Bridging

Domain Science and HPC

with Julia

Carsten Bauer @ HPC Café, NHROFAU May 7, 2024

We don’t always speak the same language

Domain Science High-Performance Computing

& 4 CXy

Language Barrier

Julia aims to solve the "two-language problem”

Domain Science : High-Performance Computing

"Julia: come for the syntax,

stay for the speed”

Gradual transition

What I'll talk about

Strengths and weaknesses of Julia,
to give you a basis for deciding whether Julia could be of interest to you.

1. Julia’s Strengths

2. Julia’'s Weaknesses
3. The Julia HPC Community

Julia’s Strengths

Type inference

Julia code can be
and

Compilation via

support

Julia code can match the performance of C/Fortran

(lower is better)

| —e— Juha (MK)

2 .

10 F —o— Julia (OpenBLAS) © -

- —0— C++ (MKL)]

N - —@— Fortran (MKL)

- 101 2 =
2
+
<
—
=
i,

= 100 E =
)
=
0

—_
=
T T TTTT] LI —
- Q
\
|

3x 100 4 x 109 6 x 10 10t 2 x 101
linear system size L

MonteCarlo.jl (DQMC)

Time/RHS/DOF [s]

8.0x10 "’

6.0x10"/

4.0x10"’

2.0x10° 7

(lower is better)

- @ FLUXO
= @= Trixi.jl, baseline -
=== Trixi.jl, optimized ,
a e
OE"O
B @
S e
[4 o
I
@ ‘O'©'
B
olzr:'g
et 4
m--80-¢
“o - Wﬂ- q
®) R Yy —V V=
P G —F - V—v
4 6 8 10 12 14

Polynomial degree

Trixi.jl (CFD)

Good scaling of PDE codes

(higher is better)

11

10

F |= 9= Trixi.jl (134.2 mio. DOFs) .=
. ideal speedup N

ke

C

o

0 .10

w 107 F

0 [

)

-

(©

ke,

o

)

S

@) 109;‘

128 256 512 1024 2048 4096 8192 16384 327661440

Number of ranks
~ 60k ranks

Trixi.jl (Multi-CPU)

Parallel efficiency

0.98

0.97

0.96

0.95

0.94

0.93

(higher is better)

—@- CUDA C
—@- Julia
1 64128 256 512
Number of GPUs
~ 1k GPUs

ParallelStencil .j| (Multi-GPU)

Powerful
Juha is

Great
and

Best-in-class

LIKWID

can be used interactively in a notebook

Counting Flops

x = rand(10_000);

function computation(x)
X .+ X
end;

Counted Flops: 10000

How?

using LIKWID

metrics, events = @perfmon "FLOPS_DP" computation(x);

Compute from derived metrics

10000
begin

flops_per_second = metrics["FLOPS_DP"][1]["DP [MFLOP/s]"] = 1e6
runtime = metrics["FLOPS_DP"][1]["Runtime (RDTSC) [s]"]

flops = round(Int, flops_per_second % runtime)
end

Paderborn
Center for

Parallel
Computing

NHR(JFAU

Threads can be pinned interactively

Pin the Julia threads —»
Visualize —»

1st CPU

2nd CPU

o000

julia> pinthreads(:sockets)

julia> threadinfo()

System: 128 cores (2-way SMT), 2 sockets, 8 NUMA domains
| 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, 31,
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,
160.161,162,163.164,165,166,167.168,169,170,171,172,173.174.,175,
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191 |
64,65,66,67,68,69,70,71.72,73,74,75.76,77,78,79,
80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,
96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,
112,113,114,115,116,117,118 119,120,121,122,123,124, 125 126,127,
192,193,194,195,196,197,198,199,200, 201, 202,203,204, 2
208,209,216,211,212 713,214,313 11p 217,218 th,;:u,L
ﬂs,ggm,z: “',2?0,2%1 232.233.234,235,236, 23
,247,248,249,250,251,252,25

Julia thread on HT,

| = Socket seperator

Julia threads: 64
t Occupied CPU-threads: 64
Mapping (Thread => CPUID): 1 => 0, 2 => 64, 3 => 1, 4 => 65,

julia> J

5= I

Threads can be pinned interactively

Pin the Julia threads —— FEECEESHIGIEECHENITEY

Visualize =) BFEUSEERINWCECUITICIN-AGLIERGUED
System: 128 cores (2-way SMT), 2 sockets, 8 NUMA domains

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158 ,159
32,33,34,35,36,37,38,39,40,41,42,43,44,45 46,47 ,
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191
64,65,66,67,68,69,70,71,72,73,74, 75 76,77,78,79,
192,193,194,195,196,197,198,199, 200,201, 202,203, 204,205,206, 207
80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,
208,209,210,211,212,213,214,215,216,217,218,219,220,221,222 , 223
96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,

s Xp) 2 -)7)9) 12 9 V26 D7) Z 0 17|
/_:_' z F "r,L(_u,z_ﬁJ,th_,.z_ul,_)/_,:iup _Q—’L ./_ul ﬁdu,i_‘:?,;qo,z_ =

112, 113 114 115,116,117,118,119,120,121,122,123,124,125, 126 127,

240,241,242 ,243, 244,245,246, 247 248,249,250, 251,252,253 , 2

NUMA domains

Julia thread, # = HT, # = Julia thread on HT, | = NUMA seperator

Julia threads: 64
t Occupied CPU-threads: 64
Mapping (Thread => CPUID): 1 => 0, 2 => 16, 3 => 32, 4 => 48, 5 => 64,

julia> |}

Offers great package management and portability

Laptop HPC Cluster

~/myproject tree

myproject julia --project

Manifest.toml

Project.toml Documentation: https://docs. julialang.org
code. jl

Type "?" for help, "]?" for Pkg help.

Version 1.7.2 (2022-02-06)
~/myproject cat Project.toml Official https://julialang.org/ release
[deps]
= "052768ef-5323-5732-b1bb-66c8b64840ba"
= "0c46a032-eh83-5123-abaf-570d42b7fbaa"
"33e6dc65-8f57-5167-99aa-e5a354878fb2" ‘~/myproject/Project.toml?
"daO4elcc-30fd-572f-bb4f-1f8673147195" 052768e CUDA v3.11.0
Jc46a032 | DifferentialEquations v7.1.0
~/myproject § 33eb6dc6b| MKL v0.5.0
daO4elcc| MPI v0.19.2
packages marked with not downloaded, use ‘instantiat

to download

|
i
O directories, 3 files | |
|
|
|

\

e

instantiatel}

(Using system software is supported.)

Array abstractions for easy GPU computing

CPU

BenchmarkTools

julia> axpy!(y, a, x)
y d X y

axpy! (generic function with 1 method)

julia> a = rand(Float32);
rand(Float32, 2722);
julia> y = rand(Float32, 2722);

julia> @btime axpy!(y, a, x);
1.700 ms (0 allocations: O bytes)

GPU

BenchmarkTools, CUDA

axpy!(y, a, x)
y a X y

axpy! (generic function with 1 method)
julia> a = rand(Float32);

julia> CUDA.rand(Float32, 2722);
julia> y = CUDA.rand(Float32, 2422);

julia> @btime CUDA.@sync axpy!(y, a, X);
44.254 pus (54 allocations: 1.33 KiB)

(= 10% slower than CUBLAS)

Julia invites you to Entirely

gradua"y Julia is (mostly)

Great

Insight into different code levels

o |

v

Macro Exp.

Typed IR

LLVM IR

o
|
|
|

Assembly

"
|
|
|

@which
@less
@edit

@macroexpand

@code_lowered

@code_warntype
@code_typed

@code_1l1lvm

@code_native

Insight into different code levels

gauss_sum()

0
Source code —» o0
X i

X

gauss_sum (generic function with 1 method)

julia> @code_1llvm debuginfo=:none gauss_sum()

LLVM code —p define i64 @julia_gauss_sum_3887() #0 {

top:
ret 164 5050

}

julia> @code_native debuginfo=:none dump_module gauss_sum()
- text
push Tbp
mov rbp, Tsp

Native code —p mov rax, qword ptr [r13 + 16]

mov rax, qword ptr [rax + 16]
mov rax, qword ptr [rax]

mov eax, 95050

pop Tbp

ret

nop word ptr cs:[rax + rax]

Juhia’'s Weaknesses

by
vendors and HPC centers

HPC with Julia is .
maintain
currently d : many core packages

Still

Garbage collection

Achieving
high performance Type instabilities

Task-based multithreading

Avoid type instabilities in performance critical code

Random typel!

type_stable() type_instable()
5 rand([5, 1.2, "3.0"])

sqrt(x) sqrt(x)
y y

type_stable (generic function with 1 method) type_instable (generic function with 1 method)

julia> @code_warntype type_stable() julia> @code_warntype type_instable()
MethodInstance for type_stable() MethodInstance for type_instable()

from type_stable() @ Main REPL[18]:1 from type_instable() @ Main REPL[16]:1
Arguments Arguments

#self#::Core.Const(type_stable) #self#::Core.Const(type_instable)
Locals Locals

y::Floatb4d ' y::Any

X::Intb4 X::Any
Body: :Floatb64 Body: : Any
1 — (x = 5) ™~—f4==" Base.vect(5, 1.2, "3.0")::Vector{Any}
L__ (y = Main.sqrt(x::Core.Const(5))) (x = Main.rand(%1))
return y::Core.Const(2.23606797749979) (y = Main.sqrt(x))
return y

Task-based multithreading

M tasks on N threads Julia threads

Why?

> Convenience
> Composability

You can opt out
(and may need to).

Julia scheduler OS scheduler

Is currently

No easy way to

your best bet
produce (small)

Hampers integration into
existing code bases

The Julia HPC Community

People with passion and drive

A small but vibrant
International

and welcoming (NERSC, ORNL, CSCS, PC2, ...)

Opportunity to join and grow

We welcome you to one of our sessions ...

JuIiaCo;n,_20L23 =

... or our monthly Zoom call

(open to everyone!)

Wrapping Up

Juhia for HPC

Strengths

» Interactive and convenient
» Can be fast and scalable

> Inclusive and invites you to gradually delve deeper

Weaknesses

> Currently a maturing niche
> Achieving high performance can be tricky

> No easy way to produce (small) shared libraries.

Julia HPC Community

> Small but welcoming and vibrant

Julia has :
and | in exploring
and developing it.

Julia is a “fun new thing” on Aurora (ANL)

[l @ oIl SN RSN e 777 £C
: Some fun new thmgs in Aurora

lntel CPUS"WIth HBM (Sapphlre Raplds +) HBM)

f S8 /y
lntel GPUs PVC (47 chlplets,

r\d
DAOS Storage system Wlth >30TB/s ba 1C

DAVOS'
A CONGRESS

Invitation to read our overview paper

Churavy et al. (2022)

Journal Title
XX(X):1-14

Bridging HPC Communities thrﬂugh ©The Author(s) 2022

Reprints and permission:

t he J u l i a P rogra m m i ng La ngu age sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177 /ToBeAssigned
www.sagepub.com/

SAGE

Valentin Churavy!, William F Godoy?, Carsten Bauer?®, Hendrik Ranocha®, Michael
Schlottke-Lakemper®, Ludovic Riss®’, Johannes Blaschke®, Mosé Giordano®, Erik
Schnetter'®1112 Samuel Omlin!3, Jeffrey S. Vetter?, Alan Edelman!

Abstract

The Julia programming language has evolved into a modern alternative to fill existing gaps in the requirements of
scientific computing and data science applications. Julia’s single-language paradigm, and its proven track record at
achieving high-performance without sacrificing user productivity, makes it a viable single-language alternative to the
existing composition of high-performance computing (HPC) languages (Fortran, C, C++) and higher-level languages
(Python, R, Matlab) suitable for data analysis and simulation alike. Julia's rapid growth in language capabilities, package
ecosystem, and community make it a promising new universal language for HPC similar to C++ or Python — an achievable
goal if the community is given the necessary resources. This paper presents the views of a multidisciplinary group of
researchers in academia, government, and industry advocating for the use of Julia and its ecosystem in HPC centers. We
examine the current practice and role of Julia as a common programming model to address major challenges in scientific
reproducibility, data-driven artificial intelligence/machine learning (Al/ML), co-design, and in-situ workflows, scalability
and performance portability in heterogeneous computing, network, data management, and community education. As a
result, we consider necessary the diversification of current investments to fulfill the needs of the upcoming decade as
more supercomputing centers prepare for the Exascale era.

Keywords

11" L Y. L [N B o T S S

