

File systems and efficient data handling

Johannes Veh Erlangen National High Performance Computing Center (NHR@FAU)

HDD

Bandwidth: ~ 250 MB/s Latency: 4+ ms IOPS: ~ 200

SSD

Bandwidth: ~ 600 MB/s Latency: 0,5 ms IOPS: ~ 100.000

NVMe

Bandwidth: > 5.000 MB/s Latency: 0,05 ms IOPS: ~ 1.000.000

3 racks with servers and disk arrays

928 HDDs, 20 SSDs, 2.400 kg

File systems

- File system == directory structure that can store files
- Several file systems can be "mounted" at a compute node
 - Similar to drive letters in Windows (C:, D:, ...)
 - Mount points can be anywhere in the root file system
- Available file systems differ in size, redundancy and how they should be used

NHR@FAU file systems overview

Mount point	Access	Purpose	Technology	Backup	Snap- shots	Data lifetime	Quota
/home/hpc	\$HOME	Source, input, important results	NFS on central servers, small	YES	YES @30 min	Account lifetime	50 GB
/home/vault	\$HPCVAULT	Mid-/long-term storage	Central servers	YES	YES @24h	Account lifetime	500 GB
<pre>/home/woody /home/saturn /home/titan /home/atuin /home/janus</pre>	\$work	Short-/mid-term storage, General-purpose	Central NFS server	(NO)	NO	Account lifetime	Tier3: 1 TB, NHR: project quota
/lustre	\$FASTTMP (only within Fritz+Alex)	High performance parallel I/O	Lustre parallel FS via InfiniBand	NO	NO	High watermark	Only inodes
/anvme	(only within Fritz+Alex)	High performance IOPS	Lustre parallel FS via InfiniBand	NO	NO	Workspace lifetime	Only inodes
/???	\$TMPDIR	Node-local dir	SSD/NVMe/ ramdisk	NO	NO	Job runtime	NO
https://doc.nhr.fau.de/data/filesystems							

File systems and efficient data handling | HPC Café

Redundancy: snapshots vs backup

- Backup
 - Offline on tape to be recovered in case of system failure or data loss
 - Not recoverable by user

Snapshots

- Located on same file system as original data
- In any directory:
 - \$ cd .snapshots
- Kept for a specified amount of time
- Data can be recovered by user

unrz55@sauron:~/programming/py/.snapshots \$ ls -F							
@GMT-2018.12.30-03.00.00/	@GMT-2019.01.23-11.00.00/	@GMT-2019.01.24-05.00.00/					
@GMT-2019.01.06-03.00.00/	@GMT-2019.01.23-13.00.00/	@GMT-2019.01.24-07.00.00/					
@GMT-2019.01.13-03.00.00/	@GMT-2019.01.23-15.00.00/	@GMT-2019.01.24-07.30.00/					
@GMT-2019.01.18-03.00.00/	@GMT-2019.01.23-17.00.00/	@GMT-2019.01.24-08.00.00/					
@GMT-2019.01.19-03.00.00/	@GMT-2019.01.23-19.00.00/	@GMT-2019.01.24-08.30.00/					
@GMT-2019.01.20-03.00.00/	@GMT-2019.01.23-21.00.00/	@GMT-2019.01.24-09.00.00/					
@GMT-2019.01.21-03.00.00/	@GMT-2019.01.23-23.00.00/	@GMT-2019.01.24-09.30.00/					
@GMT-2019.01.22-03.00.00/	@GMT-2019.01.24-01.00.00/						
@GMT-2019.01.23-03.00.00/	@GMT-2019.01.24-03.00.00/						

Workspaces (used for anvme)

Currently only available on Fritz and Alex

- Script based manager for temporal directories
 - ws_allocate <name> [<days>] # create a directory
 - ws find <name> # return path to workspace
 - ws_list [<pattern>] # return information about workspaces

<u>https://doc.nhr.fau.de/data/workspaces</u>

Bandwidth of storage systems

Types of data and where to store them

Source code, scripts, Small input data, configuration files, ...

Important result files, larger input data

Reproducible result files, checkpoint-restart, intermediate results

Checkpoint-restart, intermediate results

Input data (escpecially for ML/AI), Intermediate results

(\$TMPDIR)

The best I/O is I/O you do not do

Clever data placement

- Improvement:
 - Copy data at jobstart to \$TMPDIR

CPU is waiting for data (orange)

https://hpc.fau.de/about-us/success-stories/#Performance-gain-of-AI-application-with-data-stored-on-TMPDIR https://hpc.fau.de/about-us/success-stories/#Speeding-up-machine-learning-on-GPU-accelerated-Cluster-nodes

Main Problem with NFS (and parallel FS)

- In a job, avoid accessing large numbers of files located at \$HOME, \$HPCVAULT, \$WORK
- Expensive operations on NFS (and also parallel file systems):
 - Access file stats like creation/modification time, permissions...
 - Opening/closing files
- These cause high load on servers
 - This slows down your job and impacts all other users
- Use instead
 - if supported by application: HDF5, file-based databases
 - pack files into an archive (e.g. tar + optional compression) and use node-local SSDs (huge amounts of file opens are no problem there)

Working with Archives and Node-Local SSDs

Do not unpack archive to:

- \$HOME/\$HPCVAULT/\$WORK
- Unpack files to node-local SSDs only and use them from there

Optionally: if original archive must be altered

- unpack it to node local SSD (interactive job)
- optionally change files .
- repack files and copy back to NFS

Friedrich-Alexander-Universität Erlangen-Nürnberg

Questions? Suggestions?

Missed a talk?

https://hpc.fau.de/teaching/hpc-cafe/

Futher questions?

Send a mail to hpc-support@fau.de