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Abstract I

Abstract

In this thesis the power consumption properties of Floating-Point Operation
(Flop) and data transfers to main memory are evaluated on modern Graphic
Processing Units (GPUs). The applicability of the existing archline model of
energy is verified and tested. For this purpose a set of micro benchmarks is
proposed both for evaluation as well as verification of the model. To measure
the device’s energy consumption a driver based approach is chosen. The re-
sulting data is used to fit the machine parameters by using linear regression.
Overall, significant reductions in energy usage per operation and per memory
transfer can be shown compared to the original work. On the newest GPUs
the high transistor counts and the increased level of integration allow for high
Flop energy efficiencies. Overall, the GPUs become compute bound in en-
ergy before becoming compute bound in time.
It is shown that the NVIDIA GPUs are not limited by their Thermal Design
Power (TDP) while the MI210 is severely limited in FP64 performance by its
TDP.
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1 Introduction

With the rise in climate crisis awareness comes the need to conserve and efficiently
make use of electric energy. Data centers’ power consumption is estimated to make up
around 3% of the global power consumption [22]. With new developments in Artificial
Intelligence and its inherent need for computing power, this will probably increase
even further. Since these applications benefit greatly from GPU acceleration, GPUs
have become widely adopted. This is beneficial as GPUs provide larger amounts of
computing performance at lower power consumption than Central Processing Units
(CPUs). However, with modern GPUs not only the performance has increased but also
the total power consumption per card. Some bleeding edge cards are allowed to draw
up to 700W and higher [8][15]. For data center operators and programmers this leads
to an increasing demand in efficient programs. This includes hardware efficiency, i.e.,
the use of the given hardware to its designed limits, as well as establishing and defining
such limits for energy efficiency.

Carbon taxes and efficiency regulations add to the necessity for data centers to become
more energy efficient. Cooling infrastructure is usually the largest single contribution to
power consumption. Therefore, data centers that choose energy efficient architectures
may be able to decrease the size of their cooling infrastructure.

The goal of this paper is to assess modern GPUs and to provide insight into their
power consumption properties, i.e., energy per floating point arithmetic operation and
per memory operation. While new generations of GPUs have higher peak performance
numbers than their older counterparts, they usually have increased powerlimits as
well. Insight into the power consumption properties would allow an easier comparison
between hardware generations.
Furthermore, the applicability of the “Roofline Model of Energy” by [5] on modern GPUs
will be evaluated. For this purpose the performance counters and the power measure-
ment interface present on todays accelerators are used. Most often hardware vendors
such as NVIDIA and AMD do not publish the energy efficiency of their GPUs.

The overarching purpose of this paper is to provide programmers and data center
operators with the necessary tools to evaluate and compare modern GPUs in order to
model and optimize the power consumption of a given code.
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2 Background

The following chapter provides an overview of the relevant background. This thesis
is closely related to the “Roofline Model of Energy” proposed by [5], as it focuses on
evaluating the proposed model on modern GPUs.

Roofline Model
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Figure 1 Example Roofline Plot

The roofline model [24] is a well established model to evaluate the time efficiency of
any given program. The model uses the intensity I, peak bandwidth bpeak and peak
performance ppeak to determine whether a program is either compute or memory bound
in time.

Performance = min(ppeak, I · bpeak) (1)

It shows the intensity on the the x-axis and the achievable peak performance on the
y-axis. It provides an easy to understand visual guide to identify a potential bottleneck
and improve the codes’ performance. Over the years, the roofline model has been
extended to better reflect the constraints imposed by the microarchitecture [4]. Multiple
papers on extensions of the roofline model towards energy [5] and on explorations
towards energy efficiency [18] have been published.

Archline Model

The archline model [5] has been proposed to provide a model for energy efficiency.
Similar to the roofline model [24] the intensity I is used to determine whether a code is
compute bound or memory bound in energy. On the y-axis the achieved arithmetic per-
formance per Joule is plotted. Contrary to the roofline model, the archline model does
not have an inflection point as the operations’ energy costs cannot be overlapped [5,
p. 664]. The upper limit of performance per watt is given by the inverse of the energy
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Figure 2 Example Archline Plot

per floating point operation ϵflop. The archline is missing the sharp inflection point of the
roofline, as the energy usages cannot be hidden by overlapping operations. Evaluating
the applicability of [5] on modern hardware is part of this thesis.

Existing Measurement Methods

Currently multiple different physical power measurement suites exist, notably Power-
Mon [2] and PowerPack [12]. These suites offer accurate and precise power measure-
ments by measuring the exact voltage and the current supplied to the hardware. With
increasing levels of integration and new socket designs these tools require expen-
sive and elaborate infrastructure for use. Most modern hardware offer access to the
on-board power measurement infrastructure. NVIDIA does so by means of NVIDIA
Management Library (NVML) [9] and AMD by means of ROCm System Management
(RSMI) [16]. Other research suggests that these measurements have gotten more ac-
curate and can be used to measure the actual power consumption accurately [17][3].

This thesis focuses on using the hardware’s power and performance measuring capa-
bilities. The proposed measuring program is designed to be portable between different
hardware vendors and easily adaptable to new benchmarks.
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3 Methodology

This chapter covers the basic theory of the model behind the fitting of the power con-
sumption properties and the proposed measurement software. The algorithm behind
the linear regression fit is explained in section 3.1. The underlying formulas and graphs
proposed by [5] are introduced in section 3.2. In section 3.3 a set of benchmarks is
introduced to evaluate the hardware. The last section 3.4 outlines the hardware that
will be evaluated.

3.1 Model

Both NVIDIA and AMD report the power draw of their GPUs as total board power value.
This singular value is not attributable to any single hardware mechanism like instruc-
tion execution or data movement. Ever since the proposition of the roofline model for
time [24] programmers use the time balance Bτ to evaluate the performance of a code
segment. This metric focusses on the amount of Flops performed per Memory Opera-
tion (Mop). To derive a model of energy, a number of variables have to be introduced.
Similar to [5], the total expended energy E is split into two partitions; (a) the active
energy Eactive that is expended for completing some work and (b) the baseline energy
Ebase expended for powering up the device:

E = Eactive + Ebase (2)

This, of course, is a very high abstraction level and consequently needs to be refined
further to evaluate the actual power consumption properties. In any case, the model
does not distinguish between the actual energy expended for a single operation and
the overheads that are incurred by the operation. This means that all constant over-
heads, such as the impact of memory and GPU clock frequencies, will be attributed to
the baseline energy Ebase. Therefore, Ebase defines the energy needed to run the GPU
in its highest performance state, i.e., the GPU clock frequency is at its “boost” clock.
Power reduction measures such as Dynamic Voltage Frequency Scaling (DVFS) are
not taken into account by this model. The stated parameters can be fixed before the
beginning of computation and are therefore assumed to be constant during the bench-
mark execution. The model takes only the energy consumption of the GPU into ac-
count, disregarding the energy consumption of the rest of the system. Eactive captures
the energy not only of the completed work but also of all overheads that are incurred
by completing this work. This includes among others the cost of accessing registers,
look-up tables and levels of cache access. This allows the expansion of Eactive to the
sum of the total energy expended on arithmetic operations Eflop and transferred bytes
Emem. These can be seen as the sum of arithmetic operations W and transferred bytes
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Q multiplied by the respective energy required per arithmetic operation ϵflop and per
transferred byte ϵmem:

Eactive = Eflop + Emem = W · ϵflop +Q · ϵmem (3)

This separation of parameters is necessary for the linear regression model otherwise
no useful insight into the power consumption properties can be gained.
First, ϵflop denotes at least the energy needed to complete a single floating point instruc-
tion. This is only an estimate of the true cost of an arithmetic instruction as the model
does not distinguish between instructions and the overhead that is incurred for each
instruction. In contrast to [5], the presented model does not include a parameter for
additional energy cost due to double precision instructions. This additional parameter
allows to fit both Single Precision Floating Point (FP32) and Double Precision Float-
ing Point (FP64) instructions as ϵflop at the same time. However, each data point is
assumed to be either FP32 or FP64, i.e., the data set is comprised of either FP32 or
FP64 instructions. Therefore, this additional parameter is discarded for the proposed
model.
Second, ϵmem symbolizes the energy needed to transfer one byte of data from Dynamic
Random Access Memory (DRAM) to the registers. A single word is either 4 Bytes
for FP32 or 8 Bytes for FP64. This is supplemented by ϵmop which includes the cost
to transfer the respective amount of Bytes between the thread and the GPU’s main
memory. Similar to ϵflop, overheads incurred for the completion of these data transfers
are included.
As stated, the baseline energy Ebase is assumed to be fixed during the kernel bench-
mark. Therefore, it can be expressed as a function of the total execution time T and
the baseline power π0:

Ebase = T · π0 (4)

Using Eq. 3 and Eq. 4 the linear regression model can be instantiated as:

E = W · ϵflop +Q · ϵmem + T · π0 (5)

The linear regression will be used to estimate the parameters ϵflop, ϵmem and π0 for each
GPU. The values for E and T are the measured energy consumed during the execution
of the benchmark and the measured total execution time of the total amount of work.
The values for W and Q are the instructions and transferred bytes during the execution.
Therefore, the model shoudl be able to predict the upper bound of power consumption
of a given GPU kernel.
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3.1.1 Linear Regression

To evaluate the measured data the linear regression routine from scikit_learn’s linear
model library [21] is used. It uses the ordinary least squares algorithm to fit the coeffi-
cients of the model. The routine expects a vector of dependant variables and a matrix
of independant variables. Further, it either centers the data set by fitting an intercept
or expects the data set to be centered. In order to score the accuracy of the model,
the Coefficient of Determination (R2) is used. This coefficient gives insight into how
well the model’s coefficients explain the dependent variable. It ranges from 0 to 1.0 and
indicates the percentage of data that is explained by the model. Therefore, the closer
this value is to 1.0, the more accurate the parameters can explain variances in E.

3.1.2 Important Considerations

For the proposed model the GPU is assumed to maintain its clock frequencies during
the full computation, i.e., the hardware is not throttled. Since hardware vendors have
implemented advanced features like DVFS, it is necessary to sanitize the dataset
before estimating the parameters. The peak operating frequencies are chosen and
only data points taken at these clock frequencies are admitted to the model. Other-
wise the parameters can not be accurately approximated as they are dependant on
the GPU’s clock frequency. Furthermore, the model does not take power limits into
account. This means that the parameters might not reflect the real world performance
of a GPU as soon as it hits the powerlimit. Additionally, the model assumes that data
transfers and floating point operations are performed individually. However, in practice
a number of floating point operations are performed in combination with a number of
data transfers. Since linear regression expects the independant variables to be fully
independant, a normalization has to take place. For this purpose the codependant
variable is used to normalize Eq. 5. In the case of Flops depending on Mops, the
model is normalized to the amount of Flops [5, p. 666]:

E

W
= ϵflop +

Q

W
· ϵmem +

T

W
· π0 (6)

The left hand side of Eq. 6, E/W is taken as a direct estimation of the total energy
spent during the computation of a single floating point operation. On the right hand
side, the data set is centered to the energy per Flop ϵflop. Q/W is the inverse of I and
denotes the overhead induced from ϵmem. Lastly, T/W is the actual time needed to
complete a single Flop, i.e., the inverse of the achieved performance, and shows the
overhead of π0. Similarly, the normalization can be made for Q:

E

Q
=

W

Q
· ϵflop + ϵmem +

T

Q
· π0 (7)
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In this case the overheads would be calculated based on the achieved bandwidth and
intensity of the code. The data set is then centered to the energy per transferred Byte
ϵmem.

3.2 Evaluation

[5] introduces the archline model of energy as an analogue to the roofline model of
performance [24]. Eq. 9 shows the relationship between the intensity I and the perfor-
mance in energy. The effective energy per Flop is defined as ϵ̂flop = ϵflop+τflop ·π0. Sim-
ilarly, the effective energy balance point B̂ϵ(I) is derived from a Flop’s energy efficiency
ηflop = ϵflop/ϵ̂flop as well as both the machine’s energy balance point Bϵ = ϵmem/ϵflop and
time balance point Bτ = I.

B̂ϵ(I) ≡ ηflop ·Bϵ + (1− ηflop) ·max(0, Bτ − I) (8)

E = W · ϵ̂flop ·

(
1 +

B̂ϵ(I)

I

)
(9)

Fig. 3 shows the roofline and the archline for the evaluated NVIDIA GTX 580. The
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Figure 3 Example Diagrams for the different plots from [5]

roofline model and its associated time balance point Bτ are shown in red. The arch-
line model, the effective energy balance point B̂ϵ(I) and the theoretical energy balance
point Bϵ are shown in blue. In all cases, the left dotted line and value indicates B̂ϵ(I)

and the right dotted line indicates Bϵ. The balance gap between Bτ and Bϵ is quite large
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and easily visible. On the other hand B̂ϵ(I) is smaller, therefore the GPU becomes en-
ergy bound in computation while being memory bound in time. This is stated as one
reason for the effectivity for race-to-halt strategies to conserve energy [5, p. 665][1].
[5] concludes that for lower π0 other strategies could therefore be better suited to con-
serve energy. Looking at the powerline in Fig. 3 a theoretical sharp spike in power
consumption at Bτ can be seen. Eq. 10 provides the idea behind the powerline.

P =
πflop

ηflop
·

[
min(I, Bτ )

Bτ

+
B̂ϵ(I)

max(I, Bτ )

]
(10)

This spike is due to an overlap of computation and data transfer in time. Since the
energy consumption can not be hidden [5, p. 664], the maximum power consumption
has to be the combination of the power spent on Flops and Mops. The findings of [5]
include that the GTX 580 can not track the roofline closely around Bτ which could be
due to the fact that the powerline predicts a much higher power consumption at this
point than the GTX 580’s power limit.

3.3 Benchmarks

The benchmark suite of this paper mainly consists of four micro benchmarks [11]. In the
subsections below are pseudo code overviews and explanations for each. Together the
benchmarks are designed to allow sanity checking of the model. To limit interference
between measurement series, a random workload is submitted between benchmark
runs. All benchmarks are validated to perform exactly as they are designed by inspec-
tion of the intermediate assembly code. The established benchmarks are designed to
control W and Q. Tensor cores are not modeled and not part of this evalualtion. Simi-
lar, the benchmarks do not use the GPU’s cache. The energies may therefore differ for
codes relying heavily on cache and tensor cores. In the following subsections the four
benchmarks are introduced. To provide a full picture of the GPU’s performance the
thread count is varied. This allows gathering data for occupancy ranging from around
3% up to 100%.

3.3.1 Baseline Energy

The baseline energy benchmark kernel allows to establish the baseline energy Ebase

required by the GPU. It serves the purpose to provide a general idea of the energy
required to maintain the GPU’s operating state. In essence, this benchmark is de-
signed to capture all overheads incurred by the other benchmarks. This includes the
energy cost incurred by branching operations, index computation and thread specific
overheads such as warp and block scheduling. By using variable s defined outside of
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Algorithm 1 Baseline Kernel
Require: nonnegative integer N , secret s

function KERNEL(A, B)
threadIdx← Calculate Index
if s then

shared memory[threadIdx]← threadIdx

the compilation unit and a shared memory space, the compiler does not remove this
kernel, as it can not know whether this branch is taken or not.
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3.3.2 Memory Operation’s Energy

Algorithm 2 Copy Kernel
Require: nonnegative integer N

function KERNEL(A, B)
threadIdx← Calculate Index
A[threadIdx]← B[threadIdx]

The memory benchmark is designed to achieve the highest possible bandwidth. It is
an extension of the baseline kernel to include memory operations. Specifically, each
thread loads one word from the main memory and immediately stores it back.

per thread: Q = 2 ∗#Bytes (11)

This means Q is directly dependant on the number of launched threads and therefore
easily tunable during the compilation, i.e., scanning the occupancy implicitly varies Q.

3.3.3 Arithmetic Operation’s Energy

Algorithm 3 Flop Kernel
Require: nonnegative integer N

function KERNEL(A, B)
threadIdx← Calculate Index
for n ≤ N do

x← x+ x · t

The arithmetic operation’s benchmark extends the baseline kernel to perform arith-
metic instructions. W is tunable by the parameter N during compilation which sets the
number of concurrent instructions issued by a single thread.

per thread: W = 2 ∗N (12)

Instead of loading and storing any data, each thread is supplied with a fixed input value
and the result is discarded. Exactly as for the baseline kernel an external variable is
used to prevent the writing of the result to memory without the compiler removing the
kernel.
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3.3.4 Roofline

Algorithm 4 Roofline Kernel
Require: nonnegative integer N

function KERNEL(A, B)
threadIdx← Calculate Index
t← B[threadIdx]
for n ≤ N do

x← x+ x · t
A[threadIdx]← x

The roofline benchmark is designed to have a tunable intensity I, such that it can
achieve both peak bandwidth in time for I < Bτ as well as peak performance for I > Bτ .
W is tunable by a parameter N during the compilation. This allows the compiler to
completely unroll the kernel. Similarly, Q can be set during the compilation. W and
Q are the same per thread as in arithmetic and copy kernels. In essence, it limits the
amount of memory accesses by reducing the total count of launched threads. As each
thread has a fixed number of memory accesses, the amount of memory operations is
reduced.

3.4 Evaluated Hardware

A100 SXM4 40GB A100 SXM4 80GB Grace Hopper GH200

ppeak,64 9.7TFlop/s 9.7TFlop/s 34TFlop/s

ppeak,32 19.5TFlop/s 19.5TFlop/s 67TFlop/s

bpeak 1.6TB/s 2.0TB/s 4.0TB/s

TDP 400W 500W 900W

Table 1 Key performance numbers of the evaluated NVIDIA GPUs [7][8]

MI210

ppeak,64 22.6TFlop/s

ppeak,32 22.6Tflop/s

bpeak 1, 600GB/s

TDP 300W

Table 2 Key Performance numbers of the evaluated AMD GPU [14]

For this thesis NVIDIA’s A100 and GH200 GPUs as well as AMD’s MI210 data center
GPU are evaluated. Tab. 1 and Tab. 2 list the key performance parameters of these
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GPUs. The values have been taken from their data sheets ([7], [8], [14]). ppeak,64 and
ppeak,32 denote the peak double and single precision floating point performance in billion
floating point operations per second (TFlop/s). The peak bandwidth bpeak is given in
gigabyte per second (GB/s). These GPUs or members of their architecture family pro-
vide a good overview of well adopted modern GPUs [13][23]. This selection was also
affected by GPU availability at NHR@FAU. The A100 family, introduced in 2021, is the
oldest GPU architecture and the GH200, introduced in 2024, represents the newest
architecture. This should allow for a comparison between different GPU generations
and provide an overview of general trends for the power consumption properties.
For the GH200 the GPU and CPU form a superchip. The GPU die is connected to the
CPU by NVLink, allowing faster communication bandwidths than the traditional Peri-
pheral Component Interconnect Express (PCIe) connection. Additionally, this allows
the GPU to access the CPU’s memory directly without the need to copy data first.
Since we will focus on the properties within a single GPU daughter board, the actual
difference of sockets and connection speeds will not play a role in the determination of
the power consumption properties. However, the type of socket might make a differ-
ence for the power limit of the GPUs. One example is the A100 SXM4 80GB variant
which comes with different power limits depending on the configuration. The PCIe vari-
ants have a power limit of 400W and the SXM4 variants have a power limit of either
400W or 500W. The exact limit depends on whether or not the server into which the
card is placed meets the requirements for NVIDIA’s DGX certification. The superchip
defines a package powerlimit for the combination of GPU and CPU and additionally a
hard power limit for the GPU. This powerlimit sits at 900W. However, as long as the
total power consumption is below the package powerlimit, this powerlimit seems not to
be strictly enforced, i.e., measurements show the GH200 drawing close to 940W.
As can be seen in Tab. 1 and Tab. 2 newer generations of hardware provide more
peak floating point performance and a higher bandwidth. Even within a generation
differences to these parameters might exist. In addition to the larger main memory,
the A100 SXM4 80GB variant runs the memory interface at a higher clock frequency
to achieve a greater bandwidth than both its PCIe 80GB and SXM4 40GB counter-
parts. However, these numbers alone are not enough to determine a selection based
on energy efficiency. Since each of these cards have different power limits, comparison
of energy efficiency between them is not trivial. Additionally, the package powerlimit of
the GH200 GPU makes such comparisons nearly impossible.
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3.5 Peak Performance on the Hardware
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Figure 4 Peak Performance of the Roofline Kernel for 100% Occupancy

Fig. 4 shows the performance of the roofline kernel in blue for the different GPUs. The
roofline model is shown as a red line. The roofline benchmark serves as source of
information for the reproduction and evaluation of the archline model [5]. From the
results of this benchmark the values for ϵflop, ϵmem and π0 are estimated. The other
three benchmarks are supposed to act as cross examination opportunities. They can
be used individually as input to the linear regression model or directly to compute an
approximation of these parameters. Each benchmark is run on multiple GPUs and
different machines in order to minimize external influences. Only for the GH200 GPU
the measurements are repeated multiple times, as only a single GPU was available.
The baseline kernel serves as a direct approximation of Ebase. Going back to Eq. 2 the
direct values for either arithmetic operations or memory operations can be computed
by subtracting the Ebase estimation from the measured E, as Eactive . In Tab. 3, all
of the kernels’ performances are given as percentages of the peak performance for
each GPU. Note that the roofline kernel’s performance is given by percentage of peak
arithmetic performance and by percentage of peak bandwidth. As can be seen, the
kernels are able to achieve significant proportions of the peak architecture capabilities.
The baseline benchmark is not included as it is only aimed at capturing the power
consumption of the GPU at its highest operating frequency.
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GPU Precision Arithmetic Op Memory Op Roofline
ppeak % bpeak % ppeak % bpeak%

A100 40GB FP32 99.52 86.95 99.52 94.87
FP64 99.70 89.31 99.65 96.25

A100 80GB FP32 99.52 80.77 99.52 92.06
FP64 99.68 86.43 99.68 92.71

GH200 FP32 96.71 64.29 96.47 76.91
FP64 97.9 82.19 97.73 97.28

MI210 FP32 91.02 77.99 90.33 85.44
FP64 77.76 85.96 82.19 89.39

Table 3 Percentages of the peak bandwidth and performance for each kernel, GPU
and precision
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4 Data Collection

In this chapter an overview of the different hardware and software designs is provided.
Sec. 4.1 describes the differences to socket designs and Sec. 4.2 details the software
setup. In this section the exact driver interfaces, their intricacies and the proposed
measurement loop are shown.

4.1 Hardware

Proc. Unit

C
ac

he Memory
Q operations

W
Flop GPU

System

Figure 5 Typical hardware configuration of a GPU accelerated system [5]

In general a GPU accelerated compute node contains one or more GPUs. Fig. 5 shows
an abstract view of such a system. Depending on the configuration, the GPUs can be
interconnected by additional hardware. This thesis focuses exclusively on the power
consumption properties for single GPU workloads within the GPU’s main memory, i.e.,
no communication of data occurs from or to the GPU during the benchmark kernel.
The GPU is connected to the rest of the system by PCIe lanes. GPUs are seated
on a backplane either in a PCIe–slot or specialized sockets, e.g., Server PCI Express
Module (SXM) or OCP Accelerator Module (OAM) sockets. PCIe is currently the wide
spread data center form factor. However, specialized sockets offer higher bandwidths
and better connections between different accelerators [20][10].
The power delivery systems between these different backplanes vary. As stated in the
PCIe standard, a maximum of 75W can be drawn through the slot [19]. Supplemen-
tal power can be provided to allow for higher power consumption. For the described
specialized standards, the GPUs are supplied with power through the socket. This vari-
ety in design means specialized interposers have to be designed to measure the actual
power draw. Such a measuring setup would be expensive to build and would require a
larger software package to interact. Therefore, the GPU’s built-in power measurement
capabilities will be used to create a software based power measurement loop.
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4.2 Measurement

Measuring of power consumption and consequently measuring of energy can be tricky.
On dedicated GPU form factors this can be done by physical sensors as well as through
software. On integrated designs such as the GH200, physical measurement of the
GPU die’s power consumption would require an even more complex approach. Histor-
ically, specialized hardware such as Interposers [5], designed to interface between the
GPU and the system, have been used. In recent years, the software based approach
has become more and more feasible. The accuracy of the built-in sensors has in-
creased and findings show that these sensors correlate strongly with the actual power
consumption [3]. In fact, NVIDIA claims a maximum of 5% deviation [9] from on-board
measurements to the actual power draw. While this does not sound like much at first,
for a 500W GPU class this means a tolerance of ±25W. Therefore, the measured
dataset has to be able to account for variations. With this in mind, these measure-
ments should allow to make a reasonable prediction of the behaviour of the GPU’s
power consumption. The results may not be the exact physical properties, but should
allow to compute the power consumption properties. This approach has the benefit
that no specialized hardware is needed.
Choosing a driver based approach has other benefits as well. Both NVIDIA and AMD
follow a very similar driver design and interface approach with their software stacks.
For NVIDIA, the NVML [9] and CUDA [6] and for AMD, ROCm System Management
(ROCm) [16] and HIP libraries are used. Programmers can run codes on either soft-
ware stack mostly by replacing the four letters “cuda” to “hip”. For this conversion, AMD
even provides an automatic tool to translate to and from cuda. The benchmarks and
the introduced measurement code are written such that this portability does not affect
the performance of the kernels. However, some differences between NVIDIA’s CUDA
and AMD’s ROCm specifications do exist. The measurement program can be tuned to
achieve a specific intensity as well as to run with a varying accelerator occupancy. For
every variation the code is recompiled to allow the compiler to unroll all loops.

4.2.1 NVIDIA Driver Intricacies

The NVIDIA Management Library [9] is the programming interface to interact with and
to manage the device during runtime. It provides information about the GPU’s active
power limits and consumption as well as clock frequency. One quirk of NVML is that it
does not explicitly state the exact time interval at which new values are made available
to the programmer. Additionally, not all GPUs measure the power consumption in the
same way, some might not even support polling the power consumption. But for most
of the data center GPUs such information is made available.
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Some older generation models as well as the A100 series GA100 chip, report in-
stantaneous power readings. On other GPUs NVIDIA states that power readings are
averaged over a time interval of 1 second. This interval itself is too long to make fine
grained assumptions of the kernels energy consumption. Power measurement can be
made for shorter intervals by repetition of the kernel over multiple power reading inter-
vals [17]. With this in mind, a first measurement run indicates, that NVML seems to
make a new power reading available at a 20ms interval. Additionally, the kernel run-
time and number of repetitions are selected in a way that an accurate estimation of the
mean power consumption during the execution of a single benchmark can be made.

4.2.2 AMD Driver Intricacies

Unlike NVIDIA, AMD’s ROCm reports instantaneous power measurements on newer
devices. Older GPU generations typically provide averaged power measurements,
newer models are set to discard these averaged measurements entirely [15]. By query-
ing “rsmi_dev_power_get”, either the instantaneous power or an averaged power are
returned [16]. Further, ROCm provides access to an energy counter with a resolution
of microJoules together with a resolution modifier for this value. Both can be polled
by calling the function “rsmi_dev_energy_count_get”. In the ROCm documentation a
1ms interval is specified for new values to be made available [16]. The MI210 seems to
not entirely support such a short interval, tests revealed new values to be made avail-
able between 1–2ms. Overall, this allows the creation of very accurate power profiles.
Additionally, “rocm–smi” provides access to the devices performance counters.

4.2.3 Measurement Loop

Algorithm 5 Measuring Loop
Setup, Memory Initialization
Prepare and Check Device Attributes
Record Start Event
for i ≤ #iterations do

call kernel
Record End Event
Synchronize to Start Event
Poll Data while Waiting for End Event to Complete

The measuring loop begins by initializing all needed memory on the device. Following,
the device’s active power limit and the clock frequency are checked. With the goal of
highest performance, the GPU should be in its highest operating state, i.e., the clock
frequency and power limit should be at their maximum. The power limit can be set
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through either “nvidia–smi” or “rocm–smi”. To ensure that the clock frequency and the
operating state match their highest levels, an initialization kernel is launched as neces-
sary. On both platforms, a kernel is launched to a stream execution model. The more
general device synchronization can be used to achieve host and device synchronisa-
tion without regard to the stream. This method blocks the host until the device has
completed all work that has previously been submitted to the stream. To allow asyn-
chronous polling of the completion, the event management capabilites of ROCm and
CUDA are used. These events can be inserted into the stream and can be used to
signal the completion of previously submitted work. Contrary to device synchronisa-
tion not all work has to be completed within the stream for this synchronization. Both
CUDA and ROCm allow for non-blocking and blocking synchronization and querying
of an event. Additionally, events can be used to exclude the time overhead of the syn-
chronization from the total execution time. This means that the driver measures the
exact timestamp of the completion of the event on the device. Therefore, these times-
tamps are very accurate. In its most basic form, two events are needed to measure the
kernel execution. One event to signal the beginning of the benchmark kernel execu-
tion, the other to signal the end. Overall, a single benchmark run launches the kernel
multiple times such that the total execution time for all benchmark runs is significantly
larger than the power measurement update intervals. This approach can be seen in
Alg. 5. The first event is recorded to the stream immediately after the initialization ker-
nel launch. Then, a predetermined number of iterations of the benchmark kernel is
launched. After the kernel is scheduled the second event is recorded to the stream.
In this approach, the first event is used for two purposes. On the one hand it serves
as a marker of the beginning of kernel execution and records the actual starting time.
On the other hand it is used to block the host until kernel execution begins. Therefore,
the initialization kernel is excluded from the actual power measuring. In combination
with the second event, the total execution time of the actual kernel execution can be
computed. As the completion of the second event can be queried without blocking, the
host can record the reported power measurements and the clock frequencies [11] of
the device while periodically checking the status of the second event.
Recording of the reported clock frequencies is important since the model expects the
device’s operating state to remain unchanged during the benchmark execution. How-
ever, due to hardware resource usage and other factors such as heat and power limits
the operating state may change during the execution. The collected information about
clock frequencies allows the exclusion of entries with an altered operating state.
As mentioned in Sec. 4.2, the reported power measurements have a tolerance of ±5%.
The power measurements and execution times are averaged over all the datasets. In-
formation about the operating state of the GPU is kept mostly unchanged, to ensure
the correct exclusion.
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5 Results

This chapter contains the results obtained from fitting the model to the benchmarks’
result data. The results are split into two sections, one for single precision and the other
for double precision results. In these sections the obtained results and the resulting
graphs are shown and discussed. Similar to Fig.3 the roofline performance of the
benchmark is printed in red, the archline performance in blue and the powerline in
black, each showing multiple accelerator occupancies as colored dots. Plotted is the
average of the multiple combined measurements. The variance is shown with error
bars and the occupancies are shown in different colors.

5.1 Accuracy of the Model

precision R2 R2*

A100 40GB FP32 0.9991 0.9991

FP64 0.9969 0.9969

A100 80GB FP32 0.9996 0.9996

FP64 0.9995 0.9995

GH200 FP32 0.9978 0.9978

FP64 0.9993 0.9993

MI210 FP32 0.9936 0.9917

FP64 0.9946 0.9964

Table 4 Accuracy of the model for the GPUs

Tab. 4 shows the accuracy of the model for each of the architectures and precisions.
R2* shows the Coefficient of Determination for the full dataset, including the data points
with altered clock frequencies. As can be seen for all GPUs and precisions, the model
is able to explain the energy usage. R2 is never below 0.99. Even for the full data set,
this accuracy can be obtained. The impact of the operating state alterations can be
seen in a small deviation for R2*. Since none of the NVIDIA GPUs made such alter-
ations, R2 = R2*. Therefore, it can be concluded that the model’s parameters largely
account for the overall energy consumption. The lowered clock frequencies simply lead
to altered values for the different parameters.
The baseline, arithmetic operations and memory benchmarks provide a possibility to
examine the fitted results. Starting with the baseline benchmark, π0 can be computed
by dividing the average measured energy by the averaged time. To obtain a reference
value for ϵflop and ϵmem the respective Eq. 6 and Eq. 7 are used.
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Precision ϵflop [pJ/Fl] ϵmem [pJ/B] π0 [W] R2

A100 40GB FP32 7.56 77.62 101.2 0.9948

FP64 15.93 73.54 96.98 0.9965

A100 80GB FP32 8.23 90.72 109.75 0.9953

FP64 16.61 74.23 106.91 0.9995

GH200 FP32 4.63 97.08 161.94 0.9956

FP64 14.82 96.33 164.82 0.9997

MI210 FP32 8.84 82.98 108.71 0.9968

FP64 19.32 89.06 107.21 0.9985

Table 5 Power consumption properties of the reference benchmarks

Tab. 5 lists the values for FP32 and FP64 of the reference benchmarks as well as their
R2. The accuracy of the fit for these subsets of the general model is above 0.99 as well.
This allows for the conclusion that the independant variables capture the intended prop-
erties. The model allows the fitting of the parameters for the reference benchmarks.
These values are all within 10% of the combined benchmark’s fitted parameters. This
supports the assumption of the proposed model classifying the architectural intricacies
similarly in these different cases. The fitted value for π0 varies slightly. This variance
is about expected from the reported driver measurement accuracies. The small vari-
ance in π0 allows the conclusion that for both precisions the overheads are similarly
attributed to the different parameters.

5.2 Single Precision

Starting with the single precision benchmark results, the graphs in Fig. 6 show the
performance of the roofline kernel both for the archline and for the powerline. For all
GPUs the time balance point Bτ , the effective energy balance point B̂ϵ(I) and the theo-
retical energy balance point Bϵ if π0 = 0 are shown. As expected, the kernel deviates
from the roofline slightly around Bτ for all GPUs. The exact reason for this deviation
is unclear. The GPUs seem to be unable to fully utilize the resources due to some
architectural overheads. In the case of the MI210 GPU the low roofline performance
is caused by the power limit of 300W. In Fig. 7 the powerline, the actual power con-
sumption and the machine power limits are shown. Overall, for NVIDIA GPUs Bϵ > Bτ

is true but not by a large margin. On the MI210, Bϵ is lower than Bτ . Additionally, it
has the lowest Bϵ of all evaluated GPUs at 9.6Fl/B. The A100 variants have a Bϵ of
15 to 15.3Fl/B, followed by the GH200 with 19.7Fl/B. For all evaluated GPUs B̂ϵ(I)
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Figure 6 FP32 Rooflines and Archlines for the evaluated GPUs

is lower than Bτ . Interestingly, all GPUs except the MI210 are able to reach the peak
performance in energy for the different occupancies. The MI210 is not able to reach
the peak performance with only vector FP32 instructions on the lowest occupancy.
Additionally, the data set contains packed FP32 instructions, i.e., instructions perfor-
ming double the floating point operations compared to vector instructions. Since the
compiler generated these for I lower than 16Fl/B, the graphs contain some artifacts.
The performance in time can be seen to dip above the expected 22.6TFl/s. For packed
instructions the MI210 can achieve a theoretical peak of 44.6TFl/s. Therefore, on
these lower intensities, the GPU achieves a higher than expected peak performance
in energy. This means the findings of [5] are valid on modern hardware. However,
the balance gap sizings have decreased significantly. Additionally, the MI210’s low Bϵ

implies that race-to-halt will be the ideal strategy to conserve power. On the A100
40GB and GH200 Bτ is centered in the balance gap. However on the A100 80GB
B̂ϵ(I) is close to Bτ . Effectively, time efficiency barely implies energy efficiency. This
allows the assumption that other strategies than race-to-halt could be used for power
usage reduction. The NVIDIA GPUs all have powerlimits higher than the predicted
powerline. This means, that in theory all cards should be able to achieve their peak
performance even at Bτ . The measurements show the powerline accurately track-
ing the actual power usage closer to the sides. Near Bτ , all cards consume less power
than expected. Since the roofline kernel carries some overhead it can not achieve peak
performance close to Bτ . Therefore, due to the lower achieved bandwidth and compu-
ting performance, the power consumption has to be lower than the powerline predicts.
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Figure 7 Powerlines for the evaluated GPUs FP32

Well visible is the impact of occupancy on accelerator power consumption. When the
maximum achieved bandwidth of the GPU is limited, Bτ will shift towards the right.
This explains the increase in power consumption for higher Fl/B than the machine ba-
lance point would suggest. After reaching these points the power consumption then
drops again, except on the NVIDIA GPUs, where the lowest occupancy does not hit
the GPU’s peak performance within the measured set of intensities. The transition from
memory bound to compute bound code execution is largely seen on these GPUs as
an increase in power consumption. The fitted values for π0, ϵflop and ϵmem can be seen

ϵflop [pJ/Fl] ϵmem [pJ/B] ϵmop [pJ/Op] π0 [W]

A100 40GB 6.21 93.48 373.9 98.42

A100 80GB 6.63 102.06 408.2 107.21

GH200 4.89 96.53 386.1 169.27

MI210 8.36 80.48 321.9 112.00

Table 6 FP32 Fitted Parameters for the combined benchmark

in Tab. 6. Note that ϵflop is given in pico-Joule per Flop, ϵmem in pico-Joule per Byte,
ϵmop in pico-Joule per Mop and π0 in Watt. Overall, the evaluated GPUs all show a no-
ticable power consumption due to their baseline energy. The reason behind the higher
baseline power of the A100 80GB in comparison to the A100 40GB lies primarily in the
difference of the memory clock frequency. This frequency increase is the reason be-
hind the 80GB variant’s higher memory bandwidth. Additionally, ϵmem at 102.06pJ/B is
also higher than the 40GB’s 93.48pJ/B. Even more interesting is the increased energy
consumption per Flop. Across all tests, the A100 80GB’s ϵflop is fitted around 0.5pJ/Fl

higher than its 40GB counterpart. Since the model makes significant simplifications,
this could be explained by artifacts from the interaction with the memory subsystem.
Between the older and newer generations, a reduction in ϵflop can be seen.
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However, on the MI210 GPU ϵflop is higher than on all the measured NVIDIA cards.
Since the GPUs have different baseline power consumptions, the Flop energy effi-
ciency ηflop is better suited to compare between these GPUs.

πflop [W] πmem [W] ηflop

A100 40GB 121.0 145.8 55.14%

A100 80GB 129.3 206.2 54.67%

GH200 327.8 386.1 65.94%

MI210 188.8 128.8 62.77%

Table 7 Flop Energy Efficiency of the measured GPUs

Tab. 7 shows the Flop energy efficiency as energy per Flop divided by the sum of
energy per Flop and baseline power per Flop for the measured GPUs:

ηflop = ϵflop/(ϵflop + ϵ0,flop) (13)

ϵ0,flop denotes the baseline power expended during the completion of one Flop, i.e.,
ϵ0,flop = τflop · π0. It highlights the importance of using energy efficiency to compare be-
tween the different GPUs. Even though the MI210’s has a larger ϵflop, its comparatively
low ϵ0,flop allows for a high ηflop. Therefore, the MI210 can be seen as the more energy
efficient GPU. Between the two A100 variants, ηflop shows the impact of the higher
memory clock frequency. For pure energy efficiency, the A100 40GB wins by about
1%. The GH200 shows the benefits of high levels of integration. At ppeak,32 its 150W

baseline power and 330W πflop yield an impressive 66% energy efficiency. The rising
power limits therefore do not imply a stagnation of energy efficiency. Also interesting
to note is that all GPUs consume a lot of power for memory operations.

5.3 Double Precision

For the FP64 benchmarks, the roofline and archline are shown in Fig. 8. As can be
seen, under 100% occupancy, the roofline kernel tracks the roofline very accurately.
Both the A100 40GB and A100 80GB GPUs are able to achieve their peak perfor-
mance under all occupancies. Similar to the MI210 the GH200 GPU does not achieve
its peak perfomance in time. Overall, the deviation from the roofline is lower, as the va-
rious overheads of the device’s architecture are not as pronounced for double precision
operations. However, all NVIDIA GPUs are able to achieve their peak performance in
energy for the different occupancies. Bτ , Bϵ and B̂ϵ(I) are shown. For the MI210 Bϵ

is significantly lower than Bτ . Furthermore, the A100 40GB and GH200 have a slightly
lower Bϵ than their Bτ . Only the A100 80GB has a higher Bϵ than Bτ due to its higher
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Figure 8 FP64 Rooflines and Archlines for the evaluated GPUs

bandwidth and therefore lowered Bτ . Interesting to note is that its Bϵ is slightly lower
than the 40GB variant’s Bϵ. The archline model does reflect the general trend in per-
formance over energy, but underestimates the possible peak performance slightly.
On the MI210 the model completely misses the actual energy by a factor of 1.8 for
higher intensities. This can be shown to be due to clock throttling as the GPU hits
its power limit and reduces the clock frequencies starting on I = 2. All GPUs have
B̂ϵ(I) < Bτ . For the A100 80GB the balance gap is centered around Bτ . For the other
GPUs the balance gap is below Bτ . The powerline for the different GPUs is shown in
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Figure 9 Powerlines for the evaluated GPUs FP64

Fig. 9. It accurately tracks the kernel’s power measurements. Therefore, the spike in
power consumption is pronounced for the NVIDIA GPUs. However, the MI210 does not
develop such a spike. This is due to its low power limit of 300W. The GPU therefore
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is unable to achieve peak performance. Through all occupancies, a drop in clock fre-
quency can be observed. Since power consumption is largely dependant on clock
frequencies this reduction can be attributed to the device enforcing its power limit. The
different occupancies show the movement of Bτ very well as all GPUs can not satisfy
their bandwidth for the lowered occupancies. Overall, the NVIDIA GPUs do not show
a spike in power consumption for the lowest occupancy. The MI210 on the other hand
does show such an inflection point. This is interesting, as it reaches the powerlimit
even on this reduced occupancy. For higher intensities a drop can be seen, imply-
ing that the MI210 is hardware limited in terms of compute power. Unsurprisingly, the
GH200’s power consumption is higher than any other GPU. Both the memory bound
and the compute bound power consumption are beyond the power consumption of the
other GPUs. Looking at Tab. 8 the reason is obvious. While ϵflop has decreased a little,
the rise in ppeak,64 and also the increase in bpeak necessarily lead to an increase in total
board power draw. However, the models highest predicted power consumption stays
below the power limits of the NVIDIA GPUs. From the measurements, no alteration
of clock frequencies could be observed. As the plots show, the powerline almost ex-
actly matches the power consumption of these cards. The fitted values are listed in

ϵflop [pJ/Fl] ϵmem [pJ/B] ϵmop [pJ/Op] π0 [W]

A100 40GB 14.33 81.59 652.7 96.08

A100 80GB 14.96 83.45 667.6 104.23

GH200 11.68 89.22 713.8 170.10

MI210 19.49 88.15 705.2 104.53

Table 8 Fitted parameters for FP64 instructions

Tab. 8. For the A100 40GB an ϵflop of 14.33pJ/Fl and for the A100 80GB an ϵflop of
14.96pJ/Fl are fitted. The difference between these is most probably due to the differ-
ence in memory clock speeds. The higher memory clock can be easily observed in
π0. Additionally, a small difference can be observed to the GH200’s ϵflop at 11.68pJ/Fl.
This shows that between these generations, a single floating point operation has de-
creased in energy usage. For ϵmem, these generational findings differ. Between the
NVIDIA GPUs the A100 40GB has the lowest energy consumption and the GH200
has the highest. The MI210 GPU comes in at around 88.15pJ/Fl, slightly less than
the GH200. Interestingly, between the A100 80GB’s and MI210’s π0 nearly no differ-
ence is measured. The GH200 has by far the greatest π0 at around 1.6 times the π0 of
the other GPUs. With its performance being significantly higher than the performance
of the other cards this power consumption is not unsurprising as the larger transistor
count also needs more energy to stay at peak clock frequencies. Tab. 9 shows the
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πflop [W] πmem [W] ηflop

A100 40GB 139.7 127.3 59.24%

A100 80GB 145.8 168.6 58.31%

GH200 397.0 356.9 70.00%

MI210 440.5 141.0 80.82%

Table 9 FP64 Flop Energy Efficiency of the measured GPUs

Flop energy efficiency and the peak power consumption of Mop and Flop. Of peculiar
interest is ηflop of the MI210. The model assigns 80% energy efficiency, which would
be an incredible feat, given that the GH200 achieves 70%. However, as stated in 3.1.2,
the proposed model does not take power caps into account.
The total Flop power is 440W, together with π0 this would rise to around 540W. As
Fig. 9 shows, the MI210’s power consumption never rises above its power limit at 300W.
Therefore, it can never actually achieve this flop efficiency, invalidating this efficiency at
around I = 2. However, the reduced clock frequencies due to clock throttling allow the
GPU lower π0, ϵflop and ϵmem at the cost of peak performance in time. Also important to
note is the deviation in total power spent on memory transfers. For the NVIDIA GPUs
a nearly equal amount of power is needed for memory transfers compared to floating
point operations. The MI210 changes this relationship with the power spent on memo-
ry transfers at around one third of the power consumption of Flop. This carries quite
some significance, since it allows the machine’s Bϵ for π0 = 0 to sit well below Bτ .

5.4 Discussion

GTX 580 ϵflop [pJ/Fl] ϵmem [pJ/B] ϵmop [pJ/Op] π0 [W]

FP32 99.7 513 2052 122

FP64 212 513 2052 122

Table 10 Reference Values for the NVIDIA GTX 580 [5]

The fitted values for all of these GPUs show their theoretical performances under
maximum clock frequencies. Tab. 10 lists the fitted parameters for a NVIDIA GTX 580
as evaluated by [5]. Comparing these results to current GPUs, a significant reduction of
both ϵflop and ϵmem can be seen. This is in line with the expectations of higher efficiency
from better and smaller physical transistor designs. Additionally, GPUs pack a much
higher transistor count, leading to similar π0 values in comparison to the GTX 580.
This is paired with a similar increase in computing performance. Overall, looking
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πflop [W] πmem [W] ηflop

FP32 157.6 73.9 56.38%

FP64 41.8 73.9 25.56%

Table 11 Flop Energy Efficiency of the NVIDIA GTX 580 GPUs [5]

at ηflop, the GTX 580 achieves 56.44% FP32 and 25.56% FP64 efficiency. While the
FP32 efficiency can compete with modern GPUs, the FP64 efficiency certainly can
not. This can partly be attributed to the GTX 580’s intended use for consumer appli-
cations which typically rely on FP32 performance. This is interesting as it shows that
efficiency has not necessarily gone up over the years. The demand for increased per-
formance and therefore increasingly higher clock frequencies hides the architecture’s
better energy designs. For FP32, the increase in performance and the reduction of
computation time lead to about similar ηflop.
Altogether, modern GPUs have very similar ηflop for both FP32 and FP64. Since data
center GPUs typically have half the performance in FP64 compared to FP32, the base-
line energy per flop ϵ0,flop for FP64 is two times that of the FP32 instructions. Similarly,
the energy per flop ϵflop is doubled, therefore it is expected that ηflop is approximately the
same. In practice this means the energy efficiency stays consistent. With the MI210
having the same performance in both FP64 and FP32, an increase in power efficiency
for FP64 performance can be seen. The influence of π0 on the FP64 power consump-
tion is not as significant. This is interesting, as the MI210 uses the same execution
units for both precisions, with FP32 at half the register width. This allows for a packed
instruction, where two FP32 values are computed simultaneously in one execution unit.
For such instructions, a specific load pattern has to be achieved. This raises computing
performance up to 45TFlop. In this case πflop rises to approximately 370W, similar to
the double precision power consumption. However, as stated in Sec. 5.3, the MI210
is severely limited by its power limit and can therefore achieve this performance only
on very small intensities. All GPUs do not require high intensity to become compute
bound in energy for FP64. This can be considered as an advantage, since increasing
a code’s intensity proves very difficult. The important goal of energy efficiency is there-
fore easier to achieve than that of time efficiency. Additionally, all GPUs are compute
bound in energy well before being compute bound in time. This means that race-to-halt
will be a valid strategy for power conservation and, except for the A100 80GB, the only
strategy in FP64.
When looking at memory architecture differences, a key difference is in the GH200
using newer HBM3 memory. The advancements over HBM2e are increased stack size
and bus clock frequency. While the architecture itself got a little more energy efficient,
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the increased clock frequency overshadows any energy gain. Compared to the A100
variants, in FP32 ϵmem is similar but for FP64 ϵmem is higher than for the older HBM2e
standard. In both cases the data transfers are more or about similar expensive com-
pared to the MI210’s ϵmem. The increase in bandwidth performance can therefore be
largely attributed to an increase in the number of memory chiplets. The effect of power
reduction by clock throttling can be seen well for the MI210.
Overall, the energy required for floating point operations has decreased by a factor of
12 to 15 and the energy required for memory operations has decreased by a factor of
5 for FP32. In FP64 a reduction factor of 10 to 12 for floating point operations and a
factor of 6 for transferred Bytes can be observed.
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6 Conclusion

The archline and powerline models can be used to make an accurate estimation of the
peak performance in energy and power consumption of modern GPUs. While the ar-
chitectures have become increasingly more performant, the key findings of [5] remain
valid. However, modern GPUs display a significantly smaller balance gap than the
GTX 580. Furthermore, for FP64 even Bϵ is lower than Bτ for most GPUs. Therefore,
race-to-halt strategies are gaining in importance in order to conserve power on modern
architectures. The models can be used to analyze and predict a kernels performance
and to guide the development of a given kernel.
Overall, the energy requirements for data transfers and floating point operations have
dropped significantly. But there exist differences in the extent of the drops for each
of these properties. While the energy for Flops has decreased by a factor of ap-
proximately 12 the energy required for data transfer has dropped only by a factor of
5. The performance gains for Flop mostly relate to advancements in transistor sizing
but also increased transistor count and clock frequencies. The performance gain for
data transfers rely much more on an increase in clock frequencies and in the number
of concurrently accessible memory modules, but only to a lesser degree in transis-
tor advancements. This can be seen through the difference between High Bandwidth
Memory (HBM)2e and HBM3, the latter’s increased stack size and clock frequencies
corresponding to the performance gain over the former’s. Additionally, the cost to trans-
fer data to main memory can be assumed to consist to a large degree of the energy
required to travel the distance between the different chips on the GPU.
Similar to the GTX 580 some modern GPUs, like the MI210, can not support their
peak performance due to power limitations. The effect of power limitations and how
they can be integrated into the model are the key to the evaluation of such GPUs with
higher accuracy. In recent years hardware designs have become increasingly inte-
grated, meaning more transistors and dies are build in close vicinity and within the
same board. This allows for a lower baseline power while increasing the peak power
draw of the GPUs. In the near future this trend will probably continue as increasing
the density of the GPU dies is becoming more difficult. Therefore, integrating power
limit awareness into the model may prove useful for evaluating the optimum opera-
ting frequencies of the device. Additionally, most GPUs support a range of operating
frequencies. As can be seen through the impact of clock frequency reduction on the
MI210, these frequencies can have a large impact on total device power consumption.
Exploration towards hardware performances under different frequencies is necessary
to gather a complete picture of a GPU. Possible other topics for exploration include
a more detailed evaluation of the memory hierarchy, i.e., the cost to access different
caches apart from just DRAM transfers.
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6.1 Usability

The proposed measurement loop is written in such a way to permit usage for arbitrary
GPU kernels. It is set into a library file exposing three wrapper functions to the pro-
grammer. Additionally, it is thread-safe, i.e., the library is usable for different GPUs
on multiple threads simultaneously. To initialize the library, a call to “initMeasurement”
must be made after initializing the CUDA or ROCm runtime. This will create the events.
Optionally, a stream can be specified to which the measurement should be synchro-
nized. Immediately before launching the kernel, a call to “startMeasurement” records
the begin event. In case no stream was specified during initialization, the default stream
will be used. After the kernel launch, a call to “endMeasurement” will record the end
event. This function will block the calling thread until the measured section has com-
pleted computation and the gathered data is returned in a custom data structure. The
first value in the returned data structure is the execution time in milliseconds. The
other two entries are vectors, the first containing the measured power consumption in
milliwatt and the second containing the corresponding clock frequencies in megahertz.
The tool will be integrated into the gpu-benches repository [11].
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