
Bridging
Domain Science and HPC
with Julia

May 7, 2024Carsten Bauer @ HPC Café, NHR@FAU

We don’t always speak the same language

High-Performance ComputingDomain Science

Language Barrier

Julia aims to solve the "two-language problem”

Gradual transition

High-Performance ComputingDomain Science

”Julia: come for the syntax,
stay for the speed”

What I’ll talk about

Strengths and weaknesses of Julia,
to give you a basis for deciding whether Julia could be of interest to you.

1. Julia’s Strengths
2. Julia’s Weaknesses
3. The Julia HPC Community

Julia’s Strengths

Julia code can be
fast and scalable.

Type inference

Compilation via LLVM

MPI support

Trixi.jl (CFD)

(lower is better)

MonteCarlo.jl (DQMC)

1013 £ 100 4 £ 100 6 £ 100 2 £ 101

linear system size L

10°1

100

101

102

sw
ee

p
du

ra
ti

on
[s

]

Julia (MKL)

Julia (OpenBLAS)

C++ (MKL)

Fortran (MKL)

(lower is better)

Julia code can match the performance of C/Fortran

(higher is better)

Good scaling of PDE codes

Trixi.jl (Multi-CPU)

(higher is better)

ParallelStencil.jl (Multi-GPU)

≈ 1k GPUs≈ 60k ranks

Julia is interactive
and convenient.

Powerful REPL, Jupyter, …

Great math support

Best-in-class package manager

LIKWID can be used interactively in a notebook

Threads can be pinned interactively

Pin the Julia threads
Visualize

1st CPU

2nd CPU

Threads can be pinned interactively

Pin the Julia threads
Visualize

NUMA domains

Offers great package management and portability

(Using system software is supported.)

Array abstractions for easy GPU computing

CPU GPU

(≲ 10% slower than CUBLAS)

Julia invites you to
gradually delve
deeper.

Entirely open source

Julia is (mostly) written in Julia

Great introspection tools

Insight into different code levels

Insight into different code levels

Source code

LLVM code

Native code

Julia’s Weaknesses

HPC with Julia is
currently a niche.

Limited support by
vendors and HPC centers

Few people maintain
many core packages

Still maturing

Achieving
high performance
can be tricky.

Garbage collection

Type instabilities

Task-based multithreading

Avoid type instabilities in performance critical code
Random type!

Task-based multithreading

Julia threads CPU-coresJulia tasks

1

2

…

K
N

…

1

2

M

…

1

2

Julia scheduler OS scheduler

@thre
ads

:stat
ic,

@tspa
wnat,

 …

Threa
dPinnin

g.jl

M tasks on N threads

Why?

‣ Convenience
‣ Composability

You can opt out
(and may need to).

No easy way to
produce (small)
shared libraries.

PackageCompiler.jl is currently
your best bet

Hampers integration into
existing code bases

The Julia HPC Community

A small but vibrant
and welcoming
community.

People with passion and drive

International
(NERSC, ORNL, CSCS, PC2, …)

Opportunity to join and grow

We welcome you to one of our sessions …

JuliaCon 2023

SC 2022

PASC 2023

… or our monthly Zoom call
 (open to everyone!)

Wrapping Up

Julia for HPC
Strengths
‣ Interactive and convenient
‣ Can be fast and scalable
‣ Inclusive and invites you to gradually delve deeper

Weaknesses
‣ Currently a maturing niche
‣ Achieving high performance can be tricky
‣ No easy way to produce (small) shared libraries.

Julia HPC Community
‣ Small but welcoming and vibrant

Julia has promising potential for HPC,
and I invite you to join us in exploring
and developing it.

Julia is a “fun new thing” on Aurora (ANL)

Invitation to read our overview paper
Churavy et al. (2022)

