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A B S T R A C T

Sparse Matrix-Vector (SpMV) products are used in numerous algorithms of linear algebra and are
often the most computationally expensive operation. This includes Krylov Subspace Methods (KSMs)
such as GMRES and CG, which rely severely on SpMV to solve linear systems. Since SpMV is known
to be very bandwidth intensive, Communication-Avoiding KSMs are an active field of research. They
attempt to reduce data interdependencies in the algorithm by replacing expensive SpMV operations
with a Matrix Power Kernel (MPK). Doing so allows cache blocking techniques to reuse data from
the cache as much as possible in order to reduce the reliance on the limited DRAM bandwidth.
However, so far most research has only covered implementations for CPUs. As GPUs are becoming
increasingly popular due to their often higher compute and memory performance, we present a
benchmark, which runs cache blocked MPKs on GPUs. The benchmark runs on both state-of-the-art
Nvidia and AMD GPUs. As a fundamental building block, we use the software library RACE and
show that it is possible to get up to a 2× speedup on selected GPUs. Finally, we perform a detailed
performance analysis to determine GPU MPK viability for real-world applications. Since a speedup
is often not achievable due to kernel call overhead, we predict that MPK performance on future
GPUs will heavily depend on their cache size.
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KU R Z FA S S U N G

Dünn besetzte Matrix-Vektor Produkte (SpMV) werden in vielen Algorithmen der linearen Algebra
verwendet und sind häufig deren rechenintensivste Operation. Dazu gehören Krylov-Unterraum-
Verfahren (KSM) wie GMRES oder CG, welche größtenteils SpMV zum Lösen linearer Gleichungssys-
teme verwenden. Da SpMV bekanntermaßen sehr bandbreitenintensiv ist, sind kommunikationsver-
meidende KSMs ein aktives Forschungsgebiet. Diese versuchen entstehende Datenabhängigkeiten in
Algorithmen zu reduzieren, indem SpMV-Operationen durch Matrix-Power-Kernel (MPK) ersetzt
werden. Dies erlaubt es, Cache-Blocking-Methoden Daten aus dem Cache so viel wie möglich wie-
derzuverwenden, damit die begrenzte DRAM-Bandbreite möglichst effizient genutzt wird. Bisher
wird jedoch hauptsächlich zu Implementierungen für CPUs geforscht. Da GPUs aufgrund ihrer
höheren Rechenleistung und Speicherbandbreite zunehmend verwendet werden, stellen wir einen
Benchmark vor, welches mithilfe von Cache-Blocking MPKs auf GPUs berechnet. Dieser Benchmark
läuft sowohl auf aktuellen Nvidia als auch AMD GPUs. Die Programmbibliothek RACE wird dafür als
grundlegende Komponente verwendet. Wir zeigen auf, dass es damit möglich ist, auf ausgewählten
GPUs eine Beschleunigung von 2× zu erreichen. Schlussendlich zeigen wir eine detaillierte Leistungs-
analyse um bestimmen zu können, ob MPKs auf GPUs praktikabel sind. Unter anderem wird eine
Beschleunigung in vielen Fällen, aufgrund indirekter Kosten, nicht erreicht. Daher prognostizieren
wir, dass die MPK-Leistung auf zukünftigen GPUs sehr stark von ihrer Cache Größe abhängen wird.
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1I N T R O D U C T I O N

Solving linear systems is one of the most essential building blocks in scientific computing and there
is continuous research and development to make existing solvers more efficient. For sparse matrices
it is well known that most iterative solvers are limited by the Sparse Matrix-Vector (SpMV) operation
due to its high memory bandwidth requirement. Today, many algorithms operate on Krylov Subspace
Methods (KSMs). These are generally considered to be communication1 intensive as they typically
involve a reduction after each SpMV product.

Alleviating the high memory bandwidth requirements is typically done by better cache utilization
due to their much higher bandwidth. However having a high amount of communication in the
algorithm means that data often has to be fetched from main memory, because it cannot be reused
from cache.

When considering problems which involve matrices being larger than the system’s cache, the
SpMV operation can only be optimized up to the point where it performs as well as the Dynamic
Random Access Memory (DRAM)’s bandwidth allows. In order to make cache reuse possible, the
SpMV has to be divided into multiple smaller operations which on their own can reuse the data
from the cache independently. This type of strategy is also referred to as cache blocking as data is
processed in smaller blocks and retained as much in cache as possible. However, due to required
communication in the solver’s algorithm this becomes impossible without making fundamental
changes to it.

One of the key elements the authors of [25] use in order to reduce communication and to speed
up computation is the use of Matrix Power Kernels (MPKs), which aim to replace the SpMV in the
algorithm. These MPKs calculate the span vectors of the Krylov subspace [x , Ax , A2 x , · · · , Ak x] with
the goal to reduce the reduction after each SpMV to a single reduction after each MPK. Of course
doing this does not eliminate the communication entirely, as an SpMV in the general sense forms
dependencies between its input and output vectors’ rows. Since typical matrices are not entirely
random the required communication keeps a limited scope and cache blocking can be utilized. An
example for that is “CA-GMRES” [25, Sec. 4], an adaption of GMRES, which uses MPKs instead of
SpMV. The authors demonstrate that MPKs can be used in algorithms to get speedup of more than
a factor of two.

Regardless of whether a linear system solver or Eigenvalue solver, using MPKs in order to gain a
speedup is not a drop in replacement for the SpMV kernel. Changes to the algorithms are required.
Assuming that the changed algorithms converge equally well, the use of MPKs is however a possible
solution for better hardware utilization.

1We mean communication in the sense of data dependency and thus the requirement to transfer data in a computer’s
memory hierarchy. Referenced literature sometimes also uses the term for communication in parallel systems.

1



1 Introduction

One of the main problems that we see is that most of the research focuses on solutions for CPUs.
There is some research being done for GPUs [24], but it is rather outdated as it focuses on the case
where matrices do not fit in the Graphics Processing Unit (GPU)’s DRAM [24, p. 1750]. These
days single GPUs have enough memory to hold the largest possible Compressed Row Storage (CRS)
matrices with 32 bit indices and using multiple GPUs is not as essential as in [37]. Because GPUs
have become a very fundamental hardware component for scientific computing we benchmark and
analyze what level of performance can be expected with the use of MPKs. A core concept our work
is based upon is a cache blocking strategy which was originally designed for Central Processing
Units (CPUs) [1].

In this thesis we will show the context in regards to related work, discuss the technical fun-
damentals, and explain how the cache blocking strategy works that we build upon. Using this
knowledge we show how we created a cache blocked MPK benchmark for GPUs. We then discuss its
optimization and evaluate its performance to show what the challenges and benefits are.

2



2F U N DA M E N TA L S

2.1 Related Work

The disproportionate increase of memory bandwidth compared to computation speed is no new
phenomenon [4, 23, 36]. Accordingly, utilizing the available bandwidth has become more and
more crucial. To alleviate this problem, caches have been introduced a long time ago and they
usually work well for general purpose applications. However, for larger data sets which do not fit in
cache, this usually does not pay off. Therefore blocked (or cache blocked) algorithms have become
an area of research in scientific computing already more than 30 years ago with the goal of avoiding
unnecessary or repetitive memory transfers. One of these examples is “The cache performance and
optimizations of blocked algorithms” [19]. Its authors take a very fundamental approach at better
utilizing cache for dense matrix-matrix multiplications. As for many other cache blocking techniques
today, the used core concept is partitioning of the matrix into smaller blocks which fit into cache
and consecutively to correctly reorder the processing of these blocks to improve cache reuse.

Their focus is primarily on modelling cache hit and miss ratio depending on the blocking sizes
and the cache’s parameters, not just including the cache size but also line size and associativity.
Unfortunately, the paper’s applicability for our research is limited. There is, of course, no roofline
based analysis in regard to compute and memory performance, as it has been introduced much
later [34]. In addition, compute hardware has vastly changed in favor of multi core computers with
highly optimized cache hierarchies. One of the conclusions the authors make is that for a block size
“the optimal choice occupies only a small fraction of the cache, typically less than 10%” [19, p. 73].
We assume that this is likely different with today’s vastly more efficient hardware.

Albeit older, a more relevant paper is “Implicit and Explicit Optimizations for Stencil Computa-
tions” [14]. It discusses the influence of caches on stencil based algorithms like partial differential
equation solvers. While they explicitly only discuss stencils, this can still be considered relevant, as
stencil operations can be mapped to sparse matrices, which are discussed in this thesis. They present
multiple algorithms, starting from a naive implementation, going over to an “implicitly blocked” [14,
p. 53] variant to an explicitly blocked algorithm [14, p. 55]. The key concepts they use to improve
cache reuse are spatial reuse, which is data reuse within a single stencil sweep and temporal reuse,
which is reuse of data across multiple stencil sweeps.

Considering the context of this thesis, there are two reasons why we believe the spatial reuse is
less relevant. First, today’s compute hardware has changed a lot with better caches and execution
pipelines which we expect to be better at hiding instruction latency. We mention this because the
authors explicitly discuss SIMD and other techniques as means to hide latency from the compute
architecture and we assume this to be negligible for our context. Second, processing sparse matrices
is generally even more data intensive than processing stencils, since the matrix data has to be loaded

3



2.1 Related Work

also. In addition, this matrix data cannot be reused spatially. In contrast, we think that their concept
of temporal reuse is a lot more applicable to our goal, especially since a few other papers use similar
techniques to speed up subsequent SpMV operations. These papers are reviewed below.

Stencil based solvers are only a subset of sparse matrix based solvers, as stencils are usually
implicitly defined by the algorithm instead of a matrix which has to be stored separately. Operating
on matrices instead makes it more difficult to generalize what the authors call “time skewing” [14,
Fig. 5]. By that they mean a special execution order in which data is accessed that is optimized on
cache reuse. Following this execution order is difficult for matrices because they do not necessarily
have well structured data dependencies compared to stencils. In contrast, a very recent attempt at a
general approach for matrices is done with Recursive Algebraic Coloring Engine (RACE) that we
utilize for our work.

However, before discussing RACE, we cover earlier approaches such as done by Demmel et al.
[6] which try to apply a blocking strategy for sparse matrix solvers. The authors introduce the
concept of Matrix Power Kernels (MPKs) as means to reduce communication in KSMs in order to get
a modelled speedup in the range of 1.3× to 22.2× [6, Fig. 3, Tab. 3]. At this point an important
distinction has to be made as in our thesis we solely discuss local speedup on a single chip. In the
cited paper the highest of the performance figures are modelled after a cluster system connected
over the internet with much higher latency and bandwidth restrictions. While it does fall under the
category of communication avoiding, as it reduces memory traffic, that model is not applicable for
our case. More comparable speedups are the ones modelled with what they call “CacheBlocked” [6,
p. 8] using their Sequential Algorithms and they lie in the more moderate range of 1.3× to 2.4×
[6, Tab. 3]. Although algorithmically the same as CacheBlocked, their “OOC” model is not a good
comparison for today’s hardware, since it is based on mechanical hard drives. Nowadays these are
usually replaced by faster solid state drives and are often irrelevant during the actual computation,
as DRAM capacity has become large enough.

Interestingly, their sequential algorithms works similarly to the time skewing technique from
“Implicit and explicit optimizations for stencil computations”, which is referenced previously. In
addition there is a further restriction which Demmel et al. have made in regards their sequential
algorithms because they only work for sparse matrices that “partition well” [6, p. 1]. This means
that the sparse matrices cannot have an arbitrary structure and need to have a grid structure in the
graph that represents them. Therefore the applicable problem class is de-facto the same as stencils
with the exception that a matrix can have arbitrary weights for each value while a stencil is typically
fixed for the entire grid it is applied upon. So this approach is stil not a solution for general sparse
matrices.

In a later publication Demmel et al. discuss an MPK alteration of the widely known Generalized
Minimal Residual Method (GMRES) [29] algorithm which they call “Communication-Avoiding
GMRES (CA-GMRES)” [25, Sec. 4]. Considering the most expensive operations only, they replace
the SpMV and the Modified Gram-Schmidt (MGS) from the main loop with an MPK and a TSQR
decomposition. They do this similarly to previous ideas [3, 13] of performing GMRES differently,
except previous solutions do not use MPKs. Performance measurements are also available and in
opposite to the authors’ previous papers this one explicitly excludes a “multinode implementation”
[25, p. 2]. The speedup for CA-GMRES on their Intel Clovertown system ranges from 1.6× to 4.3×
for different types of matrices.

We should note that these improvement figures refer to the entire CA-GMRES, not just the MPK.
Our analysis in Chapter 4 will only discuss MPKs and not the performance of linear solvers, so care
should be taken when comparing these results. In addition, since the paper was published in 2009,
hardware has yet again increased in terms of compute performance, memory, and cache capacity.
Thus have the matrices of interests, as the distinction between cached and uncached performance is
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2.1 Related Work

of no relevance if the matrices fit in the cache. Nevertheless, when applying this for larger matrices,
their conclusion about speedups in regards to rising relative communication costs compared to
floating point performance is still reasonable, as this trend has not changed.

A more comprehensive collection of communication avoiding KSMs is published in [12]. They
discuss not only the fundamentals of KSMs but also multiple algorithms such as the previous CA-
GMRES and also CA variants of CG [10] and Lanczos [20]. As their process shows [12, Chpt. 5]
adapting an algorithm to avoid communication is by no means trivial and it means that SpMVs are
not simply replaced by MPKs for better performance. However, it demonstrates that doing so is
possible and that MPKs can be used to speed up real world solvers.

Last we mention more recent research in regards to MPKs and possibilities to replace classic
SpMV in linear solvers. The authors of [1] demonstrate the use of the Recursive Algebraic Coloring
Engine (RACE) to get speedup for MPKs ranging from 3× to 5× on modern multicore CPUs. As
recent chips have seen high increases in L3 cache sizes, this becomes especially relevant since
applying cache blocking becomes more effective the more data can be reused. Because the research
and analysis of this thesis makes extensive use of RACE we dedicate a separate section to how it
works (see Section 2.8).

2.2 Outlook

Before discussing the technical fundamentals that we base our work upon we give an outlook
on this thesis. We can assume that MPKs play an important role in making future KSM based
linear solvers faster, but so far we have discussed very little about computations on GPUs. These
days many computations are done on GPUs to take advantage of their higher peak performance
and bandwidth. For example, a recent state of the art AMD EPYC 9654P is rated at a maximum
nominal memory bandwidth of 460 GB/s [2] while an Nvidia H200 GPU is rated for up to 4800 GB/s
[27]. The related research we could find in regards running MPKs on GPUs limits itself to avoiding
communication in parallel multi-GPU configurations [37]. However, little to no attention is being
focused on sequential execution on single GPUs. Because there is so little research in that regard, we
explore the possibilities of performance improvements from MPKs over traditional SpMV on GPUs.

While our detailed analysis will present performance models, one main goal is to perform real
measurements on GPUs. We start with a brief summary of GPUs and systems we used. We proceed
by creating a standard roofline model based on nominal performance figures for the classic SpMV.
Later we will perform measurements with our custom benchmark called MPK-HIP and as its name
suggests it is written using Heterogeneous Interface for Portability (HIP). This benchmark makes use
of common sparse matrix formats for which we also will provide a short overview. As we consider
the HIP language to be not so common, we will also provide a brief overview of the language and
why we chose it. We continue with a compact introduction into GPU programming and general
guidelines for achieving good performance. Last we summarize the functionality of the fundamental
building block RACE. This will be relevant for interpreting its performance results later.

2.3 Hardware Selection

Recent GPUs have experienced a disproportionate jump in Last Level Cache (LLC) capacity (see
Table 2.1). Considering the general increase in computing power for computer hardware, an increase
may not be surprising. It is well known that compute performance has increased disproportionately
compared to memory performance and thus bandwidth limited algorithms have not benefitted as
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2.3 Hardware Selection

much from that increase. Due to this, caches are traditionally used to relieve the memory interface
by providing greatly increased bandwidth for smaller data which fits in the cache. This usually occurs
implicitly, but the performance may greatly depend on how the programmer hints the processor to
perform its memory accesses. As our goal is to utilize the cache more efficiently one can assume
that benefits from larger than usual cache sizes are likely.

Before we discuss any of the caching in regards to MPKs, the first step is to choose suitable
hardware for benchmarking. As our main goal is cache blocking, we aim at GPUs with higher than
usual caches or GPU which are very common. Table 2.1 shows a summary of datacenter and selected
consumer GPUs but most of the GPUs disqualify themselves due to their age and small cache. While
the AMD MI300X clearly holds the lead with 256 MB, it was unfortunately not available to us at
the time. It is followed by the AMD RX 6900 XT with 128 MB, then by the AMD RX 7900 XTX
and Nvidia L40 with a slightly smaller 96 MB cache. We chose to use the AMD RX 6900 XT and
Nvidia L40 for our testing. The former one due to its high cache size and the latter due to being
from a different vendor. As they are a very widespread GPU, final results in Chapter 4 also include
results of the Nvidia A100 and H100. Other GPUs are not covered, as we consider their cache size
to be too small.

The Nvidia L40 is sold as a data center supported GPU, but the underlying chip is the same
as the consumer Nvidia RTX 4090, so we consider this as a de facto consumer GPU. Their main
difference being that the Nvidia L40 has fully enabled cache. As it has slightly less LLC compared to
the AMD RX 6900 XT we initially did not consider it, but as we later discovered it proved to be a
very favorable GPU for MPKs. A complete list of the hardware used can be seen in Table 2.2. For
convenience we refer to these systems by their abbreviation.

GPU Date Memory DRAM type DRAM bandwidth LLC size
Nvidia K40 2013 12 GiB GDDR5 288 GB/s 1.5 MiB
Nvidia M40 2015 24 GiB GDDR5 288 GB/s 3 MiB
Nvidia P100 2016 16 GiB HBM2 732 GB/s 4 MiB
Nvidia V100 2017 32 GiB HBM2 900 GB/s 6 MiB
Nvidia A100 2020 80 GiB HBM2e 2039 GB/s 40 MiB
Nvidia H100 2022 80 GiB HBM3 3352 GB/s 50 MiB
Nvidia H200 2023 141 GiB HBM3e 4800 GB/s 60 MiB
AMD MI100 2020 32 GiB HBM2 1229 GB/s 8 MiB
AMD MI210 2021 64 GiB HBM2e 1638 GB/s 8 MiB
AMD MI250 2021 128 GiB HBM2e 3277 GB/s 16 MiB
AMD MI300X 2023 192 GiB HBM3 5171 GB/s 256 MiB
AMD RX 6900 XT 2020 16 GiB GDDR6 512 GB/s 128 MiB
Nvidia A40 2020 48 GiB GDDR6 695 GB/s 6 MiB
AMD RX 7900 XTX 2022 24 GiB GDDR6 960 GB/s 96 MiB
Nvidia L40 2022 48 GiB GDDR6 864 GB/s 96 MiB

Table 2.1 – Memory and last level cache of recent GPUs. The first group shows Nvidia data
center GPUs, the second group shows AMD data center GPUs, and the third group shows GPUs
with consumer chips.
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Abbrev. CPU RAM GPU OS
RX 6900 2x Intel Xeon E5-2620 v4 64 GiB AMD RX 6900 XT Ubuntu 22.04.04
L40 2x AMD EPYC 9354 768 GiB Nvidia L40 Ubuntu 22.04.04
A100 2x AMD EPYC 7713 2048 GiB Nvidia A100 (80 GiB, SXM) AlmaLinux 8.9
GH200 Nvidia GH200 480 GiB Nvidia H100 (96 GiB, GH200)) Ubuntu 22.04.04

Table 2.2 – Test system specifications.

2.4 Approximate Roofline Model

Two of the very fundamental performance metrics of a CPU or GPU are their memory bandwidth
and floating point performance. An overview of ideal figures for the tested hardware can be seen in
Table 2.3.

Using the standard roofline model we can estimate whether MPKs are memory or compute bound.
As approximation we use the best-case performance of the SpMV kernel [35, Eq. 4], which for
64 bit floating point values and 32 bit indices results a data intensity of 6 Byte/FLOP. For calculating
performance, we use the same symbols as [28][p. 77], meaning I for operational intensity, W
for FLOPs, T for time, and Q for memory traffic. Additionally, we will also define the inverse of
operational intensity as D = I−1 for data intensity and the bandwidth as B =QT−1 for convenience.
Thus:

P =
W
T
=

B
D

(2.1)

PRX6900 = 512
GByte

s
÷ 6

Byte
FLOP

≈ 85.3
GFLOP

s
(2.2)

PL40 = 864
GByte

s
÷ 6

Byte
FLOP

≈ 144.0
GFLOP

s
(2.3)

PA100 = 1940
GByte

s
÷ 6

Byte
FLOP

≈ 323.3
GFLOP

s
(2.4)

PGH200 = 4000
GByte

s
÷ 6

Byte
FLOP

≈ 666.6
GFLOP

s
(2.5)

These are approximate figures, yet all the performance numbers are significantly lower than the
nominal floating point performance of each GPU. This is the case even when considering that the
RX 6900 and L40 have low double precision performance, which is relatively common for consumer
chips. According to this basic roofline model, there is a very clear memory bandwidth limit. We
discuss more precise figures in Section 4.4.3 as they then depend on the matrix due to row overhead.

GPU GFLOP/s (SP) GFLOPS/s (DP) GB/s (DRAM)
AMD RX 6900 XT 23,040 1,440 512
Nvidia L40 90,520 1,414 864
Nvidia A100 (80 GiB) 19,490 9,746 1,940
Nvidia GH200 (96 GiB) ~67,000 ~34,000 ~4,000

Table 2.3 – Nominal GPU performance and bandwidth figures.
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2.5 Sparse Matrix Formats

2.5 Sparse Matrix Formats

2.5.1 CRS

For many problems in linear algebra, matrices are only populated sparsely which means that a large
percentage of coefficients are zero. For example, a matrix may have millions of rows, but only in the
order of ten values per row. If only the non-zero values of this matrix were stored in memory, only
approximately 10 million values must be stored. This is easily accomplished with today’s computers.
In contrast, if the matrix was stored entirely in a dense fashion, trillions of values would have to be
stored and processed, which is too much for even a computer with large memories. To overcome
this, the Compressed Row Storage (CRS) format is commonly used to store matrices more compactly
(see Figure 2.1), which in turn results in more efficient calculations.

The coefficients are stored row-wise in the values vector without zeroes. A second vector with
the same length called columns stores the column index of the original matrix. It is then possible to
reconstruct the original matrix by adding a third vector rowPtr which stores the index the rows start
at in the former two vectors. The length2 of each row is implicitly determined by the start of the
next row.

2.5.2 ELLPACK

The ELLPACK format can be considered a simplification of CRS as it simply omits the rowPtr vector.
To be able to reconstruct the original matrix, each row must be equally long since rowPtr and columns
then become a linearized 2D-array. One of the indices is the row’s coordinate and the other one is
the row index (see Figure 2.2).

Since the resulting data (see Figure 2.2b) is 2D it can be stored row-wise or column-wise, but it
typically is stored column wise. Although ELLPACK omits the rowPtr vector, it is usually less memory
efficient than CRS since all rows have to be padded to the longest row’s length. One of its benefits
is the option for a column major layout, which improves performance for GPUs, because memory
accesses are continuous among threads instead scattered. We discuss these performance implication
in more detail in Section 3.2.6.

2.5.3 SELL-C-σ

In the general case ELLPACK is not a viable option, as it deals very poorly with uneven row lengths.
There have been multiple propositions [32, 7, 18] to circumvent ELLPACK’s memory and computation
overhead. One category of these alterantives are the Sliced ELLPACK (SELL) formats [26, p. 115].
What SELL attempts is to reduce the padding overhead of ELLPACK by slicing the matrix into blocks

2By row length we refer to the number of non-zeroes per row (Nnzr).

(a) 6× 6
dense matrix
example.

(b) 6× 6 CRS
matrix exam-
ple.

values=
�

a0,0 a0,4 a2,1 · · · a5,3 a5,4

�

columns=
�

0 4 1 · · · 3 4
�

rowPtr=
�

0 2 2 · · · 9 12
�

(c) 6× 6 CRS matrix encoding.

Figure 2.1 – CRS format.
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(a) 6× 6
dense matrix
example.

(b) 6× 6 ELL-
PACK matrix
example.

values=
�

a0,0 0 a2,1 · · · a4,4 0
�

columns=
�

0 x 1 · · · x 5
�

Nnzr = 5

(c) 6× 6 ELLPACK matrix encoding:
“x” is a padded column (e.g., zero or previous
column).

Figure 2.2 – ELLPACK format.

of rows, which are padded only to the block’s maximum row length. A universal and well performing
variant is the SELL-C-σ format [17, p. 9]. It uses fixed size blocks or chunks of size C which is
chosen to best fit the compute architecture. When C is chosen for example according to the Single
Instruction Multiple Data (SIMD) width, the chunk can be read and processed without shuffling.
Additionally it specifies a sorting scope σ to order the matrix in blocks of length σ. This is intended
to reduce padding in the C sized chunks (see Figure 2.3c). This implies σ > C to get any benefits
because sorting just inside of a chunk will not reduce the chunk’s maximum row length. If no sorting
is desired or possible, σ = 1 is assumed. As we will discuss later in Section 3.2.6, no sorting is done
in our examples.

Figure 2.3 shows an example for C = 2, σ = 1 and σ = 83. For SELL-C-σ the start of a row can
be calculated by first determining the chunk and retrieving its start index via chunkPtr. The relative
position inside the row can be determined by its internal position just like with regular ELLPACK by
using the row’s length of its chunk from chunkLen.

To conclude, SELL-C-σ is useful because, unless for extreme cases, it allows to get a good
compromise between compactness of CRS and GPU performance from ELLPACK. Accordingly, it is
one of the preferred matrix formats we discuss later for benchmarking in Section 3.2.6.

3We use the C and σ in SELL-C-σ to specify its parameters: E.g., SELL-C-σ for C = 2 and σ = 8 would be SELL-2-8.

(a) 8× 8 dense matrix
example.

C

C

C

C

(b) 8× 8 SELL-2-1 ma-
trix example.

σ = 8
sorted

C

C

C

C

(c) 8× 8 SELL-2-8 ma-
trix example.

values=
�

a0,0 a0,4 0 · · · a7,6 0
�

columns=
�

0 4 x · · · 6 x
�

chunkPtr=
�

0 10 14 20 28
�

chunkLen=
�

5 2 3 4
�

(d) 8× 8 SELL-2-1 matrix encoding:
“x” is a padded column (e.g., zero or previous
column).

values=
�

a1,0 a1,1 a1,3 · · · a3,7 0
�

columns=
�

0 1 3 · · · 7 x
�

chunkPtr=
�

0 10 16 20 24
�

chunkLen=
�

5 3 2 2
�

(e) 8× 8 SELL-2-8 matrix encoding:
“x” is a padded column (e.g., zero or previous
column).

Figure 2.3 – SELL-C-σ format.
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2.5 Sparse Matrix Formats

2.5.4 Matrix Format Restrictions

Generally, the matrix formats above can use any available primitive data types supported by the
compute architecture. Due to implementation restrictions of RACE (see. Section 2.8), we will only
consider a single set of data types in this thesis. For floating point values we only use 64 bit double
precision and 32 bit integer values for index values. Changing these types may affect performance, as
different hardware processes double and single precision floats at different speeds, and the required
memory of values affects the needed memory bandwidth.

2.6 HIP Language

As of today GPUs are most commonly programmed using the Compute Unified Device Architecture
(CUDA). This has the inherent limitation of being limited to Nvidia GPUs, and as we have discussed
previously in Section 2.3 we intend to target AMD GPUs as well. HIP [11] is a language which
solves this as it is compatible with both AMD and Nvidia GPUs. Unlike OpenCL, porting code from
CUDA to HIP is very simple and its API is, with the exception of the hip instead of cuda prefix, mostly
identical. Due to this difference in prefixes, changes to the source code are necessary. For simple
programs this can be automated by hipify.pl which comes with the ROCm toolchain. The code can
then be compiled via hipcc, which serves as frontend for nvcc (Nvidia) or clang (AMD).

In a few cases small adjustments to the code are still necessary. For example, the commonly
used __shfl_XYZ_sync functions are not available with HIP and have to replaced by their __shfl_XYZ
equivalent. This is partially caused by architectural differences, because certain AMD GPU differ in
warp size and thus cannot use the same function signature.

Once the code works for both vendors, the performance can be expected to be equal to a native
CUDA program on Nvidia because HIP’s API is simply a header-only wrapper. No additional cost is
added, since most function calls from hipXYZ forward inline to cudaXYZ. As HIP is developed by
AMD, we do not expect significant performance penalties from using HIP over OpenCL on AMD.
We did not opt for the latest available ROCm version 6.0.0 for Nvidia GPUs, as we were unable to
build the HIP API with Nvidia support. More details with regard to software versions are shown in
Section 3.2.2.

2.7 GPU Programming Introduction

As GPUs have become very widespread and processors have become more parallel instead of
higher clocked, the implementation of parallel programs becomes more and more relevant to allow
efficient scalability [8]. When a program for CPU is written, hardly any restrictions exist in terms of
concurrency. Today’s top of the line multi-core processors have 128 cores, but the threads which run
on them are usually fairly independent. Consequently each core has its own execution pipeline, a
private L1 cache, possibly shared with a single or a very low amount of threads which share the
same resources. In contrast GPUs are optimized for processing high amounts of data in a more
parallel and regular manner as each “core” usually consists of many threads which run in lockstep.
Although CPUs have also gained the ability to process data concurrently on each core via SIMD, on
GPUs this is usually implemented via Single Instruction Multiple Threads (SIMT).

Accordingly a number of implications exist. A CPU software library like RACE is written in C++
and cannot run on GPUs. There are of course language extensions like CUDA, which as of today
is likely the most widespread language for GPU applications. However, it cannot port software to
run on GPU without explicit changes. One of the most fundamental requirements for GPU code are
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2.7 GPU Programming Introduction

so-called kernels. In principal these kernels are just normal C++ functions with special constraints.
For example, only functions annotated with __device__ are callable from these kernels, and the
kernels themselves can only be called via special kernel calls. When such a kernel is called from
the CPU, this usually causes very many function instances to be called concurrently. That way all
the hardware threads on the GPU can easily be used. If the program only utilized a single or a
low amount of threads, performance could be expected to be very poor, as a single GPU hardware
thread is typically much slower compared to a CPU hardware thread. Once such a kernel call is
issued, the execution usually does not start immediately and is only guaranteed to finish up to an
explicit synchronization point (cudaDeviceSynchronize). The order of the kernel calls is retained and
implicit synchronization happens in between. Subsequent kernel calls thus cannot cause mutual
race conditions.

Adapting existing code for CUDA is the first step, but a correct program does not guarantee good
performance. The solely reason for porting software to GPU is to get superior performance compared
to CPU. Of course general rules for optimization exist for GPUs as they do for CPUs, like reducing
algorithmic complexity, reducing code size, avoiding data dependencies, or to avoid branching. But
due to their architecture, GPU programs have the following constraints that do not necessarily apply
the same way for CPU:

• Kernel Launch Overhead: The GPU code is only run via explicit calls from CPU, and for each
issued call, CPU to GPU communication is required. In practice, the CUDA runtime can avoid
this to a certain extent by batching multiple kernel calls, but even with batching, each new
kernel call requires new threads to be launched. It is possible to explicitly batch kernel calls
in the CUDA language via graphs. That way the driver knows the code and the number of
threads ahead of time and can schedule execution more ideally. We will later demonstrate
that both number of threads per call (see Section 4.4.2.4) and batching (see Section 3.2.8)
can impact the performance.

• Synchronization Barriers: While a high number of kernel launches may be limited by the
amount of threads the GPU can launch, such a kernel launch always acts as synchronization
barrier on the GPU. This provides the programmer a way to avoid race conditions on GPU, but
it can cause ramping effects as hardware has to wait for all affected GPU threads to finish before
starting new ones. Solving this is similarly affected by solving the kernel launch overhead, as
it usually requires minimizing the number of kernel calls. Alternatively, if applicable, fewer
synchronizing events have to be used if multiple kernels run concurrently.

• Uncoalesced Memory Access: We previously discussed the way hardware threads are orga-
nized on GPUs. The smallest group of hardware threads, commonly called warps, have a size
of 32 on Nvidia GPUs. As these threads typically run in lockstep, all threads will run the same
instruction simultaneously. Newer Nvidia GPUs introduced independent thread scheduling.
Since this doesn’t change the general trend how to write good GPU code, it is not covered
here. For example, if a multiply instruction is executed, all threads execute this instruction
simultaneously. This works well for arithmetic, as it will only interact with data from the local
register file. However in case a memory fetch is issued by all 32 threads, the addresses may be
arbitrarily scattered in memory. It is well known that random access causes worse performance
compared to sequential access, and this applies for GPUs as it does for CPUs. Since the number
of running threads on GPUs is much higher than on CPUs this effect becomes significantly
more relevant. Threads “prefer” to access memory in a single block, because the memory
controller can then for example fetch 32 subsequent double values from memory in a single
run. If the memory is not accessed sequentially, this may severely impact the performance,
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2.7 GPU Programming Introduction

especially on AMD GPUs (see Section 3.2.5). It is also noted that this means data is interleaved
for all 32 threads as shown in Figure 2.4 and not ordered sequentially for each thread.

• Code Branching: As for the previous point, similar restrictions apply for conditional branches.
When optimizing code for CPUs, code branching can be reduced to avoid mispredicted, and
thus penalized, branches. On GPUs this is usually problematic due to the lack of branch
prediction. Instead, the reduction of diverging branches is more relevant. Once a thread
branches to a different target than the ones in the same warp, it can possibly stall all other
threads within that warp.

• CPU-GPU data exchange: Because the compute work for GPU is dispatched from CPU, the
data set, in our case a matrix and a vector, has to be transferred from CPU to GPU before
running the kernel. Accordingly the results have to be transferred back to the CPU. This
imposes a possible transfer bandwidth limitation and a synchronization barrier. This is however
only relevant for the start and end of computation. If all computation is done on GPU, no data
exchange is necessary between kernel calls. For problems involving many iterations this can
usually be ignored.

Except the last of point, all will be relevant for the following chapters. We will reference them
accordingly for certain design decisions we made.

2.8 RACE and Level-Based Cache Blocking

The proposed solution to GPU accelerated MPKs is primarily based on the Recursive Algebraic
Coloring Engine (RACE) [1]. RACE is a software library which implements a temporal blocking
algorithm. This is used to better utilize the cache during MPK calculation. This section briefly
explains how RACE works and how it creates the fundamental building block for the later used
benchmark implementation called MPK-HIP.

One of RACE’s first steps is to apply a transformation to the matrix to make it more diagonal
and thus more “cache-friendly” [1, p. 586]. This transformation, which is solely a row and column
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Figure 2.4 – Memory Coalescing: The black arrow denotes the ideal data ordering for memory
read/write coalescing (Ntpw = 8). As all threads in a warp execute the same instruction at the
same time, they should operate on a continuous block of data for every memory operation.
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permutation, is non-optional and is also required for the implementation of MPK-HIP. Matrix
permutations are commonly used to speed up SpMV [15], and we will assume that its gains will
generally outweigh its costs. As RACE uses an algebraic graph-based approach, the input matrix
does not require any specific shape [1, p. 581], but of course the gains are limited to the possibilities
of permutations and cannot fix a random sparse matrix.

For better illustrating RACE’s exact functionality, we use a simplified 2D-5pt stencil matrix instead
of a 2D-7pt stencil as originally published in [1, p. 586] in an 8× 8 grid. This stencil’s matrix is
shown in Figure 2.5b along with its graph4 in Figure 2.5a. With the exception of the edge cases, the
matrix has a diagonal shape. Because calculating matrix powers involve successive SpMV operations,
these SpMV operations can be characterized by row dependencies. This is meant in the sense, that
each output vector component for an SpMV operation depends on a set of input vector components,
which can then be represented as a graph. In this graph, each vertex represents a row, and an edge
forms a dependency of a row with another row. The corresponding example graph is shown in
Figure 2.5a. Since a 2D-5pt stencil is used, each row’s dependencies are its vertical and horizontal
neighbours but also the row itself.

This graph becomes relevant when attempting cache blocking, because it restricts which data
may be retained in cache, and which data is required to be fetched from memory. In order to
calculate one power iteration for a certain row, the graph has to be traversed from that row’s vertex
by a depth of one in order to determine which input rows are required. For cache blocking it is
necessary that these inputs rows stay in cache as much as possible, but for an arbitrary matrix power
this is impossible. In that case the graph will be traversed completely at some power. Thus all
the rows must be kept in cache, which is not possible. RACE attempts to solve this limitation by a
calculation order strategy which ensures that data fetched from memory will stay in the cache as
long as it still needed for calculation. A matrix that already fits in the cache would of course not
benefit either way.

4We use the term graph or dependency graph as means for the equivalent matrix interpreted as adjacency matrix.
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(a) Row dependency graph.
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(b) 5pt-stencil 2D matrix.

Figure 2.5 – 2D 5pt-stencil matrix structure and dependency graph. A vertex represents a row
of the matrix. An edge denotes a dependency and points to another row which is needed for
the other row’s calculation [1, Fig. 4].
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While the previously mentioned permutation step does improve cache-friendlyness it is also
fundamental to RACE’s “level formation” [1, p. 586]. These levels are key to define the calculation
order of the final matrix power. In this formation step rows are assigned to a level number in such a
way that all rows in a level only depend on other rows of neighbouring levels. The way the level
numbers are assigned is a traditional Breadth-First Search (BFS) where the depth of the search
defines the level number, and the search order of the rows defines their new row. Thus each depth
descent in a BFS searches the required dependencies for one additional power iteration.

The level formation and the reordering is shown in Figure 2.6a. All vertices now have a different
number assigned which refers to the new row they have been reordered to. As expected, the
numbers occur in the BFS order from the starting row zero. Each BFS descent is shown as new
level in a separate color and as reordered matrix in Figure 2.6b. The graph layout is unchanged, as
dependencies are neither introduced nor removed.

We assume that once an SpMV is executed on a single level, its output will stay in cache. If
p = 1 is calculated all inputs will not be in cache. One can then use an execution order illustrated
in Figure 2.7 (black arrows) to maximize cache reuse. Because all rows in a level only depend on
rows of their neighboring levels, a level’s power p + 1 can be calculated fully cached as soon as
its neighbouring levels’ power p are calculated (pink arrows). Each square represents an SpMV
operation to calculate a level’s power. If the execution is performed in the demonstrated order, at
most p+ 1 levels will have to stay in cache. In theory only p levels have to stay in cache due to the
diagonal traversal, but because caches often employ a LRU eviction policy, it is p + 1 in practice.
With this order a level is fetched from DRAM only for its first power calculation. This is similar to the
sequential algorithms for communication avoiding KSMs that we discussed previously in Section 2.1.

Because level size can be very small and possibly very unequal in size, RACE forms level groups
as an additional optimization step. The approach is to reduce execution overhead by being able to
perform larger continuous SpMV operations by merging multiple levels into one. There is generally
no downside to forming as large level groups as possible, but eventually an increase will hit a cache
size boundary where p+ 1 level groups no longer fit in the cache. This boundary is also mentioned
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(b) 5pt-stencil 2D matrix.

Figure 2.6 – 2D 5pt-stencil matrix structure and dependency graph after BFS reordering matrix
from Figure 2.5. Each color represents an assigned level and each level’s rows only reference
rows from themselves or neighbouring levels [1, Fig. 4].
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Figure 2.7 – Lp diagram: Black arrows denotes the most cache efficient execution order. Each
square represents an SpMV performed on the respective level [1, Fig. 5]. When following this
order, at most p+ 1= 6 levels have to be retained in cache in order to avoid DRAM loads for
p ̸= 1. If for example Lp=5(0) is calculated that level is no longer needed, but Lp=1(5) will not
evict L(0) from cache due to being used just before. This is why p+ 1 levels need to fit in cache
instead of p. The pink arrows show which data level L = 8, p = 3 needs for its calculation. The
diagram applies for levels and level groups equally.

in [1, Eq. 5] and accounts for the non-zeroes in the matrix data. [1] does not mention result vectors
explicitly, but it is rather simplified in a safety factor which accounts for all other data overhead as
well. We will discuss this safety factor later in Section 4.4.2.5 as it can have an effect on the cache
blocking efficiency.

In contrast to being small, a level can also be too large. That is the case if p+ 1 levels of that
size can no longer fit in cache. RACE supports a way to split larger levels into smaller ones using
“Recursion” [1, p. 590]. However due performance penalties of more fine grained execution flow
(see Section 4.4.2.4), we have not analyzed it in our work.

When the programmer utilizes RACE the level and group forming is abstracted away. Conse-
quently only the reordering has to be performed as supplied by RACE, and and SpMV kernel must
be provided. Because RACE has to be able to perform SpMV on individually formed level groups,
not all SpMV kernels can be used since they usually do not support execution on a subset of rows.
This unfortunately includes commonly used math libraries such as cuSPARSE. That is why we chose
for a custom kernel implementation, which we cover in more detail in the following chapter.
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3I M P L E M E N TAT I O N

3.1 Benchmarking Goals

The main objective we are aiming for is to reliably evaluate performance of MPKs on different
hardware configurations. We already mentioned briefly in Chapter 1, the core of this thesis is the
MPK-HIP benchmark. Before discussing its functionality in the following subsections it is important
to elaborate the actual goals of this benchmark and its results.

Fundamentally, a benchmark is supposed to allow “evaluation of the speed of the compilation
and execution” [22, p. 83] of software. The general intention is to analyze our improvements to
linear systems solvers. It is commonly known that SpMV operations, or in our case MPKs, are the
most limiting factor. Thus we can limit our benchmark to this particular matrix power kernel. In
addition to just running our own custom kernel, it is pivotal to judge whether it runs at the speed it
is expected to. For example, the results should follow the roofline model [33], alternatively it should
be understood why the benchmark does not perform as expected compared to the roofline. Unless
optimized MPKs vastly change the compute-to-bandwidth ratio compared to regular SpMV, they are
expected to be severely bandwidth limited. In our case this is likely not the case, as RACE does not
alter the total amount of computation nor reduces the amount of data compared to regular SpMV
based MPKs. However, we can still expect a speedup with RACE, as caching will raise the bandwidth
limit effectively. Running into a compute limit will not be a problem. If we recall Table 2.3, this
would require speedups over 10×, which would be very optimistic.

3.2 MPK-HIP

3.2.1 Benchmark Build Setup

In this section we present our benchmark MPK-HIP, explain how it works, and what it measures.
We briefly mentioned the CUDA language as means to program GPUs. As one of our test systems
features an AMD GPU, CUDA cannot be used. For older GPU generations OpenCL used to be the
common choice for AMD. However since OpenCL is known to run worse on Nvidia GPUs [16], and
to ease porting, AMD ROCm introduced HIP. This created an easier way to run the same code for
both Nvidia and AMD GPUs. We chose HIP as language in order to run the same benchmark on both
vendors’ GPU to avoid relying on multiple benchmark codebases, which could possibly diverge.

Many benchmarks traditionally have a very simple build setup. Commonly just a single Makefile
and a single source file. GNU Makefiles can of course be used with multiple source files, but the
HIP language leads to a non trivial setup, as manually setting up vendor specific compiler paths
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and include directories becomes rather cumbersome. In addition, MPK-HIP also depends on the
RACE software library, which uses CMake to manage its builds. As a single source file benchmark
is already out of question, and as MPK-HIP also relies on other libraries, using CMake is inherent.
While CMake does make managing builds easier, it has the limitation that it makes it harder to run
the benchmark on numerous platforms. This is not a limitation in our case, as running code on GPU
already vastly reduces the number of hardware architectures. As of today this leads to a modern x86
oder ARM based system with either an Nvidia or AMD GPU. It is unlikely that CMake is not available
for these, especially considering CMake is recommended by AMD to be used for the HIP language.
One of their reasons to recommend CMake is because it natively supports the HIP language and it
can compile for both Nvidia and AMD via switch. It does however require the very recent version
3.28 of CMake.

Another practice many benchmarks follow is to ship certain libraries they depend upon. Common
examples are argument parsers or matrix file parsers. We excluded this approach, as CMake already
provides a way to fetch and find required libraries via FetchContent and find_package. Consequently
it keeps the actual benchmark free of unrelated code. This approach may lead to the benchmark
being more prone to build failures, as it depends on libraries which may not be as easily obtainable
in the future. However, since the ROCm libraries are non-trivial to setup and cannot be included in
the project in the first place, this becomes comparatively less of a problem.

In the end, compiling MPK-HIP is as simple as compiling any other CMake based project. The
user runs cmake .. in the build subdirectory and optionally specifies -DMPKHIP_GPU_ARCH to select
which GPU architecture to compile for. Alternatively, the included build.sh simplifies the GPU
architecture choise by providing an interactive selection.

3.2.2 Dependencies

We will briefly discuss the software libraries MPK-HIP depends on. Some of them provide merely
“boilerplate” code for features which C++ natively does not support, like JSON (via nlohmann::json),
argument parsing (via argparse), or modern format strings (via libfmt). Others provide more
important functionality:

• Eigen: The original RACE CPU benchmark uses custom implementations for dense and sparse
matrices. One of the reasons is that the CPU benchmark requires NUMA aware memory
allocation to achieve best performance. Since our benchmark runs on a single GPU, Non-
Uniform Memory Access (NUMA) nodes are not relevant for kernel execution and no custom
allocation is required. Due to this, we chose to use an off-the-shelf solution for matrix handling
on CPU before it is uploaded to GPU. In addition we used it to provide a CPU-based reference
SpMV implementation for MPK to detect implementation errors.

• fast_matrix_market: Because MPK-HIP has to ultimately load matrices from disk for bench-
marking, a solution for matrix loading is needed. In this chapter we only present results
for custom generated stencil matrices, so in theory a custom solution would be sufficient.
As other matrices from the SuiteSparse Matrix Collection [31] are discussed in Chapter 4,
we chose to use the Matrix Market format. Many existing benchmarks come with the NIST
implementation in ANSI C or use a custom parser. We excluded it, as the NIST implementation
requires extensive changes to correctly interoperate with modern C++. We also chose against
an entirely custom implementation as they often do not support all types of the Matrix Market
format. fast_matrix_market addresses that and in addition it can natively parse matrices into
Eigen matrix objects.
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• Thrust: As MPK-HIP attempts to use modern C++ coding standards, RAII memory management
is preferred over manual memory management. For GPU this is achieved by using Thrust’s
device_vector instead of manual handling via hipMalloc and hipFree. In addition, it provides
type checking for all memory handling outside of the GPU kernels.

A complete list of dependencies and versions is given in Table 3.1.

3.2.3 Operation Procedure

In the following paragraph MPK-HIP’s benchmark procedure is shown. The RACE source code comes
with example benchmarks, in particular mtxPower, which our benchmark is based upon.

1. RACE permutation: The matrix file is loaded from disk and RACE performs its matrix permu-
tation as explained in Section 2.8.

2. Instantiate Kernel: Since different types of kernels are implemented, different matrix formats
are used on GPU depending on the kernel the user selects. These formats are explained in
more detail in Section 3.2.5 and the following sections. It is possible to choose between a
fixed-value filled vector or randomly filled vector for matrix power initialization.

3. Warmup: As the very initial run may exhibit poor performance due to cold caches and unusually
high overhead, the kernel is executed a few times. In addition this step checks how many
times the kernel has to be called in order to run for a single second. This measurement is
performed several times while increasing the call count, since a very low number of kernel
calls may still have very high overhead. By increasing the call count that initial overhead is
reduced to a minimum.

4. Validation Run (optional): When implementing a new kernel or determining the accuracy of
an existing kernel, it is important to compare the results against a reference implementation.
In this step a CPU based implementation is performed via a simple matrix-vector product from
the Eigen library. This allows to detect numerical or implementation errors.

5. RACE Kernel Run: Since the number of iterations has already been determined during warmup,
the kernel is now called that number of times. Either it is called directly, or by first recording
a HIP graph and then executing this graph (see Section 3.2.8). By running the kernel, we

Library Description Version
RACE MPK cache blocking library latest git
ROCm HIP language and AMD GPU support 5.7.1 / 6.0.0
CUDA Nvidia GPU support 12.2
Thrust GPU memory management (see CUDA/ROCm)
fast_matrix_market Matrix Market reader/writer 1.7.5
Eigen Linear Algebra Math Library 3.3.8
argparse argument parsing 3.0
libfmt modern C++ string formatting 10.1.1
nlohmann::json JSON library 3.11.2

Table 3.1 – List of MPK-HIP’s dependencies. ROCm 6.0.0 was only used for AMD GPUs. RACE
does not have stable version numbers.
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actually refer to instructing RACE to execute the kernel with enabled blocking in order to
calculate the requested power. Explicit synchronization barriers (hipDeviceSynchronize) are
used before the first and after the last iteration to solely measure the time spent on actual
kernel execution. Memory copies from or to the GPU are not included.

6. Result Comparison (optional): If validation was requested previously, the reference im-
plementation is compared to a single kernel run via RACE. The accuracy results are logged
accordingly.

7. SpMV Kernel Run: The purpose of MPK-HIP is to determine whether it is possible to get better
performance via RACE. In this last step the same power is calculated with the same number
of runs to determine the speedup of RACE compared to an implementation via traditional
matrix-vector products. This classic SpMV run uses the already permuted matrix in order to
reduce the speedup to effects from cache blocking only.

If no validation is requested, the benchmark will run and output its values as JSON. This allows
processing the results via scripting languages. Our exact procedure is explained in Section 3.3.

Unfortunately we discovered a problem with the RACE library where it would ignore the number
of threads passed during initialization. When running the benchmark, care must be taken to set the
environment variable OMP_NUM_THREADS=1. Otherwise RACE may malfunction and cause MPK-HIP
to report incorrect results.

3.2.4 Implementation and Optimization

In the following sections we explain the functionality of the most important kernels that we im-
plemented. The same kernel is used to benchmark cache blocked MPK performance with RACE
and classic SpMV MPK. Thus optimizations to the kernel will speed up both RACE and SpMV based
MPKs.

During optimization we benchmarked these kernels against two standard matrices: A 3D 7pt
256x256x256 stencil matrix and a 3D 27pt 128x128x256 stencil matrix. We chose these as they
typically perform better due to their regular structure. The 27pt stencil grid size was decreased to
offset for the larger stencil compared to the 7pt. Both matrices do not fit in the cache of any GPU
we tested (see Table 4.3).

The code of the kernels that are shown in the following sections are simplified versions only.
They do not cover edge cases of HIP block sizes and do not show arbitrary row start and end pointers.
Because these cases only slightly change the row index calculation and early kernel returns, we do
not consider these relevant in terms of performance.

3.2.5 CRS

In this chapter we discuss the first fundamental kernel, which is MPK based on the CRS5 format. It is
very similar to the CRS kernel used in mtxPower from RACE’s original source code and serves as the
first level to compare performance of moving from CPU to GPU. For MPK-HIP and mtxPower, there
is no inherent requirement to use the CRS format. This only refers to the calculations since during
preprocessing RACE still needs to the matrix in CRS format. For the kernel, the only requirement
is that it uses a row based format, which means that rows need support for random access. While
the rows are not necessarily processed in a random order, RACE requires its kernel to start and to

5In practice the terms CRS and CSR are often used interchangeably. As following plots may hint, the MPK-HIP kernel
implementations use the term CSR internally.
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stop at an arbitrary row when processing a level group. Accordingly, we will also cover other matrix
formats than CRS in the following sections.

The basic functionality of the standard CRS kernel and its memory layout is shown in Figure 3.1.
In contrast to performing a matrix-vector product on CPU, where one thread typically processes a
large number of rows, the high thread count on GPU requires the work to be split up into smaller
pieces. Our implementation assigns a single GPU thread to a single row. If the matrix has a sufficient
number of rows, the GPU will be saturated. For example, on the RX 6900 that would be 81920 rows
and 218112 rows on the L40. In opposite, if the number of rows, thus threads, is too small, the GPU
will not be saturated and performance may not be ideal. However, we do not optimise for small
matrices because cache blocking is only meaningful solution for data which does not fit in the cache.

Figure 3.2 shows the performance of the naive GPU CRS kernel plotted over a range of powers.
As mentioned previously, two stencil matrices are shown, and their MPK performance is compared
between RACE and a regular SpMV based MPK. A very clear problem can be seen in the graphs with
regard of performance on the RX 6900. Not only does the RX 6900 not benefit at all from RACE, it
actually is worse than a traditional SpMV MPK calculation. Additionally, the figures are much lower
than the approximated 85 GFLOP/s from (2.2) for regular SpMV. In contrast, the L40 becomes three
times as fast as regular SpMV using RACE power calculation. However, no false conclusions should
be made about speedup as long as the SpMV based MPK runs suboptimally. Once one considers
that both cards exhibit only half the performance on the 27pt stencil with SpMV, it likely runs very
poorly. Furthermore it is also far below the 144 GFLOP/s roofline.

These roofline figures ignore vector overhead and assume ideal caching behavior for col[i].
Accordingly the data intensity of 6 bytes per FLOP are approximate only. For very sparse matrices
this can be 9 bytes or higher, but for the two stencils matrices it is in the range of approximately
6 to 7. Therefore estimation errors within this relative deviations are tolerable, but as shown the
measured performance is much larger, especially on the RX 6900.

One common problem on GPUs for CRS kernels is load imbalance, as each thread may have to
process a vastly different number of coefficients. This is not investigated, as stencil matrices do not
have this problem since most rows are equally long. Both matrices under test are larger than one
gigabyte to make sure they do not fit in the cache of the tested GPUs. RACE’s cache size parameter
is chosen with twice the size of the GPU’s LLC. This is due to an implementation detail of RACE and
is discussed in more detail in Section 4.4.2.5, but it also does not affect the standard SpMV results.
As load imbalance is likely not the problem, the poor numbers must be caused by something else.

1 void gpu_crs(val , col , rowptr , b, x) {
2 row = blockIdx.x * blockDim.x + ↘

threadIdx.x;
3 sum = 0.0;
4

5 for (i = rowptr[row]; i < ↘
rowptr[row +1]; i += 1)

6 sum += val[i] * x[col[i]];
7

8 b[row] = sum;
9 }

(a) CRS kernel (gpu-csr).

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

(b) CRS data order.

Figure 3.1 – CRS on GPU example: The black arrow shows the order of the non-zeroes in
memory.
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(a) 3D 7pt-stencil (256x256x256).
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(b) 3D 27pt stencil (128x128x256).

Figure 3.2 – MPK-HIP: gpu-csr.

Unfortunately it is not possible to simply use vendor-optimized kernels, as they are typically limited
to operate on entire matrices and not just slices of rows. A key element that we have discussed in
Section 2.7 is the correct coalescing of memory accesses. In the following section we will explain
why this is a huge problem with the CRS kernel.

3.2.6 SELL-C-σ (naive)

The CRS format does a reasonable job to keep the sparse matrix’ memory footprint compact. As we
briefly mentioned, good memory ordering is crucial to get good performance on GPUs. Unfortunately
CRS is not ideal in this case. Good memory ordering means that all threads in a warp access the
memory in a continuous block. Although potentially an extreme example, Figure 3.1 shows that
the first column processed, which is accessed simultaneously, does not lie continuously in memory
as the arrow indicates. When all threads fetch a coefficient from the first column simultaneously,
the block accessed is not continuous and cannot be coalesced. Multiple matrix formats attempt to
circumvent this, and most of them use a column-major layout instead of a row-major layout.

One of the challenges that a column-major layout has to solve is how to deal with uneven row
lengths. All coefficients in neighbouring rows are supposed to be processed in parallel and the

1 void gpu_scs ( val , col , chunkPtr , chunkLen , b , x ) {
2 row = blockIdx . x * blockDim . x + threadIdx . x ;
3 chunk = row / C;
4 idx = row % C;
5 p t r = chunkPtr [ chunk ] ;
6 rowlen = chunkLen [ chunk ] ;
7 sum = 0 .0 ;
8

9 for ( i = 0; i < rowlen ; i += 1) {
10 va lCo l Idx = p t r + i * C + idx ;
11 sum += va l [ va lCo l Idx ] * x [ co l [ va lCo l Idx ] ] ;
12 }
13

14 b [ row ] = sum;
15 }

(a) SELL-C-σ kernel (gpu-scs-cm-trad).

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

(b) SELL-4-1 data order, correct
memory coalescing for Ntpw = 4,
stripe shows padding.

Figure 3.3 – SELL-C-σ on GPU example: The black arrow shows the order of the non-zeroes in
memory.
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uneven memory accessed has to be fixed. This is usually solved by padding rows to be equally long,
and a simple example of this is the ELLPACK format, which we covered previously. Although not
with a stencil matrix, the ELLPACK format has the disadvantage that very few long rows can greatly
increase matrix size. MPK-HIP implements an ELLPACK kernel, but we do not discuss its results, as
we consider SELL-C-σ to be a better compromise for arbitrary matrices.

With SELL-C-σ the matrix is only ordered column-major for small chunks with C number of
rows (see Figure 3.3b). If the chunk size C is chosen to fit the GPU’s warp size of 32, memory access
can be coalesced and thus better performance is expected. One of the reasons why SELL-C-σ can
reduce the amount of padding is that the rows are only padded to the maximum row size within a
chunk. This can be improved further by increasing the sorting context σ since large rows will be
grouped with other large rows. Unfortunately it is not possible to reorder rows in our case because
this will conflict with RACE, as it already reorders the matrix during level formation. While this
makes it impossible using SELL-C-σ to its full extent, it is still better to use it with no sorting instead
of using CRS or ELLPACK. Therefore MPK-HIP implements SELL-C-σ, but only with σ = 1. This
includes all results in this chapter and the final evaluation (see Chapter 4).

In Figure 3.3b the results for the SELL-C-σ kernel can be seen. Compared to previous results
in Figure 3.1, the graph for the RX 6900 is vastly different. The baseline performance with the
SpMV 27pt kernel speeds up from 15 GFLOP/s to 75 GFLOP/s. This is already much closer to the
85 GFLOP/s roofline. Although not as high, the SpMV performance for the 7pt kernel also increases.
It is an extreme example, but it shows very clearly why coalescing memory accesses is important to
achieve good performance on GPU.

Because the performance of the L40 with CRS was already much better, its difference is not as
large. For 27pt SpMV performance increases by at least a factor of two while the 7pt performance
remains for the most part unchanged. The L40 already experienced speedup over SpMV with RACE
with CRS, but in this measurement with SELL-C-σ the peak performance is slightly higher while
performing a lot better overall for non ideal powers. Overall, using SELL-C-σ over CRS is a very
clear decision. Unfortunately the RX 6900 does not profit from RACE as much as the L40, but more
detailed explanations for this behavior can be found in Chapter 4.

With this higher base performance, one more effect is visible in the RX 6900 graph. SpMV
performance is expected to be constant regardless of the power calculated, but the RX 6900 graph
is not entirely flat. There is a peak-to-peak variation of about 5% for all different powers. The
graph does not show that this 5% variation also occurs on a run to run basis with the same power.
Consequently this can be attributed to measurement errors. It is unclear whether this is caused by
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(a) 3D 7pt-stencil (256x256x256).
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(b) 3D 27pt-stencil (128x128x256).

Figure 3.4 – MPK-HIP: gpu-scs-cm-trad (C = 32,σ = 1).
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the GPU hardware or the driver stack, but due to HIP’s novelty, we consider a driver problem to be
a reasonable assumption. Since the L40 does not show this problem in this graph nor in any other
graph that we present, we assume that the benchmark itself can be excluded as root cause.

The 7pt stencil performance is overall lower compared to 27pt, but that is expected, as with
fewer values per row cause more overhead per row. Exact explanations for these differences can
be found later in Chapter 4. Yet there are still more options for optimization. During execution
we observed for the RX 6900 and the 27pt matrix that each RACE kernel call would operate on
~47000 rows. In contrast, each classic SpMV kernel would operate on ~4200000 rows. The latter
one easily saturates the RX 6900 with threads while the former one does not. We considered that
this could have a negative impact on achievable memory bandwidth.

With the currently described SELL-C-σ kernel, a single thread is assigned to each row like for
CRS. In order to exclude the possibility of the GPU not being saturated properly, we opted to extend
this SELL-C-σ kernel to use more threads per row. This is covered in the next section.

3.2.7 SELL-C-σ (multi threaded)

In this section we show how to extend our previous SELL-C-σ kernel to utilize multiple threads
per row. Its main intention is to increase the total number of threads in order to saturate the GPU,
which would not saturate otherwise. We will assume that the matrix benefits from that, even though
there may be cases where using more threads may result in worse performance. For example, if the
number of rows is already high enough to launch enough threads, this optimization is unnecessary
and may even be counterproductive.

The simplest solution to use multiple threads per row is to first divide a row by the number of
threads it is supposed to be processed by and let second each thread only multiply and add a subset
of the row. The rows are then divided by a thread count which is a power of two, as this simplifies
reduction. That way each row’s result can be accumulated like a binary tree. Dividing by a power of
two has the distinct disadvantage of more idling threads, as a row length may not necessarily be
divisible by a power of two. This is a consciously accepted problem, as the only well performing
solution would be to pad the matrices to the correct row length. However, padding the rows to a
length of a power of two would increase storage requirements beyond SELL-C-σ’s usual padding.
In that case the additional bandwidth required could substantially decrease speedup.

During implementation, we considered multiple methods of reduction. One of the most commonly
used methods to interchange data with nearby threads are shfl instructions, albeit being limited to
threads from within the same warp. This is generally the fastest way for data exchange between
threads, as there are little to no synchronization cost. On the other hand it makes it impossible
to exchange data with threads from different warps which limits the maximum usable number of
threads per row to 326. So using more threads requires different synchronization and interchange
mechanisms, shared memory being one example. Multiples warps can access shared memory from
within a block which would increase the possible number of threads to typically 10247. We initially
attempted to implement a solution using shared memory. Since multiple warps do not run interlocked
they require explicit synchronization, and therefore the performance deteriorated by a factor of two.
Thus we did not continue to analyze this approach.

Due to the former reasons, our multi threaded kernel uses a shfl instruction as means for result
reduction. This restricts the kernel to a thread increase factor of 32. One could construct sparse
matrices where that factor still would not launch a sufficient number of threads. However we assume

6The investigated GPUs have a warp size of 32. There are AMD GPUs with warp sizes of 64, but these are not discussed
here.

7Maximum number of threads per block varies between GPUs
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that such extreme matrices do not occur. Figure 3.5a and Figure 3.5b visualize how the shuffle
SELL-C-σ kernel operates on a sample matrix.

If the memory layout of SELL-C-σ is supposed to remain unaltered, an inherent requirement
of Nthreads_per_warp = C · Nthreads_per_row results, abbreviated as Ntpw and Ntpr. In case this relation
is violated, memory will either not coalesce correctly (see Figure 3.5d) or the shfl instructions
will have to exchange data outside of their warp (see Figure 3.5c). We performed some attempts
besides shared memory to circumvent this restriction by altering the memory layout to a row-major
and column-major hybrid. However it ultimately ended up in causing edge cases which affected
coalescing and accordingly poor performance. It should be noted that the dependence of C on Ntpr

is not a problematic restriction. After all, SELL-C-σ parameter C should be chosen according to the
compute architecture. There is no general reason why choosing an arbitrarily C should increase
performance. Moreover, it may even deteriorate performance, as more padding and matrix storage
overhead is required.

The final kernel with multiple threads per row works similarly to the naive approach, but stride
and shfl reduction (see Figure 3.6) are added. Related performance results are plotted in Figure 3.7.
On the first impression, these seem to be similar to the results observed in the previous section.
Notable difference are as follows. First, RACE performance for 7pt on the L40 is ~15% lower
than with the single thread per row SELL-C-σ implementation. Second, the RX 6900 performance
actually increases for higher powers on 27pt.

Thread 0 + 2 + 4 + 6

Thread 1 + 3 + 5 + 7

Thread 8 + 10 + 12 + 14

Thread 9 + 11 + 13 + 15

Thread 16 + 18 + 20 + 22

Thread 17 + 19 + 21 + 23

Thread 24 + 26 + 28 + 30

Thread 25 + 27 + 29 + 31

(a) SELL-2-1: Ntpr = 4, Ntpw = 8.

Thread 0 + 4

Thread 1 + 5

Thread 2 + 6

Thread 3 + 7

Thread 8 + 12

Thread 9 + 13

Thread 10 + 14

Thread 11 + 15

(b) SELL-4-1: Ntpr = 2, Ntpw = 8.

Thread 0 + 4 + 8 + 12

Thread 1 + 5 + 9 + 13

Thread 2 + 6 + 10 + 14

Thread 3 + 7 + 11 + 15

Thread 16 + 20 + 24 + 28

Thread 17 + 21 + 25 + 29

Thread 18 + 22 + 26 + 30

Thread 19 + 23 + 27 + 31

cannot shuffle over boundary

(c) SELL-4-1: Ntpr = 4, Ntpw = 8: Impossible
reduction over warp boundary.

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

coalescing requires Ntpr = 2

(d) SELL-4-1: t pr = 1, Ntpw = 8: Incorrect
data layout.

Figure 3.5 – SELL-C-σ on GPU example: Multiple threads per row are used. Dashed line mark
warp boundary. (a) and (b) show valid parameters for Ntpw = C · Ntpr. (c) and (d) are both
invalid. (c) cannot work because the row result needs communication between two warps. (d)
does not deliver good performance because data layout does not allow memory coaslescing.
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1 void gpu_sc s_ sh f l ( val , col , chunkPtr , chunkLen , b , x ) {
2 thread = blockIdx . x * blockDim . x + threadIdx . x ;
3 threadsPerChunk = THREADS_PER_ROW * C;
4 threadInChunk = threadIdx . x % threadsPerChunk ;
5 chunk = thread / threadsPerChunk ;
6 row = threadInChunk % C + chunk * C;
7 idx = row % C;
8 threadInRow = threadInChunk / C;
9 p t r = chunkPtr [ chunk ] ;

10 rowlen = chunkLen [ chunk ] ;
11 sum = 0 .0 ;
12

13 for ( i = threadInRow ; i < rowlen ; i += THREADS_PER_ROW) {
14 va lCo l Idx = p t r + i * C + idx ;
15 sum += va l [ va lCo l Idx ] * x [ co l [ va lCo l Idx ] ] ;
16 }
17

18 for ( i = THREADS_PER_ROW >> 1; i > 0; i >>= 1)
19 sum += __shfl_down (sum , i * C) ;
20

21 i f ( threadInRow == 0)
22 b [ row ] = sum;
23 }

Figure 3.6 – SELL-C-σ shuffle kernel (gpu-scs-cm-shfl).

A decrease of 7pt stencil performance may be caused by scheduling overhead, as in this case
there are four times as many threads to spawn, but that in itself should not cause problems. It is
more likely that for a Ntpr = 4 and a Nnzr = 7 one thread may always be idling for the last three
coefficients in a row. This could be a problem if all threads are saturated, since the GPU has to wait
for these idling threads to finish before scheduling new threads. However since SpMV performance
remains unchanged, we do not think that this causes the performance drop.

The RX 6900 experiences a similar drop, but only for powers near five. In addition, there is
notable increase in performance with RACE for 27pt, but only for powers greater than five. We
attribute this increase to better thread saturation, as higher powers will form smaller level groups,
and thus smaller number of threads per kernel call. For example, on the RX 6900 a single threaded
kernel at p = 7 will only launch ~34000 threads, which would not nearly saturate the available
81920. With C = 8 this count quadruples and easily saturates all threads.
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(a) 3D 7pt-stencil (256x256x256).
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(b) 3D 27pt-stencil (128x128x256).

Figure 3.7 – MPK-HIP: gpu-scs-cm-shfl (C = 8,σ = 1).
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Concluding for this optimization step, using more threads results in small benefits, as long as
the row length sufficiently large. In addition, more threads per row tend to get better performance
if the thread count is too low per kernel call. We present more results with respect to thread count
in Section 4.4.2.4, but deciding on a Ntpr will ultimately depend on the matrix being used or power
calculated.

3.2.8 HIP Graph

The last optimization step the SELL-C-σ kernel is reducing call and synchronization overhead.
Unfortunately it is not possible to avoid overhead entirely, but HIP (or CUDA) still can reduce
overhead by the use of its Graph API. One of its main benefits is the support of fine grained
workloads where each kernel call can depend on other kernel calls which forms a graph. This is a
superset of the linear dependency chain that RACE requires. Thus the Graph API can still be used
to replace many kernels calls with a single one, to ideally reduce call overhead. Generating this
graph has an additional upfront cost, but it can be neglected when the same MPK is executed many
times. To implement graph support, changes to the kernels themselves are not required. Instead,
the regular kernel calls are not executed directly but recorded. Once this recording is completed,
the generated graph can be executed by just a single call and it is possible to repeat it arbitrarily.

We implemented graph support in MPK-HIP and observed the results shown in Figure 3.8. For
SpMV there is no observable difference for both GPUs and matrices, but for RACE there is a notable
20 GFLOP/s increase for p > 3 (L40). It is expected that SpMV does not yield a significant difference.
After all, the same kernel calls are issued with and without graph, and each of these calls still needs
synchronization at the end. The only way the Graph API can optimize execution is to perform
ahead-of-time scheduling.

For SpMV the generated graph is likely too simple to yield a meaningful difference on any GPU.
This is different to RACE, where a lot more kernel calls have to be issued. As one can see it does
make a difference on the L40, but unfortunately this is not the case for the RX 6900. This is likely
due to HIP’s prematurity. In its current state the Graph API may solely exist to be API compatible
with CUDA. We were able to measure performance regressions when using graphs on ROCm version
5.6 and older.
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(a) 3D 7pt-stencil (256x256x256).
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(b) 3D 27pt-stencil (128x128x256).

Figure 3.8 – MPK-HIP: gpu-scs-cm-shfl, hip-graph (C = 8,σ = 1).
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3.2.9 Summary

By applying all the optimization steps above to our implementation, we are able to perform an MPK
on a large matrix with significant speedup compared to an SpMV based MPK. Starting off the CRS
implementation, the performance increases on the RX 6900 from 15 GFLOP/s to 110 GFLOP/s (best
case) and on the L40 from 60 GFLOP/s to over 250 GFLOP/s (27pt stencil). Compared to the fully
optimized SELL-C-σ SpMV, the performance increase by using RACE is not as large, but for the L40
it is still a significant increase from 130 GFLOP/s to 255 GFLOP/s. On the RX 6900 it is only an
increase from 75 GFLOP/s to 105 GFLOP/s. We discuss the reasons for these exact speedups in more
detail in Section 4.4.3. In addition to that we will also compare the results with a larger variety of
matrices, and the A100 and GH200 GPUs.

During implementation we also tested code optimization techniques such as unrolling and
templating. However, we were not able to observe any meaningful differences with them. After
all, the code is heavily bandwidth bound and spends most of its time waiting for memory loads.
It would be rather surprising if reducing any other overhead would cause significant performance
differences.

3.3 Benchmarking Infrastructure

Obtaining consistent benchmark results is crucial for drawing conclusions from hardware and
software behavior. Since we had to run multiple benchmarks many times repeatedly with different
parameters on different machines, we needed means to achieve that. We developed two tools,
bench.py and eval.py. The purpose of bench.py being to submit benchmark jobs with configurable
parameter combinations to multiple machines. Afterwards, eval.py would then processes their results
and filters them based on a subset of the inspected parameters to generate graphs.

We separated these functionalities since malfunctions in a single tool would require the benchmark
suite to rerun. These runs would sometimes take multiple hours to complete. In addition it enabled
more flexible analysis by being able to filter parameters and to quickly recreate graphs. An overview
of this process can be seen in Figure 3.9.
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HPC Cluster

genoa2
L40

euryale
RX 6900 XT

gracehop1
GH200

a0536
A100

testfront1 alex1

bench.py

MPK-HIP:
matrix: ...
kernel: ...
C: 8, 16, 32

BabelStream:
size: 2048

gpu-l2-cache:
...

results.json

eval.py

MPK-HIP:
GFLOP/s x matrix
GFLOP/s x C
GFLOP/s x kernel

BabelStream:
GB/s x size

gpu-l2-cache:
GB/s x size

...

ML_Geer.csv

nlpkkt200.csv

gpu_crs.csv

gpu_scs.csv

...

Figure 3.9 – Benchmarking Infrastructure: bench.py connects to the cluster front ends, launches
jobs, and collects the results. The results are then processed by eval.py to create plots.
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4A N A LY S I S

4.1 Overview and Goals

In the previous chapter we discussed some promising performance improvements with MPK-HIP.
However we have not yet provided a model that accurately predicts the measured performance
figures. For example we noticed an approximate 2× best case increase on the L40 and a less but still
substantial 1.4× increase on the RX 6900.

In order to outline the measured MPK and SpMV performance, we compare results of multiple
independent benchmarks. The benchmarks we discuss are BabelStream for memory bandwidth
measurement, gpu-l2-cache for cache bandwidth measurement, MPK-HIP for the main results, and
gpu-small-kernels for ramp up analysis. In addition we assess the accuracy of the simplified SpMV
roofline model from Section 2.4. We then show a refined version of this roofline model, and compare
it against measurement results. We then proceed by attempting the same for MPK performance with
RACE, followed by a discussion of encountered deviations. In the end we finish by doing a final
comparison between all GPUs and their performance.

One main difference compared to the previous chapter is the introduction of new GPUs to our
tests. We briefly hinted that performance on A100 and GH200 datacenter GPUs would not be good.
To further explore the problems of MPKs we included them in our results. Note that we used the
80 GiB SXM4 model for the A100 and we used the 96 GiB GH200 “Grace Hopper” model for the
H100.

4.2 BabelStream

Using purely theoretical DRAM bandwidth numbers (see Section 2.4) may provide a good approxi-
mation, but it is possibly misleading for the real world performance. Hardware overhead is usually
ignored, and programmatically achievable bandwidth may not necessarily match the nominal fig-
ures. The BabelStream benchmark is a commonly used benchmark to obtain real-world memory
performance on GPU, previously called the GPU-STREAM [5] benchmark. It is not limited to get
the maximum sustained bandwidth. It is also usable to determine the ramp up behavior, which is
an important factor for kernel performance with few threads. A GPU can have an arbitrarily high
sustained bandwidth and may still be unusable, if its beneficial use is limited to unrealistically large
problem sizes.

As can be seen in Table 4.1 the real world performance may be 20% less than nominal in some
cases (see Table 2.1). For example, the RX 6900 might get only ~80% of the nominal performance
for Add and Triad, being the same for the GH200 on Copy and Mul. Due to different utilization
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4.2 BabelStream

GPU GB/s (Copy) GB/s (Mul) GB/s (Add) GB/s (Triad) GB/s (Dot)
AMD RX 6900 XT 458 456 415 415 488
Nvidia L40 775 769 768 802 838
Nvidia A100 (80 GiB) 1746 1746 1771 1773 1752
Nvidia GH200 (96 GiB) 3215 3207 3519 3523 3744

Table 4.1 – BabelStream memory performance (-s 1024 · 219).

and data dependencies it is possible that the hardware is not able to hide memory latency. While
of course the exact memory performance will still differ for different GPU kernels, the worst case
figures in Table 4.1 may still be a good indicator for a roofline analysis.

One more important metric to test against is ramp up behavior, which means how fast the
GPU reaches its sustained memory performance when increasing the number of elements. Because
BabelStream uses exactly one thread per element, this also gives insight about how quickly the GPU
is saturated with threads. More elements per thread might scale differently, but BabelStream only
provides kernels with one element per thread.

Figure 4.1 demonstrates how the Copy stream scales on different GPUs. On the left all GPUs
perform at lowest bandwidth, since the problem size is too small to saturate the GPU. On the right
all GPUs reach the maximum bandwidth limited by DRAM. The latter words are rather carefully
chosen, as the maximum DRAM bandwidth does, as shown in the graph, not truly represent the
maximum achievable bandwidth. Both the RX 6900 and L40 show a peak in the middle which is
above the maximum sustained bandwidth for larger data. This is because both GPUs ramp up fast
enough for small enough data to provoke cache bandwidth instead of DRAM bandwidth. Of course
these peaks do not show the real maximum cache bandwidth, as a stream-like benchmark is not
suitable to correctly determine it. Cache performance will be discussed in more detail in Section 4.3.
As expected, the graphs converge to identical values as shown previously in Table 4.1.
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Figure 4.1 – BabelStream bandwidth (double precision, copy): Dashed lines show LLC size.
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4.2 BabelStream

Another important effect is the ramp up speed. One can clearly see the L40 being the fastest with
the smallest data set, even though GPUs like the A100 and GH200 are considered to be GPUs with
higher performance. This is likely because the L40 uses a consumer chip, which is built primarily for
computer graphics. Thus faster ramp up may be more important for the L40 compared to the A100
and GH200, which are specifically built for datacenter applications. Out of all GPUs the RX 6900 is
not only the slowest, but it also ramps up slower than all others. That is even though it also is a
graphics oriented GPU and has a larger cache than the L40.

Having good ramp up behavior is crucial for running small kernels at good performance. We
already briefly discussed thread saturation as factor in Section 3.2, but in addition there is also base
cost for each kernel call. As we will discuss later in Section 4.4.2.4, this poses a limitation for how
well the RACE MPK is able to operate on GPU.

Last, the performance drops occur as expected once the data set size exceeds the cache size. The
RX 6900 has 128 MiB of cache, which is exactly where the graph starts to substantially drop off. For
the L40 this also occurs approximately at its cache size of 96 MiB. We expected to see a peak for the
A100 at 50 MiB and GH200 at 60 MiB, but no such peak is visible. Both GPUs already run into the
DRAM bandwidth limit before exceeding their cache size. The A100 has a tiny local peak at 28 MiB,
but it is too small to be of significance. This behavior on the A100 and GH200 further hints why we
did not run our initial optimization benchmarks on the A100 and GH200.

4.3 gpu-l2-cache

As shown in the previous section, measuring memory bandwidth may be influenced by cache behavior.
If more detailed information on cache sizes and cache speed is required, a more precise and targeted
benchmark compared to BabelStream is needed. RACE MPKs work by reusing data from caches to
avoid loading them from memory multiple times. Expecting these caches access to be negligibly
fast would be naive to assume. Consequently we have to precisely measure how fast the caches are
to reasonably predict the MPK performance (see Section 4.4.3). For this, and to find out the data
boundaries at which caches incur a performance penalty, we use the gpu-l2-cache benchmark [9].
Although its name might suggest otherwise, it is also able to measure cache performance of the L3
cache present on the RX 6900, not just L2.

gpu-l2-cache determines the bandwidth for a given data set size by doing the following. A kernel
call is issued with a large number of threads to ensure the GPU is saturated. Each thread then loads
32 double precision values from a buffer which is sized accordingly to the data set to test. The data
is read in a spread pattern to avoid caching such that the data is unlikely to be read from cache, if
the overall data set does not fit in a cache level.

Figure 4.2 shows the bandwidth observed as by gpu-l2-cache over an increasing data set size. As
expected all GPUs show declining bandwidth as data set size is increased. All values converge against
their DRAM bandwidth limit for large data size. The exact bandwidth observed (see Table 4.2) is
actually slightly higher than the maximum of BabelStream. Compared to operations performed by
BabelStream, gpu-l2-cache is most comparable to Dot, as this is the only operation which does not
write to global memory. The only real difference is that gpu-l2-cache does not even write to shared
memory and that it performs more reads per thread than Dot.

Cache boundaries are clearly distinguishable in ??. We recall that the RX 6900 has 128 MiB of
L3 cache. This is exactly where the bandwidth drop is visible. The same applies for the L40, which
drops at 96 MiB. In addition to the L3 to DRAM drop on the RX 6900, there is another drop for
the transition from L2 to L3 at ~6 MiB. This is slightly higher than the real L2 cache size of 4 MiB.
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Figure 4.2 – gpu-l2-cache bandwidth: Dashed lines mark the real cache size.

GPU GB/s (LLC) GB/s (DRAM)
AMD RX 6900 XT 1950 491
Nvidia L40 5286 833
Nvidia A100 (80 GiB) 5325 1778
Nvidia GH200 (96 GiB) 9715 3883

Table 4.2 – gpu-l2-cache DRAM and LLC bandwidth at respective plateaus. LLC refers to L2 on
Nvidia and L3 on AMD.

However, the L2 to L3 drop is not important for the scope MPKs, since it will be too small for being
relevant for cache blocking.

Both the A100 and GH200 show a significant drop as well, but it occurs earlier as their caches
are not as big. Instead, they already experience a drop before their real cache size. This earlier
than expected drop may be due to the two-way cache partitioning the A100 is using, and likely the
GH200 experiences a similar effect. Another possibility is a more aggressive eviction strategy, since
the drop slope ends precisely at the cache’s real size.

The most significant observation in the graphs are the speedups. The large caches of the RX 6900
and L40 are clearly measurable, and bandwidth becomes about six times as fast for data that resides
in cache. Albeit still present, the speedup on the A100 and GH200 from going to DRAM to cache is
not as large and is “only” two to three times. One more thing that should be mentioned with respect
to the L40 cache bandwidth is that the bandwidth from the L2 cache would saturate at ~4 TB/s
due to a compute limit for earlier revisions of the benchmark. Although both L40 and RX 6900
use consumer chips, this problem only occurred on the L40, as its double precision compute to
bandwidth ratio is slightly lower compared to all other GPUs.
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4.3 gpu-l2-cache

For the RX 69008 and L40 we observed a fast ramp up and significant speed ups compared to
DRAM performance. This already shows why the cache blocking with RACE can perform well. The
cache bandwidth speedup on the RX 6900 is slightly less than on the L40, so one might assume that
the RX 6900 should experience similar speedup when using RACE. As we already briefly discussed
the performance of RACE in Section 3.2.8, the performance gain is in fact not as high. While there
is measurable speedup, it is much lower. We discuss the exact influence of the cache bandwidth in
Section 4.4.3 in detail. Here it is noted, that the practically usable cache bandwidth on the RX 6900
is not as high as gpu-l2-cache measures it.

4.4 MPK-HIP

4.4.1 SpMV Performance

4.4.1.1 Performance Model

Previously, we created an approximate roofline model for a classic SpMV kernel which assumed a
data intensity of 6 bytes per FLOP. This is a reasonable approximation, but not accurate enough for
a detailed analysis. For example, the previous model assumes x to be always cached, which is not
true in practice.

In the context of our new model, we use a different definition for cached and uncached. Unlike
normal bandwidth analysis, we have to carefully differentiate between DRAM and LLC bandwidth.
So it must be reasoned well whether a memory operation is cached at all, and if it is cached, from
which level cache it will be fetched from. In the following paragraph we will refer to cached, if data
can be fetched from L1, with the exception being the RX 6900, as its L2 cache is much smaller than
all Nvidia GPUs9. We will use the term uncached, if something is either fetched from DRAM or LLC.
Whether something will be fetched from LLC or DRAM will then depend on RACE’s execution order.

Looking at the kernel more closely (see previous Figure 3.6), there are six buffers being accessed
in total: val, x, col, b, chunkPtr, and chunkLen. The latter two are being accessed Ntpw times (for best
speed) per chunk, but we will assume that all but the first read will be cached. b is only accessed
once per row, when the result is written back to memory, and thus is uncached. As each matrix
coefficient is only processed once, val and col are always uncached. For a diagonal matrix, which
RACE attempts to transform to the input matrix, we assume that subsequent rows always reuse
all but one value from x. Consequently only a single access to x is uncached per row. With that
knowledge we can derive the following formulas:

Wr = 2NnzrFLOP (4.1)

Q r =
QchunkPtr +QchunkLen

C
+Qbr

+Qvalr
+Qcolr

+Q x r
(4.2)

Q r =
4 Byte+ 4Byte

C
+ 8 Byte+ Nnzr · 8 Byte+ Nnzr · 4Byte+ 8Byte (4.3)

Q r =
8 Byte

C
+ Nnzr · 12 Byte+ 16 Byte (4.4)

D =
Q r

Wr
=

4Byte
CNnzrFLOP

+ 6
Byte
FLOP

+
8Byte

NnzrFLOP
(4.5)

8Although the RX 6900 has the slowest ramp up, it is still able to ramp up to use the cache.
9In this paragraph we refer to caching between subsequent rows for classic SpMV, not level groups from RACE
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4.4 MPK-HIP

4.4.1.2 Performance Measurements

Any performance model is only useful, if it matches with measured results. In contrast to the
implementation phase in Section 3.2, we now consider a wide range of matrices with different
characteristics. For bandwidth we assume the measured DRAM bandwidth from gpu-l2-cache (see
Table 2.3). As a good reference we will include a custom matrix, which we call band-XY. This matrix
is perfect band matrix and attempts to eliminate any other factors which may be cause by the matrix
shape. Our model should cover this case very accurately. In addition we, we use the previous 7pt
and 27pt stencil matrices and a few other selected ones from the SuiteSparse Matrix Collection [31].
For bandwidth, we only assume DRAM bandwidth, as in this step we only measure a classic SpMV
MPK and all matrices are large enough to not fit in the cache. While we do benchmark a classic
SpMV, we do so with RACE’s permutation already applied, which should make our model more
accurate.

Table 4.3 shows the properties of the matrices under test, including DC=8 which is needed to
resolve (4.5). The measurement results compared with the estimations can be seen in Figure 4.3.
Black ticks denote the calculated estimates using the previous formula, while the bars show the
actual measurement results. The RX 6900 and the L40’s measurements match the model pretty
closely for most matrices. On the other hand, the A100 and GH200 are roughly off by 10%-30%.

The results can be categorized in two groups. Matrices which run below expected performance
for all GPUs, and those, where only A100 and GH200 perform below expectation. The most extreme
matrices are delaunay_n24 and kkt_power, where all GPUs perform poorly. Both matrices are extreme
in the sense, that they have a low number of rows which and an unusually high Nnzr. Since our
model is based on an ideal diagonal matrix, which has a constant Nnzr, suboptimal performance is
expected. cage14 is an outlier, as it also has a large variation in Nnzr, but since it is distributed more
evenly, the results are not severely affected.
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Figure 4.3 – MPK-HIP: classic SpMV, misc matrices, C = 8, gpu-scs-cm-shfl, p = 5, black ticks
show estimated numbers by Equation (4.5).
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Matrix Nr Nnz Nnzr DC=8 SELL-8-1 size
af_shell10 1508065 52672325 34.93 6.24 634.6 MB
audikw_1 943695 77651847 82.28 6.10 1092.3 MB
bmw7st_1 141347 7339667 51.93 6.16 96.1 MB
bone010 986703 71666325 72.63 6.12 919.3 MB
bundle_adj 513351 20208051 39.36 6.22 320.9 MB
cage14 1505785 27130349 18.02 6.47 343.9 MB
cant 62451 4007383 64.17 6.13 52.8 MB
cfd2 123440 3087898 25.02 6.34 39.6 MB
channel-500x100x100-b050 4802000 85362744 17.78 6.48 1036.3 MB
crankseg_1 52804 10614210 201.01 6.04 145.1 MB
delaunay_n24 16777216 100663202 6.00 7.42 1628.7 MB
dielFilterV3real 1102824 89306020 80.98 6.10 1596.7 MB
Emilia_923 923136 41005206 44.42 6.19 515.5 MB
F1 343791 26837113 78.06 6.11 382.9 MB
Fault_639 638802 28614564 44.79 6.19 365.2 MB
Flan_1565 1564794 117406044 75.03 6.11 1492.7 MB
G3_circuit 1585478 7660826 4.83 7.76 97.2 MB
gearbox 153746 9080404 59.06 6.14 127.0 MB
Geo_1438 1437960 63156690 43.92 6.19 799.5 MB
Graphene-8192-8192 67108864 872235016 13.00 6.65 10535.8 MB
gsm_106857 589446 21758924 36.91 6.23 264.1 MB
Hamrle3 1447360 5514242 3.81 8.23 67.7 MB
hollywood-2009 1139905 113891327 99.91 6.09 2333.4 MB
Hook_1498 1498023 60917445 40.67 6.21 973.1 MB
HPCG-128-128-128 2097152 55742968 26.58 6.32 673.8 MB
inline_1 503712 36816342 73.09 6.12 527.8 MB
kkt_power 2063494 14612663 7.08 7.20 278.3 MB
ldoor 952203 46522475 48.86 6.17 626.2 MB
Lynx649 64950632 978866282 15.07 6.56 12961.6 MB
ML_Geer 1504002 110879972 73.72 6.12 1335.7 MB
nlpkkt200 16240000 448225632 27.60 6.31 5419.0 MB
offshore 259789 4242673 16.33 6.52 63.5 MB
parabolic_fem 525825 3674625 6.99 7.22 44.7 MB
pwtk 217918 11634424 53.39 6.16 141.4 MB
rajat31 4690002 20316253 4.33 7.96 278.7 MB
RM07R 381689 37464962 98.16 6.09 502.3 MB
road_usa 23947347 57708624 2.41 9.53 1028.1 MB
Serena 1391349 64531701 46.38 6.18 886.2 MB
ship_003 121728 8086034 66.43 6.13 107.1 MB
stokes 11449533 349321980 30.51 6.28 5408.8 MB
thermal2 1228045 8580313 6.99 7.22 120.5 MB
Topi-real-256-256-256 67108864 802160640 11.95 6.71 9714.9 MB
webbase-1M 1000005 3105536 3.11 8.74 63.7 MB
xenon2 157464 3866688 24.56 6.35 50.6 MB
7pt-stencil-256-256-256 16777216 117047296 6.98 7.22 1424.5 MB
band-7 16777216 117440500 7.00 7.21 1426.0 MB
27pt-stencil-128-128-256 4194304 111777784 26.65 6.32 1351.8 MB
band-27 4194304 113246026 27.00 6.31 1363.1 MB

Table 4.3 – Matrix properties: Nr is number of rows, Nnz is number of non zeroes, size is the
number of megabytes for a SELL-8-1 encoded matrix, Nnzr is the average number of non-zeroes
per row, DC=8 is the calculated average data intensity in Bytes per FLOP for C = 8.

37



4.4 MPK-HIP

For the matrices performing as expected on the RX 6900 and L40 but not on A100 and GH200, the
performance can be improved by adjusting C . When choosing C = 32 for band-7, the performance
is improved to within 85% of the A100’s and GH200’s expected values.

To conclude, all matrices generally perform as predicted in (4.5), if the matrices do not have
extreme shapes. In these cases the DRAM bandwidth measured previously (see Table 4.2) matches
the results very well. This is surprising to a certain extent, as even BabelStream is not able to achieve
maximum bandwidth and BabelStream’s kernels are already as basic as possible.

4.4.1.3 In-Cache Performance

In the previous section we demonstrated that the maximum achievable DRAM performance is in
accordance with Pgpu-l2-cache’s measurement results for the RX 6900 and L40. In order to extend
the refined SpMV model to RACE, the LLC bandwidth needs to be determined. Modelling the
performance with RACE is rather complex, as it involves mixed DRAM and LLC bandwidth. Both
DRAM and LLC figures were already measured via gpu-l2-cache, but as observed with BabelStream the
real world bandwidth may differ for other kernels. To avoid uncertainty of pure in-cache performance
with regard to the SpMV kernel, we perform the same benchmark as in the previous chapter. However,
previous matrices were explicitly chosen to not fit in the cache, so in this measurement, the opposite
needs to be the case. The matrices now have to be carefully chosen in order to be large enough, but
not too large to exceed LLC size. This precise size restriction limits us to just synthetic matrices. We
use a band-27 matrix as before, but now Nr is varied in order to achieve the desired matrix size.
To avoid performance drops earlier than expected and to further analyze ramp up effects, we plot
performance over an increasing matrix size instead of using a single fixed size.

When looking at Figure 4.4, multiple effects are visible. The ramp up is similar to values measured
with BabelStream. As more and more threads start to process the matrix, performance increases.
Once performance has peaked, the RX 6900 and L40 show a comparable drop as for BabelStream.
The modelled in-cache peak performance with gpu-l2-cache’s measured bandwidth is marked by
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Figure 4.4 – MPK-HIP: classic SpMV, band-27, C = 8, gpu-scs-cm-shfl, p = 5. Dashed lines show
cache size and in-cache roofline, A100 and GH200 rooflines are not shown due being outside
the scale.
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dashed lines. The RX 6900 does not reach the expected 309 GFLOP/s, which is ~60 GFLOP/s too
low. Similarly the L40 only reaches 728 GFLOP/s instead of the estimated 837 GFLOP/s.

The behavior of the A100 and GH200 is more interesting. No expected peak performance is
shown for these because the measured performance is severely below the expected 843 GFLOP/s
(A100) and 1539 GFLOP/s (GH200). A significant ramp up is visible, as long as the matrix still
fits into the cache of the GPU. With BabelStream the bandwidth nowhere exceeded the DRAM’s
maximum (see Figure 4.1). The naive assumption at this point would be, that the A100 and GH200
should benefit from cache blocking since the SpMV kernel is able to run faster when only using
data from cache. We discuss cache blocking performance with RACE more in detail in the following
sections, but it should be noted that in contrast to the RX 6900 and the L40, the performance gain
inside the cache compared to outside is much lower. On the RX 6900 the speedup is ~3.3× while
on the L40 the speedup is as high as ~5.6×. In comparison, the A100 does not even achieve a
speedup of 2× and the GH200 not even reach 1.5×. Considering that the matrix size window with
achievable speedup is much larger on the RX 6900 and the L40, actual speedup on cache blocked
MPKs become even more unlikely.

4.4.2 RACE Performance

4.4.2.1 Performance Model

In the previous section we learned that the SpMV kernel can experience speedup when running
entirely in-cache. The next step is to create a performance model with regard to cache blocking via
RACE. As we have in Section 2.8, speedup via cache blocking with RACE is achieved by reusing
data from cache for successive powers. Calculating the first power (p = 1) is always uncached10,
while the following power calculations use data from the cache only. While the model of (4.5) is
still applicable in terms of data intensity, we have to differentiate two phases during calculating of
P =W T−1. We define a new P by taking into account the ratio of uncached to cached work, which
depends on the power to calculate:

P =
W
T

,
1
p
=

Wdram

Wdram +Wcache
, 1−

1
p
=

Wcache

Wdram +Wcache
(4.6)

P =
Wdram +Wcache

Tdram + Tcache
=

1
Tdram+Tcache

Wdram+Wcache

=
1

Tdram
Wdram+Wcache

+ Tcache
Wdram+Wcache

(4.7)

=
1

Wdram
Wdram+Wcache

Wdram
Tdram

+
Wcache

Wdram+Wcache
Wcache
Tcache

=
1

1
p

Pdram
+

1− 1
p

Pcache

(4.8)

The final performance can then be calculated inserting the respective DRAM and LLC performance
figures into (4.5). For p = 5, C = 8 and the L40 as an example, this results in the following
performance for band-27:

10In this context we refer cached and uncached with respect to the LLC.
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PL40,dram =
BL40,dram

D
=

833 GByte
s

6.31 Byte
FLOP

≈ 132.0
GFLOP

s
(4.9)

PL40,cache =
BL40,cache

D
=

5286 GByte
s

6.31 Byte
FLOP

≈ 837.7
GFLOP

s
(4.10)

PL40 =
1

1
5

132.0 GFLOP
s
+ 1− 1

5

837.7 GFLOP
s

≈ 404.8
GFLOP

s
(4.11)

4.4.2.2 Performance Measurements

We now compare the RACE model from the previous section to real measurements. Figure 4.5 shows
the performance with RACE (bars) against the model (black ticks). As can be seen, the measured
performance is a lot worse compared to what the previous model suggests. On the RX 6900, the
performance deviates by approximately a relative error of ~2, while the L40 fits to the model
best with a relative error of ~0.3 only. The relative error on the A100 and GH200 is even higher.
Consequently it is not visible in the chart due to scale.

Some matrices perform worse than others, similar as they do with classic SpMV (see Sec-
tion 4.4.1.2). However, the performance with RACE generally varies a lot more. Considering the
overall error of this model raises the question, why it deviates so much. While it does correctly
consider cache and uncached performance, it assumes that peak bandwidth, thus performance, is
achieved at all times. Unfortunately this is a flawed assumption. In the next section a more realistic
model is presented, which explains this behavior.
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Figure 4.5 – MPK-HIP: RACE, misc matrices, C = 8, gpu-scs-cm-shfl, p = 5, black ticks show
estimated numbers by Equation (4.8).

40



4.4 MPK-HIP

4.4.2.3 Measurement-Based Explanation

The naive performance model for RACE is nice, because it suggests big theoretical performance
increases for all GPUs with fast cache. In practice the situation is different, because ramp up behavior
has not yet been considered.

When looking back to Figure 2.7, calculating a matrix power via RACE involves many smaller
execution steps. The exact number of execution steps is p ·NLG compared to just p for regular SpMV.
Generally the larger the cache or the lower the power is, the fewer level groups (NLG) are formed.
In opposite, if there are increasingly more execution steps, more GPU kernel calls have to be issued.
However trading more kernel calls for better performance eventually hits into a ramp up limit,
because the kernel calls are not able use the full bandwidth.

Figure 4.6 visualizes the ramp up behavior of RACE, while being overlaid with the previous
SpMV ramp up (dotted). For smaller matrix sizes the performance with RACE is identical with SpMV,
but for increasingly large matrices, while still remaining under the cache size, dips are repeatedly
observed. These dips are caused by RACE increasing the number of level groups NLG, which in turn
causes an increasing amount of kernel calls. For example, the first dip occurs at the point, where
RACE increases NLG to two, which happens earlier for GPUs with smaller cache. While it is not as
accurate in practice, we assume that each kernel only processes half the matrix from that point.
When there are now twice the number of kernel calls, with each SpMV only processing a matrix
half the size, the performance drops approximately to the level measured for SpMV at half that size.
The same occurs for all other dips at the integer multiple of the first drop. It should be noted, that
for the RX 6900 this repeated dipping is overlaid with the same small performance drops already
occurring for SpMV.

Unfortunately this means that for smaller cache sizes there simply are too many level groups,
thus too many kernel calls for the performance to ramp up properly. Therefore it is not possible
to properly model this behavior by peak bandwidth, as it is never reached. This severely affects
the A100 and GH200, and causes their RACE performance for large matrices to be much worse
than classic SpMV. Only on the L40, and to a small degree on the RX 6900, the performance
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Figure 4.6 – MPK-HIP: RACE, band-27, C = 8, gpu-scs-cm-shfl, p = 5. Dotted lines show
previous classic SpMV results. The sawtooth-like dips show when RACE increases the number
of level groups.
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4.4 MPK-HIP

ramps up early enough to perform properly within the cached window. Using these peaks in the
cache performance figures, these can be combined with the standard SpMV performance using
(4.8). For Pcache,L40 = 480 GFLOP/s and Pcache,RX6900 = 150 GFLOP/s we get PL40 ≈ 314 GFLOP/s and
PRX6900 ≈ 125 GFLOP/s. Both values are still too high but much closer to real world performance.
The accuracy could probably be further improved by choosing Pcache more conservatively, but this
couldbe fifficult, as for example the RX 6900 performance is really inconsistent.

4.4.2.4 Ramp Up Reevaluation

In the previous section we concluded that performance cannot reach peak bandwidth under current
circumstances, and thus performance. One possibility of coping with the early increase of NLG is
to improve the ramp up. We briefly touched this in Section 3.2.7, where we tried to increase the
number of threads per matrix row in order to improve GPU saturation. In theory this should work
equally well for improving ramp up, but we only showed results for C = 8 and thus Ntpr = 4 in the
previous graphs.

Figure 4.7 shows ramp up behavior for all possible numbers of threads per row NNtpr. We recall
that Ntpw = C · Ntpr and thus Ntpr and C are inverse proportional. An important takeaway from this
measurement is that performance does not ramp up better for C < 8 (i.e. Ntpr > 4). It would be
more appropriate to say the opposite is the case. However, we should remember that the higher Ntpr

is, the more overhead per row there is, as more threads will run idle.
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Figure 4.7 – MPK-HIP: RACE, band-27, varying C , gpu-scs-cm-shfl. p = 5, Mind the scale of the
y-axis, recall that Ntpw = C · Ntpr.
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While plotting RACE performance over matrix shows the problem of level groups very well,
it also shows the implications on large matrix performance. After all, the influence of the ramp
up in regards to large matrix performance is what matters in the end. This also shows why we
previously fixated on C = 8 for all the tests. In the majority of cases it simply performs best for
all GPUs. Theoretically this could change if a matrix’ Nnzr is divisible by Ntpr, but this would be an
unreasonable assumption for an arbitrary matrix.

4.4.2.5 Safety Factor Optimization

We mentioned previously that we choose RACE’s cache size parameter to be twice the size of the
actual LLC size. This is because RACE internally adjusts the available cache by a safety factor 0.5×.
It accounts for the vectors and other overhead which may occupy the cache. If we choose to entirely
compensate for this factor, we assume that no overhead occurs. That may not be true in practice, so
we show an analysis which cache size parameter performs best.

In our previous graph from Figure 4.4, we can see that performance drops do not occur at
precisely the cache size. This is especially the case for the A100 and GH200. Thus, the ideal cache
size parameter may vary in practice.

In order to determine whether it is related to the cache size parameter, we show a plot with
increasing --cache-size parameter in Figure 4.8. The L40 performs best when the cache size
parameter is chosen to be exactly double the physical size. We refer to this as default safety-adjusted,
and it suggests that the internal safety factor is unnecessary. This is not the case for the RX 6900, as
it neither performs best when specifying the real physical cache size, nor when overspecifying it to
2×. So RACE’s internal safety factor is not entirely unreasonable, but in the case of the RX 6900 it is
certainly not precise. Of course this implies that all our previous results for the RX 6900 are not
ideal. However as the difference is within 10%, it should not change any of the conclusions that we
have drawn so far.

The best fitting cache size parameters are summarized in Table 4.4, except for the A100 and
GH200, which do not show a peak in the graph. The graph actually suggests that it would be better
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GPU CSphy Pphy CSdsa Pdsa CSbsa Pbsa

AMD RX 6900 XT 128 95.3 256 92.1 197 116.2
Nvidia L40 96 211.6 192 289.7 192 289.7
Nvidia A100 40 85.4 80 97.7 N/A N/A
Nvidia GH200 60 96.6 120 125.8 N/A N/A

Table 4.4 – RACE cache size (CS) in MiB set to physical (phy), default 2× safety-adjusted (dsa),
and best safety-adjusted (bsa). P is the belonging performance figure in GFLOP/s. A100 and
GH200 do not have a best safety-adjusted performance, as they do not ramp up fully.

to increase the cache size parameter beyond 512 MiB. That, of course, is not a good solution as a
bigger parameter will eventually result in one single level group, which is then equivalent to a classic
SpMV. For the A100 and GH200 we have already observed poor RACE performance in Figure 4.6.
Both of these observations confirm that RACE makes performance worse instead of improving it, at
least on those GPUs.

4.4.3 Final Comparison

To conclude our analysis, we ran benchmarks with the identical matrices like the authors of [1]
in their final performance evaluation. However we omitted the Lynx1151 matrix due to being too
large for the RX 6900’s DRAM. We also omitted the Anderson-600 as it was not available to us. The
majority originates from the SuiteSparse collection [31]. Topi-real-256-256-256 and Graphene-8192-
8192 were generated with ScaMaC [30] and Lynx649 originates from [21]. The full list is shown in
Table 4.3.

In Figure 4.9 we compared the performance of the RACE MPK against the SpMV MPK, both
running on GPU. Strictly speaking, for out-of-cache matrices we experienced no discernible difference
between a single SpMV (p = 1) run and an MPK (p > 1) run with SpMV. Because MPK-HIP always
performs the SpMV and RACE MPKs in a single benchmark run, these are shown in the plots.
Providing a better chance to the A100 and GH200, we decided to test them at p = 2 instead of p = 5.
All other parameters were kept fixed, and RACE cache size was set to auto11.

As expected from previous results, there is no speedup measurable with RACE for the A100 and
GH200. The speedup is better at the measured p = 2 compared to p = 5, but the performance still
remains consistently worse12. Both GPUs are more suitable for lower matrix sizes. The reason for
that is inherent, since the smaller the matrix, the fewer level groups are necessary for a RACE MPK.
If the matrix becomes small enough, RACE will eventually use a single level group for its entire
MPK. Thus there will no difference to the SpMV MPK anymore.

As shown in Section 4.4.2.4, good ramp behavior up is crucial for getting good performance.
At least with the current implementation, the A100 and GH200 are unfortunately unable to ramp
up fast enough, so good performance cannot be expected. A larger cache size is a remedy to bad
ramp up behavior, because that increases level group size and reduce negative impacts on ramp
up. Both latter GPUs are the ones with the least amount of cache, which certainly does not help. A
good example is the RX 6900: It also has rather bad ramp up behavior, but its cache is the largest of
all GPUs. Therefore it is able to get at least a 1.4× speedup for matrices, which partition well like
ML_Geer and af_shell10.

11We implemented auto according to Figure 4.8 to choose double the available cache size except for the RX 6900, which is
overridden to 192 MiB.

12Performance (A100 and GH200) for p = 5 is not shown in the graphs.
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Figure 4.9 – MPK-HIP: RACE vs. SpMV, all matrices, C = 8, gpu-scs-cm-shfl. (a), (b): p = 5, (c),
(d): p = 2. Matrices are sorted ascending in size, left of the dashed black line fit in cache.
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The clear outlier is the L40. With minor exceptions it performs consistently at least as good as
with the RACE MPK compared to the SpMV MPK. In many cases it actually performs better, and
under best cases it reaches a speedup of 2.1×. As for the RX 6900, better performing matrices tend
to be of “more diagonal” shape (e.g., ML_Geer and af_shell10).

Finally, the performance can be summarized as following:

• Ramp up is crucial: A GPU may have very fast cache, but if it is not possible to utilize the
cache’s bandwidth under short loads, our MPK implementation will not perform well.

• Cache size matters: The RX 6900 can be considered to be the weakest of all the tested GPUs.
nonetheless it is able to get speedup for some matrices, because its large cache can offset its
bad ramp up.

• Speedup is possible: We have seen for the L40 that substantial performance increase is
possible. If the GPU can ramp up fast enough and the cache is sufficiently large, the cache
outperforms the DRAM.

In terms of bandwidth, there is additional headroom for improvement. Even on the well
performing L40, it typically peaks 30% or less below the roofline. Table 4.5 shows the speedup with
RACE when going by the roofline from (4.8). It must be emphasized that no overhead is included
and thus the table does not show a drop after a certain power. In real world circumstances the
values will decline again, as shown, e.g., in Figure 3.7.

The values in the table also demonstrate that even under best circumstances the GH200 is limited
to reach a speedup of ∼ 2×. In contrast, the L40 could get as fast as ∼ 4×. If it is possible to
eliminate or vastly reduce the overhead, the GH200 should certainly profit, but the L40 would likely
benefit the most from it. This is of course due to the high discrepancy between its DRAM and LLC
bandwidth. Because the A100 and GH200 use much faster HBM DRAM, this ratio is much lower,
and therefore the possible speedups.

4.5 gpu-small-kernels

As a last measure to exclude errors from ramp up analysis, we used the gpu-small-kernels benchmark
[9] to cross check its results against ours. gpu-small-kernels is a benchmark with primary purpose of
measuring ramp up behavior for cache blocking algorithms. It works by running a repeated scale
stream on GPU over an increasing amount of data. The larger the stream becomes, the fewer times
it is executed. Conceptually this is very similar to what RACE does, although gpu-small-kernels will
stop decreasing the number of kernel calls at a data size of ~8 MiB. This limited decrease ensures
good measurement accuracy while keeping the benchmark runtime reasonable.

GPU sp=1 sp=2 sp=3 sp=4 sp=5 sp=6 sp=7 sp=8 sp=9 sp=10

AMD RX 6900 XT 1.00 1.60 1.99 2.28 2.49 2.65 2.79 2.89 2.98 3.06
Nvidia L40 1.00 1.73 2.28 2.72 3.07 3.36 3.60 3.80 3.98 4.13
Nvidia A100 1.00 1.50 1.80 2.00 2.14 2.25 2.33 2.40 2.45 2.50
Nvidia GH200 1.00 1.43 1.67 1.82 1.92 2.00 2.06 2.11 2.14 2.18

Table 4.5 – Theoretically possible speedup s by roofline from (4.8). Unlike measurements there
is no drop after a certain power since overhead is not taken into account.
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Figure 4.10 – gpu-small-kernels bandwidth, -graph enabled, 256 threads per block. Colored
dashed lines mark the real cache size. Black dashed lines mark the fitted curves.

Figure 4.10 shows the bandwidth scaling for an increasing data set size. A similar trend is seen, as
previously observed when measuring the SpMV scaling in Figure 4.4. Note that the previous SpMV
benchmark measures GFLOP/s and not GB/s, and gpu-small-kernels uses an exact data intensity of
16 bytes per FLOP. As the kernel consists only of a single scale operation, it is expected to perform
more consistently than the vastly more complex multi-threaded SELL-C-σ SpMV kernel. This is
exactly what can be seen. One of the main differences being that the SpMV kernel is a lot more read
intensive, which may result in different cache evictions. In addition the SpMV kernel experiences
branch divergence for Nnzr which are not divisible by Ntpr.

Both the RX 6900 and L40 show a drastic drop in bandwidth at their LLC boundary. As they did
for SpMV scaling, the A100 and GH200 already experience a drop before the data size reached the
physical cache size. Interestingly, the RX 6900 also shows the same drop when going over its L2
cache boundary, which in both cases is not exactly at the expected 4 MiB. It also shows the same
drop at around 20 MiB to 24 MiB, which is not a known cache boundary, but it at least shows that
this drop is not solely present on the SpMV kernel.

The authors of gpu-small-kernels also provide a formula to model the bandwidth ramp up [9].
This model assumes that every kernel call has a fixed time of overhead Tovh, while the rest executes
at full bandwidth Bfull:

Beff =
Q

Tovh +
Q

Bfull

(4.12)

The two unknowns Tovh and Bfull can then be fitted onto the measured results. Our fitted values
can be seen in Table 4.6, along with the resulting curves visualized in Figure 4.10 as dashed black
lines. Graphically, they appear to describe the ramp up very well. For the RX 6900 and L40 the fitted
cache bandwidth is also reasonably accurate. However the RX 6900 curve is only fitted inside the
L2 cache size window, and its cache speed does not line up with gpu-l2-cache. If the estimated full
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cache bandwidth for the A100 and GH200 is correct, it would imply that their true cache bandwidth
would be difficult to achieve, at least without making the kernel vastly more complex.

If each kernel call indeed has a fixed time cost, we can make the following comparison to a real
measurement: For example, calculating p = 5 of ML_Geer on the RX 6900 causes RACE to create
92 level groups, thus causing 460 kernel calls. The kernel manages to run 104 times per second,
which means a total number of ~48000 kernel calls per second. That means that each kernel runs
for ~20µs. While this is not negligible compared to the 3.1µs of overhead, it does not explain why
already well performing matrices do not reach the roofline from (4.8).

Because of the discussed uncertainties, we do not consider this model to be generally applicable.
The in-cache bandwidth for the A100 and GH200 should be much higher, and their poor RACE
performance cannot be explained with a very low overhead of 1.3µs. Drawing a final comparison
between gpu-small-kernels to the previous benchmarks is difficult. They measure different behaviors,
but in the end it confirms that the SpMV’s ramp up is not abnormal. In contrast, it can be stated that
BabelStream (see Figure 4.1) may not the best choice for measuring ramp up, as it only measures
single kernel calls and not batched kernel calls.

GPU Tovh Bfull

AMD RX 6900 XT 3.15 µs 3650 GB/s
Nvidia L40 1.06 µs 5205 GB/s
Nvidia A100 1.39 µs 3721 GB/s
Nvidia GH200 1.32 µs 3393 GB/s

Table 4.6 – gpu-small-kernels: fitted values for effective bandwidth model from (4.12).
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5C O N C LU S I O N

5.1 Summary

In this thesis we have described how to run cache-blocked MPKs on GPU using RACE. We started by
describing the context of MPKs in their application for Krylov Subspace Methods and the possible
speedup for CPUs using RACE. We developed our GPU benchmark MPK-HIP with an approximate
roofline model and the knowledge of common matrix formats. This benchmark takes advantage
of the GPU optimized matrix format SELL-C-σ to form an SpMV kernel that is able to operate on
a subset of the matrix’ rows. RACE is then used to run this kernel in a cache-optimized order to
create the GPU RACE MPK. Finally, we presented a roofline for the GPU RACE MPK, showed the
measurements results, and explained their deviance.

Under best circumstances our benchmark can achieve a 2× speedup on the L40 and 1.4× on
the RX 6900. Unfortunately the A100 and GH200 fall behind and are unable to run faster than a
classic SpMV MPK. We discovered that ramp up behavior and cache play a critical role with regard
to performance. If the cache is small and ramp up is poor, performance will suffer. All shown results
are of course constricted by the “single kernel call per level group” implementation. According to our
roofline model for RACE good speedup should be possible for all GPUs. Of course this model assumes
that it is possible to reduce the current overhead of the implementation. Although performance is
already good in selected cases, a solution running well across a broad range of hardware would
make MPKs as promising as the RACE based CPU MPK.

5.2 Future Work

First and foremost, assuming that ramp up behavior will not improve on future GPUs, the only
alternative is to compensate its negative effects with larger caches. One example for such a GPU is
the AMD MI300X which was unfortunately not available to us at the time. The only alternative is
to either reduce the ramp up overhead with better hardware, or to implement a smarter MPK that
works around the slow ramp up. While not necessarily “better”, we did not test GPUs from Intel. It
would be insightful to run MPK-HIP on these to see if they behave similarly, but since HIP does not
run on Intel GPUs that would require a rewrite in SYCL.

Optimizing the current version of MPK-HIP could be possibly done by a similar approach as the
creators of RACE originally did via “Point-to-Point Synchronization”. The concept is to relax the syn-
chronization barrier after each level group. This barrier exists implicitly on our GPU implementation
as kernel calls, but it is of course possible to further divide these kernel calls into smaller kernels
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5.2 Future Work

that run asynchronously. In theory this should yield better concurrency on GPU, but it would also
increase the total kernel call count. Is is therefore not certain whether it would work.

To conclude, there are of course more possibilities for further investigation. However, we would
consider these lower priority as they do not decide over the viability of GPU MPKs. For example,
we currently do not have automatic parameter tuning for C , p, or --cache-size implemented.
Having static tuning rules would be preferable, as they do not increase preprocessing cost as much
as measurement based tuning. Tuning --cache-size would implicitly also include adjustment of
RACE’s safety factor. Currently RACE does not know of the matrix size increase from SELL-C-σ,
which we built on top, and this could be relevant for matrices with high fill-in ratio. Although we
determined that all GPUs performed best with C = 8, this depends to a certain extent on the matrix
and is one more tuning option.
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L I S T O F A C R O N Y M S

BFS Breadth-First Search

CA-GMRES Communication-Avoiding GMRES

CG Conjugate Gradient

CPU Central Processing Unit

CRS Compressed Row Storage

CUDA Compute Unified Device Architecture

DP Double Precision

DRAM Dynamic Random Access Memory

GMRES Generalized Minimal Residual Method

GPU Graphics Processing Unit

HIP Heterogeneous Interface for Portability

MGS Modified Gram-Schmidt

KSM Krylov Subspace Method

LLC Last Level Cache

LRU Least Recently Used

MPK Matrix Power Kernel

NUMA Non-Uniform Memory Access

RACE Recursive Algebraic Coloring Engine

SELL Sliced ELLPACK

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SIMT Single Instruction Multiple Threads

SIMD Single Instruction Multiple Data

SP Single Precision

SpMV Sparse Matrix-Vector

TSQR Tall Skinny QR
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