24: Delay-driven Weight Selection
	Slide 25: Power Reduction Results
	Slide 26
	Slide 27: Logic Implementation: Multiplier
	Slide 28: Logic Implementation: Adder and MAC
	Slide 29: Hardware-Aware Training
	Slide 30: Power and Area Results
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Error Suppression
	Slide 36: Error Suppression
	Slide 37
	Slide 38: Thank you for your attention!

