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Introduction to RISC-V
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The value of having “standards”
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The value of having “standards”
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DISCLAIMER: Apple users may not fully understand this slide



What is RISC-V?

 Simple and modular Instruction Set Architecture (ISA)

 Research project started at Berkeley in 2010

 In 2014 ISA ratified

 RISC-V (pronounced “risc five”, as it is 
the fifth generation of RISC ISA at Berkeley)
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 Waterman, Andrew., Patterson, David A.. The RISC-V Reader: An Open 
Architecture Atlas. United States: Strawberry Canyon LLC, 2017. 

 Patterson, David A.., Hennessy, John L.. Computer Organization and Design 
RISC-V Edition: The Hardware Software Interface. Netherlands: Elsevier 
Science, 2017.
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Technical difference: incremental vs modular ISA

 Intel x86 is an incremental ISA. Each new release:
• Maintain backward compatibility

• Carry on new instructions (also for marketing reasons)
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 Waterman, Andrew., Patterson, David A.. The RISC-V Reader: An 
Open Architecture Atlas. United States: Strawberry Canyon LLC, 2017. 

 https://en.wikichip.org/wiki/risc-v/standard_extensions 
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Non-technical differences: another business models
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Open ISA   

Adopting the ISA is free  [1]
 [2]



It allows development of commercial IPs   

Everybody can develop commercial IPs   [3]


It allows access to extension   

It allows development of open-source IPs   

[1] Adoption of the ISA “de facto” not possible (unless you are AMD)
[2] Adoption of the ISA is possible (under a fee)
[3] Only partners can develop commercial IPs (under a fee)



False myth: it is not like Linux for software

 A shallow analysis often uses the analogy 
• “It is the same idea of Linux but in hardware”

• “RISC-V will do to the hardware what Linux did to software”
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Software

Develop 
the Linux kernel

Compile it with a 
compiler

Use it!

Hardware

Develop 
a RISC-V IP

Make a tape-out 
of a chip

Use it!
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Take-home message

RISC-V defines an open, free and standard ISA
• Simple and modular (as opposed to incremental)

It defines a new business model
• ISA + extensions remains free
• Implementations can be closed (and sold)
• Implementations can be open

Likely to work as a standard/universal ISA
• Independent on market fluctuations (war, bans, …)
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 Krste Asanović, SiFive, Advancing HPC with 
RISC-V (Supercomputing 2022, invited talk) 
https://www.youtube.com/watch?v=iFlcJFcOJKk 
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European Processor Initiative (EPI)
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EPI Main Objective

 To develop European microprocessor and accelerator technology

 Strengthen competitiveness of EU industry and science
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EPAC: EPI Accelerator v1.5

L2-HN tile

Distributed L2 cache (256 kB/slice) and 
Coherence Home Node 

VRP tile

General purpose RISC-V CPU
supporting variable precision
arithmetic up to 256 bit elements

STX tile

RISC-V many-core machine learning 
accelerator targeting stencil and 
tensor arithmetics.

CHI NoC and SerDes

On-chip high-speed network based 
on multiple CHI cross points (XP).

Off-chip link based on SerDes.

Physical design by 
Prototype board integration by 

VEC tile 
General purpose RISC-V CPU 
Avispado Core (16 kI$, 32 kD$)
with dedicated VPU
Up to 256 DP element vector length

GF22FDX, 27 mm2, 0.3 Btr Tape out Mar 2023, Bring up Oct 2023
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What’s special in EPAC – VEC?

The “Avispado” RISC-V core

The Vector Processing Unit (VPU) 

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 16



What’s special?

 It boots Linux

 The scalar in-order RISC-V core can release several requests of cache lines to the main memory

 The core is connected to a Vector Processing Unit (VPU) with very wide vector registers (16kb)

 16 kB instruction cache

 32 kB data cache

 Decodes v0.7, v1.0 vector extension

 Full hardware support for unaligned accesses

 Cache coherent (CHI)

 Vector memory accesses (vle, vlse, vlxe, vse, …) 

processed by a dedicated queue (MIQ/LSU)
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VPU with Long Vector Length (VL) support
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- As many Functional Units as VL.
- Vector instructions executed in 1 cycle

Short VL

- Cannot afford (area, power, cost) hundreds of Functional Units
- Vector instructions are executed on multiple cycles

Long VL

AVX512

SVE

512 bits per vector (8 DP elements)

Up to 2048 bits per vector (32 DP elements)

16384 bits per vector

(256 DP elements)
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An example: AXPY with x86 intrinsics
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An example: AXPY with x86 intrinsics
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An example: AXPY with x86 intrinsics
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For a generic size of X and Y,
we must handle “loop tails”
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A bit more elegant: Variable Vector Length

 Vector length (VL) register limits the max number of elements to be processed by a vector instruction
• VL is loaded prior to executing the vector instruction with a special instruction

• No need to handle “loop tails”

• Makes the code “vector length agnostic”
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A

B

C

+

=

Vector

VL=4 VL=2VL=4
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VL can have any value < VL_max
It does not work only with intrinsics



Try it yourself

 "Compiler Explorer" allows 
developers to write and compile 
code in various programming 
languages, including C++, C, Rust, 
and others.

Web-based interface for quickly 
testing and experimenting with 
code snippets, especially in the 
context of compiler optimizations.

 https://repo.hca.bsc.es/epic/ 
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 https://www.microcontrollertips.com/risc-v-vs-arm-vs-x86-whats-the-difference/ 
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How do I program EPAC - VEC?

 Autovectorization

 Leave it to the compiler

 #pragma omp simd (aka “Guided vectorization”)

 Relies on vectorization capabilities of the compiler

 Usually works but gets complicated if the code calls functions

 Also usable in Fortran

 C/C++ builtins (aka “Intrinsics”)

 Low-level mapping to the instructions

 Allows embedding it into an existing C/C++ codebase

 Allows relatively quick experimentation

 Assembler

 Always a valid option but not the most pleasant
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How do I use EPAC - VEC?

 Like a standard HPC system!

 Compile your code

 We give you a compiler

 Link libraries

 Write/Submit a job script

 SLURM

 Wait for the results

 Analyse execution traces and study 

how well your code is vectorized

25

Applications

Libraries (FFTW, SpMV, ...)

Scheduler (Slurm)

Compiler (LLVM)

OS (Linux)

Hardware 

(RISC-V self-hosted)

Programming Model 

(OpenMP, MPI)
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Take home message

EPI is developing:

• Arm-based CPU (not part of this talk/workshop)

• RISC-V-based Accelerator

We focus on the RISC-V vector accelerator (VEC) that:

• Can be self-hosted

• Support variable vector length

• Is vector length agnostic

• Uses long vectors (256 DP elements, 32x larger than x86)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 26



Software Development Vehicles (SDV)
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What to do until the hardware is ready?
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Architecture definition RTL implementation Chip backTapeoutRTL verification Physical design

Hardware development

Software development

Start testing on hwExecution on simulator

Wake up Neo… 

Follow the Software Development Vehicles



Software Development Vehicles (SDV)
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Co-design with SDV
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Navigate, visualize and quantify
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Software Development Vehicles (SDV)

 3 Steps:

 1st step: Run in a commercial RISC-V platform (scalar CPU)

 2nd step: RISC-V software emulation supporting RVV (RAVE)

 3rd step: Run on VEC mapped into FPGA

32

Beginner Advanced Master

Beginner Advanced Master

Beginner Advanced Master

Complexity Clearance
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Take home message

While RTL is becoming actual hardware, EPI develops tools for boosting 
the co-design cycle

• Software and Hardware prototypes (aka Software Development Vehicles)

We can leverage SDVs to:
• Influence hardware design 

• Improve compiler autovectorization and system-software support

• Study and improve vectorization of real scientific HPC codes
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Vectorization of a CFD code
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Vectorization of a real CFD code (Alya)

 Alya is a modular code → We study the module called “Nastin”

 “VECTOR_SIZE”

 Allocates data structures in a vector-friendly way

 Values under study → [16, 64, 128, 240, 256, 512]
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Alya mini-app

 We worked on a mini-app that mimics the behaviour of the Assembly of Alya

 We divided the mini-app in “phases”

 Mini-app phases are regions of codes with one or more loops

 We are interested in loops because is where there is potential for vectorization

 8 phases identified: P1+P2+P3+P4+P5+P6+P7+P8 = mini-app

 We based our study and optimization on the autovectorization capabilities

 No intrinsics → portability is preserved
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1st step: Run on commercial RISC-V platforms

(scalar CPU)

 Phases taking longer (6,3,7,4) correspond to compute intensive 

regions

 Phases lasting less (5,2,8,1) are memory bound regions

 VECTOR_SIZE parameter has almost no influence

on the execution (5% coefficient of variation)
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Commercial RISC-V platform (scalar CPU)

Phase 1 2 3 4 5 6 7 8

% of total cycles 1,29% 3,33% 19,80% 14,45% 3,49% 40,99% 14,68% 1,96%
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1st step: Enabling auto-vectorization

 Auto-vectorization results without touching any line of code

 VECTOR_SIZE parameter strongly influences when executing with vectors
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Enabling

Compiler

Auto-vec



2nd step: Emulation supporting RVV (RAVE)

Analysis of % of vector instructions:

 Higher VECTOR_SIZE helps the compiler to insert more 

vector instructions

 Higher VECTOR_SIZE reduces the total number of vector 

instructions

 70% of vector instructions are memory type
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Vector instruction mix

Phase

VECTOR_SIZE 1 2 3 4 5 6 7 8

16 0,00% 0,00% 1,84% 0,00% 0,00% 0,95% 24,64% 0,00%

64 0,00% 0,00% 12,73% 17,37% 17,86% 21,58% 25,87% 0,00%

128 0,00% 0,00% 16,05% 16,80% 17,94% 20,39% 25,23% 0,00%

240 0,00% 0,00% 15,31% 16,45% 16,82% 19,90% 23,90% 0,00%

256 0,00% 0,00% 15,36% 16,21% 15,88% 19,78% 24,23% 0,00%

512 0,00% 0,00% 16,65% 18,19% 18,47% 21,82% 26,20% 0,00%

30,00%

15,00%

0,00%
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3rd step: Run on VEC mapped into FPGA

Analysis of % of vector cycles:

 High vCPI → we are computing several elements 
per instruction (GOOD)

 AVL == VECTOR_SIZE → the more elements we 
process per vector instruction, the less vector 
instructions we execute (GOOD)
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Vector activity

vCPI, AVL and # vector 
instructions phase 6

Phase

VECTOR_SIZE 1 2 3 4 5 6 7 8

16 0,00% 0,00% 15,72% 0,00% 0,00% 7,66% 73,30% 0,00%

64 0,00% 0,00% 72,59% 76,62% 57,73% 86,85% 77,70% 0,00%

128 0,00% 0,00% 81,94% 79,36% 64,01% 88,96% 79,59% 0,00%

240 0,00% 0,00% 83,69% 83,08% 70,75% 90,61% 81,94% 0,00%

256 0,00% 0,00% 83,76% 83,03% 71,29% 90,26% 82,83% 0,00%

512 0,00% 0,00% 85,74% 87,59% 80,61% 91,14% 88,50% 0,00%

100,00%

75,00%

50,00%

25,00%

0,00%
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3rd step: Run on VEC mapped into FPGA

 Phases  1, 2 and 8 are not vectorized

(pattern colored in plot)

 Next step: focus in vectorize phase 2

 Costing 30% of time 
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Vector activity
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Example of optimization: phase 2 aka VEC2

Problem

 Compiler unable to vectorize loop, not sure of VECTOR_DIM value

Solution

 We know VECTOR_DIM value
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Optimization - VEC2

 Enabled vectorization in phase 2

 Performance get worst instead of improving

 AVL of vector instructions is low!  

We are not taking advantage of the full-VL. Why?
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Optimization - VEC2+VL

Problem

 pnode comes from input, we do not know its value

 Experimentally found pnode << VECTOR_DIM

Solution 

 Swap induction variables
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Optimization VEC2+VL: results

 Improved AVL vectorization in phase 2

 Vector instructions running with AVL == VECTOR_SIZE
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VEC2+VL
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Alya preliminary results - VEC2+VL
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Before 
optimization

After 
optimization
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Evaluation: RISC-V vector prototype

 After a detailed study and manual 

optimizations, we achieve a peak of 

7.6x speedup (VEC1)

 Code remains portable

No intrinsics!

[*] Speed-up defined as: scalar VECTOR_SIZE16 / optimized vector

[*
]
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Portability across other HPC platforms

 Optimizations portable to other 

architectures

 “Traditional” cluster (Intel x86)

 Long-vector architecture (NEC SX-Aurora)
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[*] Speed-up defined as: vanilla vector / optimized vector

[*
]

NHR PerfLab Seminar, Erlangen, 10 Dec 2024



Take home message

We leveraged the EPI Software Development Vehicles (SDVs) to study and improve 
vectorization of a complex CFD code (Alya) written in Fortran

Vectorization techniques improve performance on EPAC – VEC and are portable

Similar studies are on going for several scientific codes part of EU CoEs
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 Blancafort, Marc, et al. "Exploiting long vectors with a CFD code: a co-design show case." 

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2024.
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