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Neural Networks

2

Synapse Network A Simple Neural Network 

Massive multiplication

and addition operations 
(MAC) in neural 
networks

▪ GPT-3 in ChatGPT: 96 layers with 175 billion weights → trillions of 

MAC operations 

▪ Training GPT-3 consumed 1287 MWh energy → 552 tons CO2

equivalent emission → comparable to the electricity consumption of 

120 years for an average U.S. household 



Energy Reduction Techniques
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Pruning

Logic-based DesignDigital Accelerators
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Early-Exit with Class Exclusion for Efficient Inference of 

Neural Networks

Class-Aware Pruning for Efficient Neural Networks

Outlines

Power Reduction for Digital Accelerators of Neural 

Networks

Logic-Based Design of Neural Networks

Robustness Enhancement of RRAM-based Neural Network 

Acceleration



A New Pruning Perspective: Class-Based Criteria
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• Different neurons 

contribute to different 

number of classes

• Neurons contribute to a 

few number of classes 

can be pruned

• Retraining to 

compensate accuracy 

loss



Filter Importance Evaluation
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• Importance evaluation of 

a filter with respect to 

one class → adding the 

importance for all 

classes 

• Importance of a filter for 

one class: sensitivities of 
the resulting activations 

to cost function

…

Cat                     Deer             Horse        Airplane 

activation output 𝑎1
2 set to zero 



Filter Importance Evaluation
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• First-order Taylor 

expansion approximation:

• Score of one activation 

output with one image:

10−50

10.04



Filter Importance Evaluation
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• Score of one activation 

output for one class: 

• Importance score of one 

filter for one class: 
Maximum

1

0

1

…

1

10
1 + 0 +⋯+ 1 = 0.6

0.9



Filter Importance Evaluation
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• Score of one activation 

output for all classes: 

Sum 

…

Cat                        Deer                Horse        Airplane    

Total importance 

score for filter 1 is     ( 0.9     +       +      0.4      +       0.5    +     0.8)     =  6.5  …



Regularization In Training
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• Polarized scores facilitate pruning

• Cost function:

• Convolutional-orthogonality regularization: Penalize 

similarity between filters

• L1 regularization: Penalty the number of weights, sparse 

the weight matrix

[Convolutional-orthogonality]: J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu, “Orthogonal convolutional neural networks,” in IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), 2020
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Pruning Workflow

• Iterative pruning:

• Evaluation

• Pruning

• Fine-tune

• Whether to loop



Importance Score Distribution
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• Before pruning: lower importance scores 

Filter importance scores distribution before pruning: VGG16-CIFAR10



Importance Score Distribution
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• After pruning: shift right, higher average score

Filter importance scores distribution before and after pruning: VGG16-CIFAR10
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Experimental Results

Table

NN-Dataset

Accuracy comparison Pruning performance

Original Pruned Pruning ratio FLOPs 
reduction 

VGG16-CIFAR10 93.90% 92.99% 95.6% 77.1%

VGG19-
CIFAR100

73.49% 72.56% 85.4% 75.2%

ResNet56-
CIFAR10

93.71% 92.89% 77.9% 62.3%

ResNet56-
CIFAR100

72.36% 71.49% 50.0% 43.8% 

Mengnan Jiang, Jingcun Wang, Amro Eldebiky, Xunzhao Yin, Cheng Zhuo, Ing-Chao Lin and Grace Li 

Zhang, “Class-Aware Pruning for Efficient Neural Networks”, Design Automation and Test in  Europe, 

2024, Nominated as Best Paper Award
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Early-Exit with Class Exclusion
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• Previous early-exit discard intermediate results if an 

intermediate cannot decide the correct class 

• Proposed: Learned features in early layers are used to 

exclude as many irrelevant classes as possible
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Jingcun Wang, Bing Li and Grace Li Zhang, Early-Exit with Class Exclusion for Efficient Inference of Neural Networks, International 

Conference on Artificial Intelligence Circuits and Systems (AICAS), 2024



Class-Exclusion Neural Network Construction
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• Individual class-exclusion network to each class 

• A fully-connected network + Sigmoid function for class 
exclusion

Global average 
pooling
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Class-Exclusion Strategy for Dynamic Inference 

18

• Relative magnitude of probabilities generated by class-

exclusion networks used to exclude classes

• A search algorithm is used to determine a class-exclusion 

coefficient, denoted as β 
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Experimental Results
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NN Original Proposed
FLOPs(G)

Ori.

FLOPs(G)

Pro.
Red.

AlexNet-

CIFAR10  90.54% 89.34% 1.4386 1.0375 27.88%

VGGs-

CIFAR10 
93.89% 91.93% 1.5460 1.0668 31%

VGGs-

CIFAR100  
72.19% 71.11% 1.5463 1.1535 25.4%

ResNet50-

CIFAR100 
76.46% 74.39% 2.6008 1.7411 33.06%



Experimental Results
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The average number of

excluded classes in each exit
point of intermediate layers in
neural networks.

The number of input images

that can be classified in the
intermediate exit point of
neural networks.
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Digital Hardware Acceleration of Neural Networks
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• Weights and inputs pipelined through a systolic array 

for a better performance

• MAC operations implemented in digital circuits ➝ need 

to balance PPA

MAC
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N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,” Int. Symp. Comput. 

Arch. (ISCA), 2017. 



Power-driven Weight Selection
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• Power consumption of a MAC unit determined by input

transitions

• Select weight values according to average power 

consumption

Activation

Weight determined

by training

Partial sum
Input-driven, transitions 

cause power consumption

MAC unit

R. Petri, L. Zhang, Y. Chen, U. Schlichtmann, B. Li, “PowerPruning: Selecting Weights and Activations for 

Power-Efficient Neural Network Acceleration”, ACM/IEEE Des. Autom. Conf. (DAC), 2023



Delay-driven Weight Selection
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• Select weight values and activations according to the delays 

of circuit paths triggered in the MAC units

• Voltage scaling V↓ to reduce power consumption P∼V2

Activation

Weight determined

by training

Partial sum
Input-driven, transitions 

cause power consumption

MAC unit

Structural critical paths 
may not be activated.

R. Petri, L. Zhang, Y. Chen, U. Schlichtmann, B. Li, “PowerPruning: Selecting Weights and Activations 

for Power-Efficient Neural Network Acceleration”, ACM/IEEE Des. Autom. Conf. (DAC), 2023



Power Reduction Results
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R. Petri, L. Zhang, Y. Chen, U. Schlichtmann, B. Li, “PowerPruning: Selecting Weights and Activations 

for Power-Efficient Neural Network Acceleration”, ACM/IEEE Des. Autom. Conf. (DAC), 2023

NN Original PowerPruning
Power 

reduction

# selected 

weights

#selected 

actiations

LeNet-5-

CIFAR-10 80.6% 78.5% 78.3% 35 210

ResNet-20-

CIFAR-10 
91.9% 89.6% 56.6% 35 210

ResNet-50-

CIFAR-100 
79.9% 78.5% 77.6% 41 223

EfficientNet

-B0-Lite-

ImageNet 

73.8% 72.9% 20.8% 50 236

• Powerpruning can reduce power significantly with a slight 

accuracy loss.
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Logic Implementation: Multiplier
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Logic circuit of a 2-bit signed multiplier. (a) The original circuit; (b) The logic 
circuit simplified with a fixed quantization weight (decimal: -2, binary: 10).

• Use the fixed weights after training to simplify the logic of the 
multipliers at neurons.

• Example of a 2-bit signed multiplier after embedding a weight:
• Delay:    57.72% Power consumption:    66.12% Number of 

transistors:    60%



Logic Implementation: Adder and MAC
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(a) MAC operations at a neuron; (b) 2-bit signed

multipl iers simpli fied with the fixed quantized

weights; (c) 4-bit signed adder circuit before logic

simplification, FA is a 1-bit full adder; (d) Circuit of

the simplified MAC.

MAC after weight 
embedding：
• Delay:    70.07%     
• Power consumption:    

60.94% 
• Transistors:    65%



Hardware-Aware Training
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Area of multipliers simplified with 8-bit quantized weights.

Weight Selection

① Rank the weight values according to the area of the simplified multipliers

② Select the top n weights that lead to the smallest multiplier area

③ If the validation accuracy is much lower, more weight values are selected



Power and Area Results
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• Power Consumption: 

• 83.60%    for the OFC task

• 76.46% for the JSC task

• 66.26% for the NID task

Concatenate MAC units without weight embedding

Embedding weights into multipliers 

Simplification between different logics

Hardware-aware training

Optical Fiber Communication (OFC); Jet Substructure Classification (JSC); Network Intrusion Detection (NID)

(a) Power consumption; (b) Area overhead; (c) Accuracy comparison.             
Neurons in layers: OFC-B 21, 50, 25; JSC-B 64, 32, 32, 32; NID-B 593, 20, 20 

K. Xu, L. Zhang, U. Schlichtmann, B. Li, “Logic Design of Neural Networks for High-Throughput and 

Low-Power Applications”, IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-

DAC), 2024

(u
w

)
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RRAM-based Neural Network Acceleration

▪ Weights and inputs are represented with RRAM conductances

and voltages, respectively.

▪ Vector-matrix multiplication is implemented based on Ohm’s law 

and Kirchhoff’s law.

𝑖 = 𝑉𝑥𝑔, assume 𝑉𝑦 = 0

Accumulated 

current as 
result of 
multiplication
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• Process variations 

→ weight deviations 

→ erroneous feature 

maps → error 

amplification across 

layer → accuracy 

loss

• Log-normal model of 

weight distribution

𝑊𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑊𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∗ 𝑒
𝜃

𝜃~𝑁 0, 𝜎2

Accuracy Degradation due to Process Variations

Inference accuracy degradation of 

neural networks under variations.
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Structural Error Compensation Countering Variations

Error compensation for a convolutional layer

• Generator:  generate error compensation data

• Compensator: correct the erroneous feature map with the 

compensation data

Original convolution layer

Amro Eldebiky, Grace Li Zhang, Georg Boecherer, Bing Li, Ulf Schlichtmann, “CorrectNet: Robustness Enhancement of 
Analog In-Memory Computing for Neural Networks by Error Suppression and Compensation”, Design, Automation and 
Test in Europe (DATE), April 2023, Nominated as Best Paper Award



Error Suppression
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• Uncertainty propagation suppression in a layer with Lipschitz 

Constant Regularization, θ~N(0,σ)

𝑠𝑢𝑝
𝒘 ∘ 𝒆𝜽 ∙ 𝒙𝟏 − 𝒙𝟐 𝑝

𝒙𝟏 − 𝒙𝟐 𝑝
= 𝒘 ∘ 𝒆𝜽

𝑝
≤ 𝑘

𝒘 ∘ 𝒆𝜽 ∙ 𝒙𝟏 + 𝒃 − 𝒘 ∘ 𝒆𝜽 ∙ 𝒙𝟐 + 𝒃
𝑝
≤ 𝑘 𝒙𝟏 − 𝒙𝟐 𝑝 , k<1

𝒘 𝑝 ≤
𝑘

𝜇
𝑒𝜃
+3𝜎

𝑒𝜃
= 𝜆Bound 𝑒𝜃 by 𝜇𝑒𝜃 + 3𝜎𝑒𝜃 :



Error Suppression
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• Using the 2-norm (spectral norm) → the maximum singular 

value of the matrix

• Singular values of W are the square roots of the eigenvalues of 

WTW 
𝐿 = 𝐿𝐶𝐸 + 𝛽 ∗ 

𝑤𝑙∈𝑾

𝒘𝒍
𝑻𝒘𝒍 − 𝜆2𝑰

2

λ =
𝑘

𝜇𝑒𝜃 + 3𝜎𝑒𝜃
=

𝑘

𝑒
𝜎2

2 + 3 𝑒𝜎
2
− 1 𝑒(𝜎

2)
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Experimental Results

Network/

Dataset

Original model

Accuracy

CorrectNet 

Accuracy
CorrectNet Overhead

σ= 0 σ= 0.5 σ= 0.5 Weight #Layers

VGG16/

Cifar100
70.52% 1.69% 67.01% 1.03% 4

VGG16/

Cifar10
93.2% 16.01% 91.29% 0.58% 3

LeNet/

Cifar10
80.89% 25.29% 74.9% 3.47% 1

LeNet/

MNIST
98.79% 84.58% 97.74% 5% 2



Thank you for your attention!
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