
AI on High Performance Computing in a Nutshell

HPC Services, NHR@FAU

hpc-support@fau.de

https://doc.nhr.fau.de

mailto:hpc-support@fau.de
https://doc.nhr.fau.de/

22025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Agenda
This presentation is a follow-up to "HPC in a Nutshell" and assumes familiarity with
foundational HPC concepts discussed there. It is highly recommended to review the HPC in a
Nutshell presentation before proceeding with this material.

1. Introduction
 Why efficient data formats matter in HPC.
 Challenges with many small files.

2. Working with Data for AI
 Storage Systems
 Overview of formats like HDF5, NetCDF, Parquet, webdataset

3. When to Use Python venvs, Conda, or Containers
 Guidelines for choosing the right tool for environment management.

4. Conclusion and Best Practices
 Recap of efficient HPC usage, monitoring Jobs on HPC systems

Introduction to AI and HPC

Why is HPC essential for AI workloads?
 AI scales with massive parallel

processing
 GPUs can handle thousands of

operations in parallel, greatly
speeding up tasks like matrix
multiplication in neural networks

 HPC GPU Clusters are needed
to scale AI-Models and reduce
training time

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 4

Why is scaling AI important?
 “As the model size increases, the validation

perpelixity decreases and reaches a validation
perplexity of 9.27 for the 8.3B model”

 “We observe the trend that increasing model
size also leads to lower perplexity on
WikiText103 and higher cloze accuracy on
LAMBADA”

* Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism
https://arxiv.org/pdf/1909.08053

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 5

https://doc.nhr.fau.de/clusters/overview/

HPC systems at NHR@FAU

https://doc.nhr.fau.de/clusters/overview/

“Alex” cluster

 44 nodes with
 8x NVIDIA A100 (each 40 GB / 80GB HBM2)
 1024 GB / 2048 GB of main memory
 14TB local NVMe SSD
 HDR200 Infiniband network

 38 nodes with
 8x NVIDIA A40 (each with 48 GB DDR6)
 512 GB of main memory
 7 TB local NVMe SSD

NHR GPGPU cluster, open for Tier3 users after application
Application through PI

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 7

“TinyGPU” cluster

 12 nodes with 4x RTX 2080Ti
 4 nodes with 4x Tesla V100
 7 nodes with 8x RTX3080
 8 nodes with 4x Volta A100

for GPU workloads – not all nodes always generally available (Tier3)

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 8

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 9

Which GPUs should I use?
Does your training need multiple GPUs and your code is
supporting it?

Yes
(e.g. by using fsdp or deepspeed)

No
Only a single GPU

Look at A100 40GB
or A40

Add GPUs or choose
A100 80GB

Do you need very large amounts of VRAM

Is your GPU fully utilized
and the training still too

slow?

A100 80GB

A40, TinyGPU A100 40GB

Accessible for projects
 “Tier3-Grundversorgung”
 NHR

YesNo

Does your Model fit into the VRAM?
(for example Large Scale AI Models)

Yes NoYes No

Survey

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 10

Which cluster(s) are you planning to use?

https://doc.nhr.fau.de/access/overview/

Accessing HPC systems

https://doc.nhr.fau.de/access/overview/

SSH – Troubleshooting
 Troubleshooting guide: https://doc.nhr.fau.de/access/ssh-command-line/#troubleshooting

 FAQs for most frequent SSH problems: https://doc.nhr.fau.de/faq/#ssh

 In case of problems with login, send output of the following command to
hpc-support@fau.de: ssh -vv hpcaccount@csnhr.nhr.fau.de

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 12

https://doc.nhr.fau.de/access/ssh-command-line/#troubleshooting
https://doc.nhr.fau.de/faq/#ssh
mailto:hpc-support@fau.de

https://doc.nhr.fau.de/data/filesystems/

Working with data for AI

https://doc.nhr.fau.de/data/filesystems/

File systems overview

Mount point Access Purpose Technology Backup Snap-
shots Data lifetime Quota

/home/hpc $HOME Source, input,
important results NFS YES YES Account

lifetime 50 GB

/home/vault $HPCVAULT Mid-/long-term
storage NFS YES YES Account

lifetime 500 GB

/home/{woody,
saturn, titan,
janus, atuin}

$WORK General-purpose,
log files NFS NO NO Account

lifetime
500 GB
NHR project

/??? $TMPDIR Node-local job-
specific dir

SSD/
ramdisk NO NO Job runtime NO

/anvme/??? $ws_find
<name>) General-purpose anvme NO NO

Upto 90 days,
extendable
10x

-

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 14

Available file systems differ in size, redundancy and how they should be used

Store large models and datasets on workspaces and safe time while loading the
model/data

 Create workspace with name <name> for the duration of <days> days:
 After <days> the workspace will be deleted.
 <days> must be in the range of 1 to 90 days.
 If <days> is omitted, duration is 1 day.
 Duration can be changed and extended multiple times later

 ws_allocate <name> [<days>]
 ws_find <name>

More details: https://doc.nhr.fau.de/data/workspaces/

152025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Working with workspaces on ALEX

Use non GPU-Machines if you don‘t need GPU-acceleration for preprocessing

 Use standard dataset file formats and integrations (for example parquet)
 Preprocess the Dataset separately before the training and not during the training

 Example of CPU only machines for preprocessing:
 Memoryhog
 TinyFat

More details: https://doc.nhr.fau.de/clusters

162025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Datasets Preprocessing

172025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Working with large datasets containing small files

 In a job, avoid accessing large numbers of files
$HOME, $HPCVAULT, $WORK, $SATURNHOME

 Expensive operations on NFS (and also parallel file systems):
 Access file stats like creation/modification time, permissions…
 Opening/closing files

 These cause high load on servers
 This slows down your job and impacts all other users

 Use instead
 if supported by application: HDF5, file-based databases
 pack files into an archive (e.g. tar + optional compression) and use node-local SSDs

(huge amounts of file opens are no problem there)

182025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Efficient Dataset Formats for HPC Clusters
 HPC systems handle large-scale data efficiently.

 Avoid many small files: reduces metadata overhead and optimizes I/O.

 Use formats designed for parallel processing and scalability.

 Example for formats:

 HDF5: Hierarchical data, parallel I/O, compression.

 NetCDF: Multidimensional scientific data, metadata-rich.

 Parquet: Columnar storage, efficient for analytics.

192025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Efficient Dataset Formats for HPC Clusters
Webdatasets https://huggingface.co/docs/hub/datasets-webdataset

 Efficient data pipeline for large-scale datasets.

 Dataset stored as sharded TAR archives.

 Benefits:
 Reduces I/O overhead with fewer file operations.
 Optimized for streaming and parallel loading.

 Use Case: Ideal for training ML models on distributed systems.

 Integration: Compatible with Hugging Face and PyTorch DataLoaders.

https://huggingface.co/docs/hub/datasets-webdataset

Best case: use a container file format (HDF5, Parquet, …)

Alternative: pack small files into archive. Do not unpack archive to
$HOME/$HPCVAULT/$WORK
Unpack files to node-local SSDs only and use them from there

More details: https://doc.nhr.fau.de/data/staging/

202025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Working with large datasets containing small files

archive.tar

$HPCVAULT
$WORK

unpack archive

TinyGPU / Alex node

SSD

$TMPDIR

high I/O CPUs

GPUsbandwidth
example:
cd $TMPDIR
tar xf $WORK/archive.tar

https://doc.nhr.fau.de/data/staging/

212025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Working with large datasets containing small files

Unpack files to node-local SSDs only and
use them from there

archive

$HPCVAULT
$WORK

$SATURNHOME

Optionally: if original archive must be altered
 unpack it to node local SSD (interactive job)
 optionally change files
 repack files and copy back to NFS

For simulation, training, …
 unpack archive to node local SSD
 perform simulation/training
 see later slides for details

tinygpu /
alex nodeSSD

$TMPDIR

high I/O CPUs

GPUsbandwidth

tinygpu /
alexnodeSSD

$TMPDIR

high I/O CPUs

GPUsbandwidth

Environment modules: https://doc.nhr.fau.de/environment/modules/
Development and Tools: https://doc.nhr.fau.de/sdt/overview/
Applications: https://doc.nhr.fau.de/apps/overview/

Environments

https://doc.nhr.fau.de/environment/modules/
https://doc.nhr.fau.de/sdt/overview/
https://doc.nhr.fau.de/apps/overview/

Survey

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 23

What type of frameworks are you
using?

242025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

One thing up front…
 The clusters at the computing center are not like your own PC

 You are not root, even if the “How-To” in the github repo you found assumes
that

 Do not blindly copy&paste commands you do not understand
 Your home directory is not a local hard disk but a shared volume that is

mounted over the network

 Things that do not work:
 sudo apt install python-3.9
 yum install
 make && sudo make install
 sudo <anything>
 pip install pandas

JupyterNotebook
 Start your Jupyternotebook from

https://portal.hpc.fau.de

1. Login at the HPC Portal.
2. Go to the User page.
3. Under Your accounts, select the

Account you want to use for
JupyterHub. You might have more
than one account.

4. Click on the button Go to
JupyterHub.

5. A new window opens where you
have to accept our Terms of Service
and then get redirected to the actual
JupyterHub.

 Available ressources NHR:
2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 25

https://portal.hpc.fau.de/
https://portal.hpc.fau.de/

JupyterNotebook

 Available resources NHR:
• 2 cores/4GB on a shared node,
• one A40 or A100 GPU in Alex,
• one node of Fritz

• Available resources Tier-3:
• 2 cores/4GB on a shared node
• 1 – 4 dedicated GTX1080Ti GPUs
• 1 – 4 cores and 8 – 32 GB on TinyFat

When you are done with your work, stop
your jupyter instance manually. Closing
the browser tab or only logging out from
Jupyterhub does NOT free resources.

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 26

https://doc.nhr.fau.de/clusters/alex/
https://doc.nhr.fau.de/clusters/fritz/

The module command
Show all available modules: module avail

Load a module: module load <modulename>

Display loaded modules: module list

$ module avail
--------------------- /apps/modules/data/applications --
amber/20p12-at21p11-impi-gnu gromacs/2021.5-gcc11.2.0-impi-mkl
amber/20p12-at21p11-impi-intel gromacs/2022.1-gcc11.2.0-ompi-mkl
amber/20p12-at21p11-openmpi-gnu-cuda11.5 gromacs/2022.1-gcc11.2.0-mkl-cuda
--------------------- /apps/modules/data/compiler --
gcc/10.3.0 gcc/11.2.0 gcc/12.1.0 intel/2021.4.0 intel/2022.1.0 nvhpc/22.1 nvhpc/22.2
--------------------- /apps/modules/data/development ---
cuda/11.3.1 intelmpi/2021.4.0 openmpi/4.1.2-gcc11.2.0-cuda
cuda/11.4.2 intelmpi/2021.6.0 openmpi/4.1.2-intel2021.4.0-cuda
cuda/11.5.0 openmpi/4.1.2-gcc10.3.0-cuda openmpi/4.1.2-oneapi2021.4.0-cuda

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 27

Module command summary

Command What it does

module avail List available modules

module whatis Shows verbose listing of all modules

module list Shows which modules are currently loaded

module load
<pkg>/<version>

Loads specific version of module package, i.e. adjusts
environment

module unload <pkg> Undoes what the load command did

module help <pkg> Shows a detailed description of package

module show <pkg> Shows which environment variables are modified and how

https://doc.nhr.fau.de/environment/modules/

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 28

https://doc.nhr.fau.de/environment/modules/

Using Python

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 29

 Use anaconda modules instead of system installation

 Install packages via conda/pip with --user option
 Change default package installation path from $HOME to $WORK
 It might be necessary to configure a proxy to access external repositories
 Build packages in an interactive job on the target cluster (especially for GPUs)

 More details:
 https://doc.nhr.fau.de/sdt/python/
 https://doc.nhr.fau.de/environment/python-env/

$ module avail python
------------ /apps/modules/modulefiles/tools ------------
python/3.6-anaconda python/3.7-anaconda(default) python/3.8-anaconda

https://doc.nhr.fau.de/sdt/python/
https://doc.nhr.fau.de/environment/python-env/

Setting up a python environment
1. If not already exists, create the file ~/.bash_profile (located in your $HOME) with the following content:

if [-f ~/.bashrc]; then . ~/.bashrc; fi
2. Ensure you have a Python module loaded:

module list
output should contain a Python module:
Currently Loaded Modulefiles:
1) python/3.9-conda

3. Store newly installed conda packages and conda environments under $WORK to save space in $HOME
by executing:

conda config --add pkgs_dirs $WORK/software/private/conda/pkgs
conda config --add envs_dirs $WORK/software/private/conda/envs

4. Check the configuration is used, note that the variable $WORK will be expanded to the real path:
conda info
output should contain:
package cache : /apps/python/...
<real path of $WORK>/software/private/conda/pkgs
envs directories : /apps/python/...
<real path of $WORK>/software/private/conda/envs

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 30

Setting up a python environment
 Not all compute nodes have direct internet access. Configure a proxy to enable

access, either in the shell:
export http_proxy=http://proxy:80
export https_proxy=http://proxy:80

 conda create -n <env. name> python=<py. version>
This creates a conda environment named <env. name>
The new environment uses Python of the specified version <py. version>

 conda activate <env. name>

Source: https://doc.nhr.fau.de/environment/python-env/

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 31

https://doc.nhr.fau.de/environment/python-env/

Installing LitGPT example
 Claim GPU:

srun --gres=gpu:1 --partition=a40 -t 0-2 --pty /bin/bash -l
 Load Module

module avail ..
module load git/2.X.X
module load python/3.X-anaconda

 Get internet connection
export http_proxy=http://proxy:80
export https_proxy=http://proxy:80

 Create and activate Conda Environment
conda create -n litgpt python=3.10
conda activate litgpt

 Create or use workspace
ws_allocate litgpt 90
ws_find <name>

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 32

Installing LitGPT example
 Clone litgpt into workspace directory:

cd /anvme/workspace...
git clone https://github.com/Lightning-AI/litgpt
cd litgpt
pip install -e '.[all]'

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 33

Example conda module installation

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 34

 [93m [WARNING] [0m async_io: please install the libaio-devel package with yum

 Package is not available and we have no rights to do yum install

conda config --add channels conda-forge
conda config --set channel_priority strict
conda install libaio

Scaling AI

Parallel Training

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 36

 Trainings will not automatically scale across GPUs
 The right techniques have to be chosen for your model and data
 Trainingframeworks are useful as they often propose best practices

Data Parallelism

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 37

 Batch gets split up between models
 Weight updates combined by Allreduce

 Shortcomings:
 Cannot scale infinitively like 3000 gpu ->

Batchsize has to be big enough for example
 Large models don’t fit on a single device

That’s why we need Model Level Parallelism
Splits up the layer of a model and calculates

only a part of the input
That’s Tensor level Parallelism

382025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Implementations

Pytorch:
 FSDP (Fully Sharded Data Parallel)

enables memory-efficient large
model training

Deepspeed:
 Efficient memory use with ZeRO,

supports trillion-parameter models
 Mixed precision and pipeline

parallelism for faster training
Tensorflow:
 tf.distribute.Strategy for scalable

multi-GPU/TPU training

 Frameworks should be used instead of
coding parallelization strategies from
scratch

 Compatibility with model requirements:
Ensure the framework supports the
model's architecture, size, and resource
needs (e.g., sharding, pipeline
parallelism)

https://doc.nhr.fau.de/batch-processing/batch_system_slurm/

Running jobs

https://doc.nhr.fau.de/batch-processing/batch_system_slurm/

Batch System
 Users can interact with the resources of the cluster via the “Batch system”
 “Batch jobs” encapsulate:

 Resource requirements (number of nodes, number of GPUs, …)
 Job runtime (usually max. 24 hours)
 Setup of runtime environment
 Commands for application run

 Batch system will handle queuing of jobs, resource distribution and allocation
 Job will run when resources become available

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 40

GPU Jobs on TinyGPU / Alex
 Nodes are shared, GPUs are always exclusive
 Granularity is one GPU with a corresponding portion of CPU and main memory
 Request GPUs with sbatch option e.g.

 --gres=gpu:rtx3080:1 (to request a specific type)
 --gres=gpu:a100:1 --partition=a100 (necessary for V100 and A100 GPUs on

TinyGPU)

 More details and examples:
https://doc.nhr.fau.de/clusters/alex/
https://doc.nhr.fau.de/clusters/tinygpu/

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 41

https://doc.nhr.fau.de/clusters/alex/#batch-job-script-examples
https://doc.nhr.fau.de/clusters/tinygpu/#batch-job-script-examples

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Example: Batch script for Alex

#!/bin/bash -l
#SBATCH --gres=gpu:a40:1
#SBATCH --time=06:00:00
#SBATCH --job-name=testjob_gpu
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

module load python
conda activate test-environment

python train.py

42

Resource requirements

Other job options (name, notifications,…)

Max. runtime

Prevent export of environment to job

Actual run of your binary

Set up job environment

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Example: Batch script for Alex

#!/bin/bash -l
#SBATCH --gres=gpu:a40:1
#SBATCH --time=06:00:00
#SBATCH --job-name=testjob_gpu
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

module load python
conda activate test-environment

cd $TMPDIR
tar xzf $WORK/large-archive-with-small-files.tar.gz

python train.py

43

Resource requirements

Other job options (name, notifications,…)

Max. runtime

Prevent export of environment to job

Actual run of your binary

Set up job environment

442025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Slurm documentation
 NHR@FAU

 General: https://doc.nhr.fau.de/batch-processing/batch_system_slurm/
 Cluster-specific: https://doc.nhr.fau.de/clusters/overview/
 HPC Café on “Slurm - basics, best practices and advanced usage”:

https://hpc.fau.de/files/2022/04/2022-04-12-hpc-cafe-slurm.pdf,
https://www.fau.tv/clip/id/41306

 Official Slurm documentation
 Separate documentation for every command and the available options:

https://slurm.schedmd.com/man_index.html
 Slurm commands and their counterparts in different batch systems:

https://slurm.schedmd.com/rosetta.pdf
 Slurm tutorials: https://slurm.schedmd.com/tutorials.html

https://doc.nhr.fau.de/batch-processing/batch_system_slurm/
https://doc.nhr.fau.de/clusters/overview/
https://hpc.fau.de/files/2022/04/2022-04-12-hpc-cafe-slurm.pdf
https://www.fau.tv/clip/id/41306
https://slurm.schedmd.com/man_index.html
https://slurm.schedmd.com/rosetta.pdf
https://slurm.schedmd.com/tutorials.html

https://doc.nhr.fau.de/environment/apptainer

Containers

https://doc.nhr.fau.de/environment/apptainer

Using Containers

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 46

• Use pre-built containers or build them yourself
• Build containers from scratch (interactively or via definition file)
• Run/shell/import of a (pre-built) container is possible for all users
• Generally: you are the same user inside the container than outside!
• Container images are build immutable to preserve reproducibility

Using Containers
At NHR@FAU, Apptainer (formerly known as Singularity) is the standard container solution. It is specifically
designed for HPC systems and causes no performance penalties.

1. Using existing containers:
• Download / pull a container from a container repository (DockerHub) and it will be automatically

converted into the Apptainer (.sif) format: apptainer pull docker://<repository>
• Enter container with a shell: apptainer shell <container_name>
• Execute commands inside a container: apptainer exec <container_name> <command>
• Run pre-defined runscript of container: apptainer run <container_name> or ./<container name>

2. Building your own containers:
• Containers can be build on the cluster frontend nodes. They can be build interactively via a sandbox or

using a definition file (similar to a Dockerfile)

 For Multi-Node: make sure to include rdma-core, libibverbs1, etc. in your image.
 Check (debug) the output (see Debugging NCCL. For NCCL as used by Pytorch, etc. check for an error

such as NCCL INFO Failed to open libibverbs.so[.1].

More details:
 https://doc.nhr.fau.de/environment/apptainer

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 47

https://apptainer.org/
https://doc.nhr.fau.de/faq/#debugging-nccl
https://doc.nhr.fau.de/environment/apptainer

482025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

Using containers
Hints:
export https_proxy="http://proxy.rrze.uni-erlangen.de:80"
export https_proxy="http://proxy.rrze.uni-erlangen.de:80"

If disk out of space:
export APPTAINER_CACHEDIR=$TMPDIR or $WORK
export APPTAINER_TMPDIR=$TMPDIR or $WORK

Nvidia:
apptainer remote login --username \$oauthtoken docker://nvcr.io
docker login nvcr.io

Username: $oauthtoken
Password: <token>

apptainer instance list
apptainer pull docker://nvcr.io/nvidia/nemo:24.09

Docker:
apptainer pull docker://lmsysorg/sglang:v0.4.0.post1-cu124-srt

.sif containers will be saved to
the current path of the terminal

492025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de

When to Use Python venvs, Conda, or Containers
 Python venvs:

 Lightweight environment management.
 Suitable for simple Python dependencies.
 Limited control over non-Python libraries.

 Conda:
 Manages Python and non-Python dependencies.
 Supports complex workflows.
 Ideal for multi-language (e.g., Python + C/C++) requirements.

 Containers (Apptainer):
 Portable, reproducible environments.
 Encapsulate entire software stack.
 Ideal for cross-platform compatibility and complex applications.

Some troubleshooting

Good practices
 Check your jobs regularly

 Are the results OK?
 Does the job actually use the allocated nodes in the intended way? Does it run

with the expected performance?
 Check if your job makes use of the GPUs

 Attach to a running job (https://doc.nhr.fau.de/batch-processing/batch_system_slurm/#attach-to-a-running-job)
 Use e.g. nvidia-smi to check GPU utilization

 Job Monitoring
 How to use it and what to look out for: https://doc.nhr.fau.de/job-monitoring-with-

clustercockpit/

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 51

https://doc.nhr.fau.de/batch-processing/batch_system_slurm/#attach-to-a-running-job
https://doc.nhr.fau.de/job-monitoring-with-clustercockpit/

ClusterCockpit

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 52

Resource underutilization

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 53

 Inefficient usage of allocated resources, like training on a single GPU
instead of all available GPUs, often occurs due to improper configuration
or unoptimized code

 This results in wasted resources and longer training times
 To address this, ensure the training script explicitly supports multi-GPU

setups, and verify GPU utilization across all devices
 Claim the appropriate GPUs for you (not always highend GPU)

Clustercockpit

The GPU out of memory problem

 Start Small: Use low batch size, minimum model, monitor memory
 Optimize Inputs/Model: Resize inputs, adapt architecture, mixed precision
 Consider Larger GPUs: Use high-VRAM GPUs
 Utilize Multi-GPU: Distribute load with data/model parallelism
 Consider CPU offloading: Only for short finetunings

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 54

Data bottlenecks

2025-01-16 | AI in a Nutshell | NHR@FAU | hpc-support@fau.de 55

 Low data loading and transfer rates, especially when handling large
datasets, can create I/O bottlenecks, reducing GPU utilization

 Monitor your job on ClusterCockpit
 More details: https://hpc.fau.de/systems-services/documentation-

instructions/job-monitoring-with-clustercockpit/
 GPU Utilization should be close to 100% for optimized trainings

https://hpc.fau.de/systems-services/documentation-instructions/job-monitoring-with-clustercockpit/

NHR@FAU
https://doc.nhr.fau.de
hpc-support@fau.de

THANK YOU.

https://doc.nhr.fau.de/
mailto:hpc-support@fau.de

	AI on High Performance Computing in a Nutshell
	Agenda
	Introduction to AI and HPC
	Why is HPC essential for AI workloads?
	Why is scaling AI important?
	HPC systems at NHR@FAU
	“Alex” cluster
	“TinyGPU” cluster
	Which GPUs should I use?
	Survey
	Accessing HPC systems
	SSH – Troubleshooting
	Working with data for AI
	File systems overview
	Working with workspaces on ALEX
	Datasets Preprocessing
	Working with large datasets containing small files
	Efficient Dataset Formats for HPC Clusters
	Efficient Dataset Formats for HPC Clusters
	Working with large datasets containing small files
	Working with large datasets containing small files
	Environments
	Survey
	One thing up front…
	JupyterNotebook
	JupyterNotebook
	The module command
	Module command summary
	Using Python
	Setting up a python environment
	Setting up a python environment
	Installing LitGPT example
	Installing LitGPT example
	Example conda module installation
	Scaling AI
	Parallel Training
	Data Parallelism
	Implementations
	Running jobs
	Batch System
	GPU Jobs on TinyGPU / Alex
	Example: Batch script for Alex
	Example: Batch script for Alex
	Slurm documentation
	Containers
	Using Containers
	Using Containers
	Using containers
	When to Use Python venvs, Conda, or Containers
	Some troubleshooting
	Good practices
	ClusterCockpit
	Resource underutilization
	The GPU out of memory problem
	Data bottlenecks
	THANK YOU.

