
A RISC-V vector CPU for HPC:
architecture, platforms and tools to make it happen

Filippo Mantovani, Barcelona Supercomputing Center (BSC)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 1

Introduction to RISC-V

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 2

The value of having “standards”

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 3

The value of having “standards”

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 4

DISCLAIMER: Apple users may not fully understand this slide

What is RISC-V?

 Simple and modular Instruction Set Architecture (ISA)

 Research project started at Berkeley in 2010

 In 2014 ISA ratified

 RISC-V (pronounced “risc five”, as it is
the fifth generation of RISC ISA at Berkeley)

5

 Waterman, Andrew., Patterson, David A.. The RISC-V Reader: An Open
Architecture Atlas. United States: Strawberry Canyon LLC, 2017.

 Patterson, David A.., Hennessy, John L.. Computer Organization and Design
RISC-V Edition: The Hardware Software Interface. Netherlands: Elsevier
Science, 2017.

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Technical difference: incremental vs modular ISA

 Intel x86 is an incremental ISA. Each new release:
• Maintain backward compatibility

• Carry on new instructions (also for marketing reasons)

6

 Waterman, Andrew., Patterson, David A.. The RISC-V Reader: An
Open Architecture Atlas. United States: Strawberry Canyon LLC, 2017.

 https://en.wikichip.org/wiki/risc-v/standard_extensions

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

https://en.wikichip.org/wiki/risc-v/standard_extensions

Non-technical differences: another business models

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 7

Open ISA   

Adopting the ISA is free  [1]
 [2]



It allows development of commercial IPs   

Everybody can develop commercial IPs   [3]


It allows access to extension   

It allows development of open-source IPs   

[1] Adoption of the ISA “de facto” not possible (unless you are AMD)
[2] Adoption of the ISA is possible (under a fee)
[3] Only partners can develop commercial IPs (under a fee)

False myth: it is not like Linux for software

 A shallow analysis often uses the analogy
• “It is the same idea of Linux but in hardware”

• “RISC-V will do to the hardware what Linux did to software”

8

Software

Develop
the Linux kernel

Compile it with a
compiler

Use it!

Hardware

Develop
a RISC-V IP

Make a tape-out
of a chip

Use it!

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

False myth: it is not like Linux for software

 A shallow analysis often uses the analogy
• “It is the same idea of Linux but in hardware”

• “RISC-V will do to the hardware what Linux did to software”

9

Software

Develop
the Linux kernel

Compile it with a
compiler

Use it!

Hardware

Develop
a RISC-V IP

Make a tape-out
of a chip

Use it!

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Take-home message

RISC-V defines an open, free and standard ISA
• Simple and modular (as opposed to incremental)

It defines a new business model
• ISA + extensions remains free
• Implementations can be closed (and sold)
• Implementations can be open

Likely to work as a standard/universal ISA
• Independent on market fluctuations (war, bans, …)

10

 Krste Asanović, SiFive, Advancing HPC with
RISC-V (Supercomputing 2022, invited talk)
https://www.youtube.com/watch?v=iFlcJFcOJKk

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

https://www.youtube.com/watch?v=iFlcJFcOJKk

European Processor Initiative (EPI)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 11

EPI Main Objective

 To develop European microprocessor and accelerator technology

 Strengthen competitiveness of EU industry and science

12

SiPearl, Atos, CEA, UniBo,

E4, UniPi, P&R
BSC, SemiDynamics, EXTOLL, FORTH,

ETHZ, UniBo, UniZG, Chalmers, CEA, E4

Rhea

general purpose

CPU

EPAC

3 Accelerators

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

EPI Main Objective

 To develop European microprocessor and accelerator technology

 Strengthen competitiveness of EU industry and science

13

SiPearl, Atos, CEA, UniBo,

E4, UniPi, P&R
BSC, SemiDynamics, EXTOLL, FORTH,

ETHZ, UniBo, UniZG, Chalmers, CEA, E4

Rhea

general purpose

CPU

EPAC

3 Accelerators

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

EPAC: EPI Accelerator v1.5

L2-HN tile

Distributed L2 cache (256 kB/slice) and
Coherence Home Node

VRP tile

General purpose RISC-V CPU
supporting variable precision
arithmetic up to 256 bit elements

STX tile

RISC-V many-core machine learning
accelerator targeting stencil and
tensor arithmetics.

CHI NoC and SerDes

On-chip high-speed network based
on multiple CHI cross points (XP).

Off-chip link based on SerDes.

Physical design by
Prototype board integration by

VEC tile
General purpose RISC-V CPU
Avispado Core (16 kI$, 32 kD$)
with dedicated VPU
Up to 256 DP element vector length

GF22FDX, 27 mm2, 0.3 Btr Tape out Mar 2023, Bring up Oct 2023

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 14

EPAC: EPI Accelerator v1.5

L2-HN tile

Distributed L2 cache (256 kB/slice) and
Coherence Home Node

VRP tile

General purpose RISC-V CPU
supporting variable precision
arithmetic up to 256 bit elements

STX tile

RISC-V many-core machine learning
accelerator targeting stencil and
tensor arithmetics.

CHI NoC and SerDes

On-chip high-speed network based
on multiple CHI cross points (XP).

Off-chip link based on SerDes.

Physical design by
Prototype board integration by

VEC tile
General purpose RISC-V CPU
Avispado Core (16 kI$, 32 kD$)
with dedicated VPU
Up to 256 DP element vector length

GF22FDX, 27 mm2, 0.3 Btr Tape out Mar 2023, Bring up Oct 2023

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 15

What’s special in EPAC – VEC?

The “Avispado” RISC-V core

The Vector Processing Unit (VPU)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 16

What’s special?

 It boots Linux

 The scalar in-order RISC-V core can release several requests of cache lines to the main memory

 The core is connected to a Vector Processing Unit (VPU) with very wide vector registers (16kb)

 16 kB instruction cache

 32 kB data cache

 Decodes v0.7, v1.0 vector extension

 Full hardware support for unaligned accesses

 Cache coherent (CHI)

 Vector memory accesses (vle, vlse, vlxe, vse, …)

processed by a dedicated queue (MIQ/LSU)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 17Courtesy:

VPU with Long Vector Length (VL) support

18

- As many Functional Units as VL.
- Vector instructions executed in 1 cycle

Short VL

- Cannot afford (area, power, cost) hundreds of Functional Units
- Vector instructions are executed on multiple cycles

Long VL

AVX512

SVE

512 bits per vector (8 DP elements)

Up to 2048 bits per vector (32 DP elements)

16384 bits per vector

(256 DP elements)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

An example: AXPY with x86 intrinsics

19NHR PerfLab Seminar, Erlangen, 10 Dec 2024

An example: AXPY with x86 intrinsics

20NHR PerfLab Seminar, Erlangen, 10 Dec 2024

An example: AXPY with x86 intrinsics

21

For a generic size of X and Y,
we must handle “loop tails”

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

A bit more elegant: Variable Vector Length

 Vector length (VL) register limits the max number of elements to be processed by a vector instruction
• VL is loaded prior to executing the vector instruction with a special instruction

• No need to handle “loop tails”

• Makes the code “vector length agnostic”

22

A

B

C

+

=

Vector

VL=4 VL=2VL=4

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

VL can have any value < VL_max
It does not work only with intrinsics

Try it yourself

 "Compiler Explorer" allows
developers to write and compile
code in various programming
languages, including C++, C, Rust,
and others.

Web-based interface for quickly
testing and experimenting with
code snippets, especially in the
context of compiler optimizations.

 https://repo.hca.bsc.es/epic/

23
 https://www.microcontrollertips.com/risc-v-vs-arm-vs-x86-whats-the-difference/

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

https://repo.hca.bsc.es/epic/
https://www.microcontrollertips.com/risc-v-vs-arm-vs-x86-whats-the-difference/

How do I program EPAC - VEC?

 Autovectorization

 Leave it to the compiler

 #pragma omp simd (aka “Guided vectorization”)

 Relies on vectorization capabilities of the compiler

 Usually works but gets complicated if the code calls functions

 Also usable in Fortran

 C/C++ builtins (aka “Intrinsics”)

 Low-level mapping to the instructions

 Allows embedding it into an existing C/C++ codebase

 Allows relatively quick experimentation

 Assembler

 Always a valid option but not the most pleasant

24NHR PerfLab Seminar, Erlangen, 10 Dec 2024

How do I use EPAC - VEC?

 Like a standard HPC system!

 Compile your code

 We give you a compiler

 Link libraries

 Write/Submit a job script

 SLURM

 Wait for the results

 Analyse execution traces and study

how well your code is vectorized

25

Applications

Libraries (FFTW, SpMV, ...)

Scheduler (Slurm)

Compiler (LLVM)

OS (Linux)

Hardware

(RISC-V self-hosted)

Programming Model

(OpenMP, MPI)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Take home message

EPI is developing:

• Arm-based CPU (not part of this talk/workshop)

• RISC-V-based Accelerator

We focus on the RISC-V vector accelerator (VEC) that:

• Can be self-hosted

• Support variable vector length

• Is vector length agnostic

• Uses long vectors (256 DP elements, 32x larger than x86)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 26

Software Development Vehicles (SDV)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 27

What to do until the hardware is ready?

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 28

Architecture definition RTL implementation Chip backTapeoutRTL verification Physical design

Hardware development

Software development

Start testing on hwExecution on simulator

Wake up Neo…

Follow the Software Development Vehicles

Software Development Vehicles (SDV)

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 29

Co-design with SDV

30NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Navigate, visualize and quantify

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 31

Software Development Vehicles (SDV)

 3 Steps:

 1st step: Run in a commercial RISC-V platform (scalar CPU)

 2nd step: RISC-V software emulation supporting RVV (RAVE)

 3rd step: Run on VEC mapped into FPGA

32

Beginner Advanced Master

Beginner Advanced Master

Beginner Advanced Master

Complexity Clearance

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Take home message

While RTL is becoming actual hardware, EPI develops tools for boosting
the co-design cycle

• Software and Hardware prototypes (aka Software Development Vehicles)

We can leverage SDVs to:
• Influence hardware design

• Improve compiler autovectorization and system-software support

• Study and improve vectorization of real scientific HPC codes

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 33

Vectorization of a CFD code

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 34

Vectorization of a real CFD code (Alya)

 Alya is a modular code → We study the module called “Nastin”

 “VECTOR_SIZE”

 Allocates data structures in a vector-friendly way

 Values under study → [16, 64, 128, 240, 256, 512]

35NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Alya mini-app

 We worked on a mini-app that mimics the behaviour of the Assembly of Alya

 We divided the mini-app in “phases”

 Mini-app phases are regions of codes with one or more loops

 We are interested in loops because is where there is potential for vectorization

 8 phases identified: P1+P2+P3+P4+P5+P6+P7+P8 = mini-app

 We based our study and optimization on the autovectorization capabilities

 No intrinsics → portability is preserved

36NHR PerfLab Seminar, Erlangen, 10 Dec 2024

1st step: Run on commercial RISC-V platforms

(scalar CPU)

 Phases taking longer (6,3,7,4) correspond to compute intensive

regions

 Phases lasting less (5,2,8,1) are memory bound regions

 VECTOR_SIZE parameter has almost no influence

on the execution (5% coefficient of variation)

37

Commercial RISC-V platform (scalar CPU)

Phase 1 2 3 4 5 6 7 8

% of total cycles 1,29% 3,33% 19,80% 14,45% 3,49% 40,99% 14,68% 1,96%

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

1st step: Enabling auto-vectorization

 Auto-vectorization results without touching any line of code

 VECTOR_SIZE parameter strongly influences when executing with vectors

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 38

Enabling

Compiler

Auto-vec

2nd step: Emulation supporting RVV (RAVE)

Analysis of % of vector instructions:

 Higher VECTOR_SIZE helps the compiler to insert more

vector instructions

 Higher VECTOR_SIZE reduces the total number of vector

instructions

 70% of vector instructions are memory type

39

Vector instruction mix

Phase

VECTOR_SIZE 1 2 3 4 5 6 7 8

16 0,00% 0,00% 1,84% 0,00% 0,00% 0,95% 24,64% 0,00%

64 0,00% 0,00% 12,73% 17,37% 17,86% 21,58% 25,87% 0,00%

128 0,00% 0,00% 16,05% 16,80% 17,94% 20,39% 25,23% 0,00%

240 0,00% 0,00% 15,31% 16,45% 16,82% 19,90% 23,90% 0,00%

256 0,00% 0,00% 15,36% 16,21% 15,88% 19,78% 24,23% 0,00%

512 0,00% 0,00% 16,65% 18,19% 18,47% 21,82% 26,20% 0,00%

30,00%

15,00%

0,00%

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

3rd step: Run on VEC mapped into FPGA

Analysis of % of vector cycles:

 High vCPI → we are computing several elements
per instruction (GOOD)

 AVL == VECTOR_SIZE → the more elements we
process per vector instruction, the less vector
instructions we execute (GOOD)

40

Vector activity

vCPI, AVL and # vector
instructions phase 6

Phase

VECTOR_SIZE 1 2 3 4 5 6 7 8

16 0,00% 0,00% 15,72% 0,00% 0,00% 7,66% 73,30% 0,00%

64 0,00% 0,00% 72,59% 76,62% 57,73% 86,85% 77,70% 0,00%

128 0,00% 0,00% 81,94% 79,36% 64,01% 88,96% 79,59% 0,00%

240 0,00% 0,00% 83,69% 83,08% 70,75% 90,61% 81,94% 0,00%

256 0,00% 0,00% 83,76% 83,03% 71,29% 90,26% 82,83% 0,00%

512 0,00% 0,00% 85,74% 87,59% 80,61% 91,14% 88,50% 0,00%

100,00%

75,00%

50,00%

25,00%

0,00%

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

3rd step: Run on VEC mapped into FPGA

 Phases 1, 2 and 8 are not vectorized

(pattern colored in plot)

 Next step: focus in vectorize phase 2

 Costing 30% of time

41

Vector activity

Phase

VECTOR_SIZE 1 2 3 4 5 6 7 8

16 0,00% 0,00% 15,72% 0,00% 0,00% 7,66% 73,30% 0,00%

64 0,00% 0,00% 72,59% 76,62% 57,73% 86,85% 77,70% 0,00%

128 0,00% 0,00% 81,94% 79,36% 64,01% 88,96% 79,59% 0,00%

240 0,00% 0,00% 83,69% 83,08% 70,75% 90,61% 81,94% 0,00%

256 0,00% 0,00% 83,76% 83,03% 71,29% 90,26% 82,83% 0,00%

512 0,00% 0,00% 85,74% 87,59% 80,61% 91,14% 88,50% 0,00%

100,00%

75,00%

50,00%

25,00%

0,00%

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Example of optimization: phase 2 aka VEC2

Problem

 Compiler unable to vectorize loop, not sure of VECTOR_DIM value

Solution

 We know VECTOR_DIM value

42NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Optimization - VEC2

 Enabled vectorization in phase 2

 Performance get worst instead of improving

 AVL of vector instructions is low!

We are not taking advantage of the full-VL. Why?

43NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Optimization - VEC2+VL

Problem

 pnode comes from input, we do not know its value

 Experimentally found pnode << VECTOR_DIM

Solution

 Swap induction variables

44NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Optimization VEC2+VL: results

 Improved AVL vectorization in phase 2

 Vector instructions running with AVL == VECTOR_SIZE

45

VEC2+VL

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Alya preliminary results - VEC2+VL

46

Before
optimization

After
optimization

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Evaluation: RISC-V vector prototype

 After a detailed study and manual

optimizations, we achieve a peak of

7.6x speedup (VEC1)

 Code remains portable

No intrinsics!

[*] Speed-up defined as: scalar VECTOR_SIZE16 / optimized vector

[*
]

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 47

Portability across other HPC platforms

 Optimizations portable to other

architectures

 “Traditional” cluster (Intel x86)

 Long-vector architecture (NEC SX-Aurora)

48

[*] Speed-up defined as: vanilla vector / optimized vector

[*
]

NHR PerfLab Seminar, Erlangen, 10 Dec 2024

Take home message

We leveraged the EPI Software Development Vehicles (SDVs) to study and improve
vectorization of a complex CFD code (Alya) written in Fortran

Vectorization techniques improve performance on EPAC – VEC and are portable

Similar studies are on going for several scientific codes part of EU CoEs

NHR PerfLab Seminar, Erlangen, 10 Dec 2024 49
 Blancafort, Marc, et al. "Exploiting long vectors with a CFD code: a co-design show case."

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2024.

References

 Mantovani, Filippo, et al. "Software Development Vehicles to enable extended and early co-design: a RISC-V and

HPC case of study." International Conference on High Performance Computing. Cham: Springer Nature Switzerland,

2023. https://arxiv.org/abs/2306.01797

 Vizcaino, Pablo, et al. "Short reasons for long vectors in HPC CPUs: a study based on RISC-V." Proceedings of

the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and

Analysis. 2023. https://arxiv.org/abs/2309.06865

 Vizcaino, Pablo, et al. "RAVE: RISC-V Analyzer of Vector Executions, a QEMU tracing plugin." arXiv preprint

arXiv:2409.13639 (2024). https://arxiv.org/abs/2409.13639

 Blancafort, Marc, et al. "Exploiting long vectors with a CFD code: a co-design show case." 2024 IEEE

International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2024. https://arxiv.org/abs/2411.00815

 https://www.eetimes.com/examining-the-top-five-fallacies-about-risc-v/

 https://www.youtube.com/watch?v=iFlcJFcOJKk

50NHR PerfLab Seminar, Erlangen, 10 Dec 2024 Google Scholar

https://arxiv.org/abs/2306.01797
https://arxiv.org/abs/2309.06865
https://arxiv.org/abs/2409.13639
https://arxiv.org/abs/2411.00815
https://www.eetimes.com/examining-the-top-five-fallacies-about-risc-v/
https://www.youtube.com/watch?v=iFlcJFcOJKk

EPI FUNDING

This project has received funding from the European High Performance

Computing Joint Undertaking (JU) under Framework Partnership Agreement No

800928 and Specific Grant Agreement No 101036168 EPI-SGA2.

The JU receives support from the European Union’s Horizon 2020 research and

innovation programme and from Croatia, France, Germany, Greece, Italy,

Netherlands, Portugal, Spain, Sweden, and Switzerland.

51NHR PerfLab Seminar, Erlangen, 10 Dec 2024

This research has received funding from the European High Performance Computing

Joint Undertaking (JU) under Framework Partnership Agreement No 800928

(European Processor Initiative) and Specific Grant Agreement No 101036168 (EPI

SGA2). The JU receives support from the European Union’s Horizon 2020 research

and innovation programme and from Croatia, France, Germany, Greece, Italy,

Netherlands, Portugal, Spain, Sweden, and Switzerland. The EPI-SGA2 project,

PCI2022-132935 is also co-funded by MCIN/AEI /10.13039/501100011033 and by

the UE NextGenerationEU/PRTR.

	Intro
	Slide 1: A RISC-V vector CPU for HPC: architecture, platforms and tools to make it happen

	RISC-V
	Slide 2: Introduction to RISC-V
	Slide 3: The value of having “standards”
	Slide 4: The value of having “standards”
	Slide 5: What is RISC-V?
	Slide 6: Technical difference: incremental vs modular ISA
	Slide 7: Non-technical differences: another business models
	Slide 8: False myth: it is not like Linux for software
	Slide 9: False myth: it is not like Linux for software
	Slide 10: Take-home message

	EPI
	Slide 11: European Processor Initiative (EPI)
	Slide 12: EPI Main Objective
	Slide 13: EPI Main Objective
	Slide 14: EPAC: EPI Accelerator v1.5
	Slide 15: EPAC: EPI Accelerator v1.5
	Slide 16: What’s special in EPAC – VEC?
	Slide 17: What’s special?
	Slide 18: VPU with Long Vector Length (VL) support
	Slide 19: An example: AXPY with x86 intrinsics
	Slide 20: An example: AXPY with x86 intrinsics
	Slide 21: An example: AXPY with x86 intrinsics
	Slide 22: A bit more elegant: Variable Vector Length
	Slide 23: Try it yourself
	Slide 24: How do I program EPAC - VEC?
	Slide 25: How do I use EPAC - VEC?
	Slide 26: Take home message

	SDV
	Slide 27: Software Development Vehicles (SDV)
	Slide 28: What to do until the hardware is ready?
	Slide 29: Software Development Vehicles (SDV)
	Slide 30: Co-design with SDV
	Slide 31: Navigate, visualize and quantify
	Slide 32: Software Development Vehicles (SDV)
	Slide 33: Take home message

	Alya
	Slide 34: Vectorization of a CFD code
	Slide 35: Vectorization of a real CFD code (Alya)
	Slide 36: Alya mini-app
	Slide 37: 1st step: Run on commercial RISC-V platforms (scalar CPU)
	Slide 38: 1st step: Enabling auto-vectorization
	Slide 39: 2nd step: Emulation supporting RVV (RAVE)
	Slide 40: 3rd step: Run on VEC mapped into FPGA
	Slide 41: 3rd step: Run on VEC mapped into FPGA
	Slide 42: Example of optimization: phase 2 aka VEC2
	Slide 43: Optimization - VEC2
	Slide 44: Optimization - VEC2+VL
	Slide 45: Optimization VEC2+VL: results
	Slide 46: Alya preliminary results - VEC2+VL
	Slide 47: Evaluation: RISC-V vector prototype
	Slide 48: Portability across other HPC platforms
	Slide 49: Take home message

	Conclusions
	Slide 50: References
	Slide 51: EPI FUNDING

