
Slurm – Best Practices and Advanced Use

Thomas Gruber, Georg Hager

Erlangen National High Performance Computing Center (NHR@FAU)

NHR@FAU HPC Café
December 17, 2024

Slurm Basics

2024-12-17 3HPC Café | NHR@FAU | Slurm

Slurm documentation
 NHR@FAU

 General: https://doc.nhr.fau.de/batch-processing/batch_system_slurm/
 Cluster-specific: https://doc.nhr.fau.de/clusters/overview/

 Official Slurm documentation
 Separate documentation for every command and the available options:

https://slurm.schedmd.com/man_index.html
 Slurm commands and their counterparts in different batch systems:

https://slurm.schedmd.com/rosetta.pdf
 Slurm tutorials: https://slurm.schedmd.com/tutorials.html

https://doc.nhr.fau.de/batch-processing/batch_system_slurm/
https://doc.nhr.fau.de/clusters/overview/
https://slurm.schedmd.com/man_index.html
https://slurm.schedmd.com/rosetta.pdf
https://slurm.schedmd.com/tutorials.html

2024-12-17 4HPC Café | NHR@FAU | Slurm

Terminology
 Job: allocation of resources assigned to a user for a specified amount of time

 Partition: set of nodes grouped by specific property (e.g. hardware); can have
constraints on job size, time limit, permitted users, etc.  queues

 Task: how many instances of your command are executed; normally corresponds
to number of MPI processes

 Jobstep: set of tasks within a job; a job can contain multiple job steps executing
sequentially or in parallel

 QoS (Quality-of-Service): limits set on a per-group-basis (walltime, #GPUs, running
jobs per group,…)

 GRES: generic resources, here: GPUs

 CPU: equivalent to hyperthread if configured; otherwise equivalent to core

2024-12-17 5HPC Café | NHR@FAU | Slurm

Job script – general structure
#!/bin/bash -l
#
#SBATCH --nodes=2
#SBATCH --ntasks=20
#SBATCH --time=01:00:00
#SBATCH --output=myoutput_%x_%j.out
#SBATCH --cpu-freq=high-high:performance
#SBATCH --job-name=myJob
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

module load <modules>

srun ./application [options]

Script is interpreted as a bash script;
-l is necessary for correct module

initalization!

2024-12-17 6HPC Café | NHR@FAU | Slurm

Job script – general structure
#!/bin/bash -l
#
#SBATCH --nodes=2
#SBATCH --ntasks=20
#SBATCH --time=01:00:00
#SBATCH --output=myoutput_%x_%j.out
#SBATCH --cpu-freq=high-high:performance
#SBATCH --job-name=myJob
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

module load <modules>

srun ./application [options]

Do not export environment from
submitting shell

Enable export of environment from
this script to srun;

equivalent to
export SLURM_EXPORT_ENV=ALL

2024-12-17 7HPC Café | NHR@FAU | Slurm

Job script – general structure
#!/bin/bash -l
#
#SBATCH --nodes=2
#SBATCH --ntasks=20
#SBATCH --time=01:00:00
#SBATCH --output=myoutput_%x_%j.out
#SBATCH --cpu-freq=high-high:performance
#SBATCH --job-name=myJob
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

module load <modules>

srun ./application [options]

--output and --error are not
recommended but if required,

use SLURM’s filename patterns
%j: job ID

%x: job name
%a array ID
%N hostname
… and more

https://slurm.schedmd.com/sbatch.html#SECTION_FILENAME-PATTERN

2024-12-17 8HPC Café | NHR@FAU | Slurm

Job script – general structure
#!/bin/bash -l
#
#SBATCH --nodes=2
#SBATCH --ntasks=20
#SBATCH --time=01:00:00
#SBATCH --output=myoutput_%x_%j.out
#SBATCH --cpu-freq=high-high:performance
#SBATCH --job-name=myJob
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

module load <modules>

srun ./application [options]

Configure job to use highest CPU
frequency. Only in combination

with srun!

Affinity control
 For hybrid jobs use the --cpus-per-task=X option
 General recommendation for your batch scripts:

 Do no use mpirun or mpiexec
 If really required, use --cpu-bind=none and vendor specific options
 Hybrid with IntelMPI: I_MPI_PIN_DOMAIN=omp, I_MPI_PIN_ORDER=compact
 Hybrid with OpenMPI: --bind-to core --map-by node:PE=$OMP_NUM_THREADS

export SLURM_CPU_BIND=cores
export SRUN_CPUS_PER_TASK=${SLURM_CPUS_PER_TASK:-1}
export OMP_NUM_THREADS=${SRUN_CPUS_PER_TASK}
export OMP_PROC_BIND=true
export OMP_PLACES=cores

2024-12-17HPC Café | NHR@FAU | Slurm 9

2024-12-17 10HPC Café | NHR@FAU | Slurm

GPU jobs
 Previously discussed resource specifications are also applicable for GPU jobs
 Amount of host resources is determined by requested number of GPUs
 Share of host resources per GPU cannot be exceeded
 --ntasks/--cpus-per-task still have to be requested! Per default ntasks=1
 sinfo prints available partitions

 How to request GPUs?
 --gres=gpu:<count> type is not important (only on clusters with work/any partition)
 --gres=gpu:<type>:<count> request specific type
 --gres=gpu:a100:<count> -C a100_80 for A100 with 80 GB RAM (Alex only)

 TinyGPU: partition must be specified along with (matching) GPU type:
 E.g., --gres=gpu:v100:1 –p v100 request one V100

2024-12-17 11HPC Café | NHR@FAU | Slurm

GPU jobs
#!/bin/bash -l
#
#SBATCH --ntasks=16 #share for one GPU on Alex
#SBATCH --time=06:00:00
#SBATCH --gres=gpu:a40:1
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

module load <modules>

srun ./mpi_cuda_application

Testing of batch scripts
 Do not run the batch scripts on the frontends!
 Get a short interactive job and execute script by sourcing

get sbatch options from script.sh
frontend $ grep -E "^#SBATCH" script.sh | cut -d' ' -f 2- | xargs
get interactive job with reduced runtime
(not all sbatch options are supported like --export)
frontend $ salloc <opts_from_above> -t 00:30:00
Execute script by sourcing
computenode $ source script.sh

2024-12-17HPC Café | NHR@FAU | Slurm 12

Misc topics – Configuration for performance tools
 We monitor the cluster nodes while jobs are running (ClusterCockpit)
 If you want to do own measurements with PAPI, Vtune or LIKWID,

use -C hwperf with salloc or sbatch
 This disables some of the metrics in ClusterCockpit

 For clusters with shared nodes, -C hwperf only works in node-exclusive
jobs: sbatch --exclusive …

2024-12-17HPC Café | NHR@FAU | Slurm 13

https://hpc.fau.de/files/2023/01/2023-01-10-HPC-Cafe-ClusterCockpit.pdf

Misc topics – My workflow takes longer than 24h!
 All of our systems have a maximum job runtime of 24h!

 In case of issues, contact hpc-support@fau.de
 We might be able to give advice how to fix the issue

 Checkpoint & Restart
 Chain jobs
 Code optimization/parallelization

 Might require some work on your side (code and/or script changes)

2024-12-17HPC Café | NHR@FAU | Slurm 14

mailto:hpc-support@fau.de

SLURM job states and fair share
 If a job does not start, squeue prints the reason:

 Priority: One or more higher priority jobs are queued
 Dependency: This job is waiting for a dependent job to complete
 Resources: The job is waiting for resources to become available
 ReqNodeNotAvail: A node specifically required by the job is not currently available
 AssociationGroup<Resources>Limit: All resources assigned to your association/group

are currently in use
 QOSGrp<Resource>Limit: All resources assigned to the specified QoS are currently in

use
 Partition<Resource>Limit: All resources assigned to the specified partition are

currently in use

 Priority value depends on parameters like waiting time, partition, user
group, and recently used CPU time (a.k.a. fairshare)

2024-12-17HPC Café | NHR@FAU | Slurm 15

2024-12-17 16HPC Café | NHR@FAU | Slurm

Monitoring your jobs
You can connect to nodes when a job is running to check it interactively:

 CPU jobs: use top/htop/perf top etc.
 GPU jobs: nvidia-smi

 ClusterCockpit: https://monitoring.nhr.fau.de/ (NHR users) or use the button in the
HPC portal (Tier-3)
 See HPC Café January 10, 2023: https://www.fau.tv/clip/id/46327

$ srun --jobid=<jobID> --overlap --pty /bin/bash -l

https://monitoring.nhr.fau.de/
https://www.fau.tv/clip/id/46327

What we left out
 If you are a Tier-3 user but need more power, you can request access to

NHR@FAU resources:
 https://hpc.fau.de/tier3-access-to-alex/
 https://hpc.fau.de/tier3-access-to-fritz/

 Multi-node GPU jobs on Alex are only allowed upon request

2024-12-17HPC Café | NHR@FAU | Slurm 17

https://hpc.fau.de/tier3-access-to-alex/
https://hpc.fau.de/tier3-access-to-fritz/

Data staging

https://doc.nhr.fau.de/data/staging/

Previous HPC Cafes about this and similar topics:
• Jan 18, 2022: https://www.fau.tv/clip/id/40199
• Feb 6, 2024: https://hpc.fau.de/2024/01/29/monthly-hpc-cafe-

efficient-data-handling-and-data-formats-february-6-hybrid-event/
• Oct 8, 2024: https://youtu.be/jRDd3zUQZE0

https://doc.nhr.fau.de/data/staging/
https://www.fau.tv/clip/id/40199
https://hpc.fau.de/2024/01/29/monthly-hpc-cafe-%20efficient-data-handling-and-data-formats-february-6-hybrid-event/
https://youtu.be/jRDd3zUQZE0

Problem statement
 Your jobs read and/or write a lot of data

 The data is stored on a shared file system ($WORK, $FASTTMP)
 Best data access: Large files, read/write sequentially

 Some access patterns are bad for performance
 … of your own jobs
 … of others’ jobs working on the same file system

 Frequent metadata accesses slow down file system operations
 Open/close in rapid succession
 Parallel file systems ($FASTTMP) are especially prone to slowdowns (but all of

them are)

Not like the SSD
in your laptop!

2024-12-17HPC Café | NHR@FAU | Slurm 19

Do not unpack archive to:
$HOME/$HPCVAULT/$WORK

Unpack files to node-local SSDs only and
use them from there

20HPC Café | NHR@FAU | Slurm

Archives and node-local disk ($TMPDIR)

archive

$HPCVAULT
$WORK

$SATURNHOME

Optionally: if original archive must be altered
 unpack it to node local SSD (interactive job)
 optionally change files
 repack files and copy back to NFS

For simulation, training, …
 unpack archive to node local SSD
 perform simulation/training

Compute
nodeSSD

$TMPDIR

high I/O CPUs

GPUsbandwidth

Compute
nodeSSD

$TMPDIR

high I/O CPUs

GPUsbandwidth

2024-12-17

21HPC Café | NHR@FAU | Slurm

Staging many small files
 Put files into ZIP/tar archive (better copy performance)
 Unpack to node-local temp directory and work

from there
 Cleanup may be automatic

WORK_DIR=`mktemp -d -p $TMPDIR`
cd $WORK_DIR
unzip $WOODYHOME/foo.zip
... Now work with data in $WORK_DIR
Clean up at the end:
cd
rm -rf $WORK_DIR

Job script

2024-12-17

2024-12-17 22HPC Café | NHR@FAU | Slurm

Other options
 Archive file formats

 e.g., HDF5
 Packs everything into a large file an uses special functions to access the data
 Advantage: much lower metadata load
 Disadvantage: Code support required

 Data streaming
 Set up server for direct data download within job
 Advantage: No shared file system space needed
 Disadvantage: may be limited by network bandwidth
 See https://hpc.fau.de/files/2024/02/HPC-cafe.pdf (HPC Café Feb 6, 2024)

 Workspaces
 High-performance temporary networked storage, only available on Alex
 https://doc.nhr.fau.de/data/workspaces/

https://hpc.fau.de/files/2024/02/HPC-cafe.pdf
https://doc.nhr.fau.de/data/workspaces/

Workflows: job arrays and dependencies

2024-12-17 24HPC Café | NHR@FAU | Slurm

Grouping work together: array jobs
 Many jobs that only differ by some index  Array jobs

 Jobs are differentiable by $SLURM_ARRAY_TASK_ID
 Submit with #SBATCH --array=1-10
 Default job ID is then $SLURM_JOBID_$SLURM_ARRAY_TASK_ID

#!/bin/bash -l
#SBATCH --job-name=array_f
#SBATCH --nodes=1
#SBATCH --time=1:00:00
#SBATCH --array=1-5
#SBATCH --export=NONE
unset SLURM_EXPORT_ENV
echo "I am job $SLURM_JOBID, index $SLURM_ARRAY_TASK_ID"
use task ID in program arguments
./a.out 500 300 $SLURM_ARRAY_TASK_ID

$ squeue
JOBID PARTITION NAME USER ST TIM

1714146_2 singlenod array_f unrz55 R 0:0
1714146_3 singlenod array_f unrz55 R 0:0
1714146_4 singlenod array_f unrz55 R 0:0
1714146_5 singlenod array_f unrz55 R 0:0
1714146_1 singlenod array_f unrz55 R 0:0

2024-12-17 25HPC Café | NHR@FAU | Slurm

Job dependencies
 Can be useful for long-running sequences of jobs.
 Jobs will be set on hold until specified dependencies are satisfied.

Available types:
 after: job can begin execution after the specified jobs have begun execution.
 afterany: job can begin execution after the specified jobs have terminated.
 afternotok: job can begin execution after the specified jobs have terminated in

some failed state (non-zero exit code, node failure, timed out, etc).
 afterok: job can begin execution after the specified jobs have successfully

finished (zero exit code).
 singleton: job can begin execution after any previously launched jobs sharing the

same job name and user have terminated.

#SBATCH -d <type>:<jobID>[:<jobID>]

2024-12-17 26HPC Café | NHR@FAU | Slurm

Job dependencies: example
Script-generated dependency chain:

$ ID=`sbatch test_dep.sh | grep "^Submitted" | cut -f 4 -d ' '`
$ for i in `seq 1 6`; do \

ID=`sbatch -d afterok:$ID test_dep.sh | grep "^Submitted" | cut -f 4 -d ' '`; \
done

$ squeue
JOBID PARTITION […SNIP…] TIME TIME_LIMIT NODES CPUS NODELIST(REASON)

1715105 singlenod […SNIP…] 0:00 1:00:00 1 1 (Dependency)
1715104 singlenod […SNIP…] 0:00 1:00:00 1 1 (Dependency)
1715103 singlenod […SNIP…] 0:00 1:00:00 1 1 (Dependency)
1715102 singlenod […SNIP…] 0:00 1:00:00 1 1 (Dependency)
1715101 singlenod […SNIP…] 0:00 1:00:00 1 1 (Dependency)
1715100 singlenod […SNIP…] 0:00 1:00:00 1 1 (Dependency)
1715099 singlenod […SNIP…] 0:05 1:00:00 1 72 f0458

2024-12-17 27HPC Café | NHR@FAU | Slurm

Chain jobs
Auto-submit next job from the job script:

#!/bin/bash -l

... do the work here ...
./a.out

submit next job in chain
if [$SECONDS -gt 3600 \
-a ! -e ${SLURM_SUBMIT_DIR}/STOP_CHAIN]; then
cd $SLURM_SUBMIT_DIR
sbatch job_script.sh

fi

job_script.sh Make sure that
current shell has

been running
reasonably long

“touch STOP_CHAIN”
breaks the chain

2024-12-17 28HPC Café | NHR@FAU | Slurm

Chain jobs with checkpointing
If the program writes a checkpoint, resubmit if checkpoint exists

#!/bin/bash -l

CKPT=$FASTTMP/ckpt.dat
... do the work here, ckpt in $FASTTMP ...
./a.out --checkpoint $CKPT

submit next job in chain
if [$SECONDS -gt 3600 \
-a -s $CKPT_DIR/ckpt.dat \
-a ! -e ${SLURM_SUBMIT_DIR}/STOP_CHAIN]; then
cd ${SLURM_SUBMIT_DIR}
sbatch job_script.sh

fi

job_script.sh

File exists and has
nonzero size

2024-12-17 29HPC Café | NHR@FAU | Slurm

A Slurm-managed serial job queue
Use case: I have a bag of serial tasks and I want to run them on a number of
nodes; new tasks should start as soon as core/memory become available

#!/bin/bash -l
#SBATCH --nodes=2
#SBATCH --cpus-per-task=1
#SBATCH --export=NONE

unset SLURM_EXPORT_ENV

for i in `seq 1 2000`; do
srun -N 1 -n 1 --mem-per-cpu=2G --exact ./a.out &

done

wait

Default: full node
memory

Do not
oversubscribe

memory per node

Put them all into a
big queue

Wait for all background
job steps to complete

THANK YOU.

NHR@FAU
https://hpc.fau.de

Official docs: https://doc.nhr.fau.de
NHR@FAU video channel on FAU.tv:
https://www.fau.tv/course/id/1146

https://hpc.fau.de/
https://doc.nhr.fau.de/
https://www.fau.tv/course/id/1146

	Slurm – Best Practices and Advanced Use��Thomas Gruber, Georg Hager�Erlangen National High Performance Computing Center (NHR@FAU)
	���Slurm Basics
	Slurm documentation
	Terminology
	Job script – general structure
	Job script – general structure
	Job script – general structure
	Job script – general structure
	Affinity control
	GPU jobs
	GPU jobs
	Testing of batch scripts
	Misc topics – Configuration for performance tools
	Misc topics – My workflow takes longer than 24h!
	SLURM job states and fair share
	Monitoring your jobs
	What we left out
	Data staging
	Problem statement
	Archives and node-local disk ($TMPDIR)
	Staging many small files
	Other options
	Workflows: job arrays and dependencies
	Grouping work together: array jobs
	Job dependencies
	Job dependencies: example
	Chain jobs
	Chain jobs with checkpointing
	A Slurm-managed serial job queue
	THANK YOU.

