Performance of linear solvers in tensor-train format on current multi-core architectures

Melven Röhrig-Zöllner
Institute for Software Technology, German Aerospace Center (DLR)
February 27, 2024

Show performance of mapping tensor algorithms onto linear algebra building blocks

Based on 2 examples...
Related talk: Paolo Bientinesi: The Linear Algebra Mapping Problem and how programming languages solve it

Approx. large data with low-rank tensor Given:

- dense tensor $X \in \mathbf{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$
- desired tolerance $\epsilon_{\text {tol }}$ or max. rank $r_{\text {max }}$

Calculate:

- Low-rank approximation X_{TT} with

$$
\left\|X-X_{T T}\right\|_{F} \leq \epsilon_{\mathrm{tol}}
$$

or

$$
X_{\mathrm{TT}} \approx X, \quad \text { with } \operatorname{rank}\left(X_{\mathrm{TT}}\right) \leq r_{\max }
$$

Solve linear system in low-rank tensor format Given:

- low-rank linear operator $\mathcal{A}_{\mathrm{TT}}: \mathbf{R}^{\boldsymbol{n}^{d}} \rightarrow \mathbf{R}^{n^{d}}$
- low-rank right-hand side $B_{\mathrm{TT}} \in \mathbf{R}^{n^{d}}$
- desired tolerance $\epsilon_{\text {tol }}$

Calculate:

- iterative solution X_{TT} with

$$
\left\|\mathcal{A}_{\mathrm{TT}} X_{\mathrm{TT}}-B_{\mathrm{TT}}\right\|_{*} \leq \epsilon_{\mathrm{tol}}
$$

$$
\text { for some suitable norm }\|\cdot\|_{*}
$$

- Known as MPS (matrix-product states) in physics.
- Defined by series of 3d tensors

(tensor-network notation)

$$
X_{1}, \cdots, X_{d}, \text { with } X_{k} \in \mathbf{R}^{r_{k-1}, n_{k}, r_{k}}, r_{0}=r_{d}=1
$$

with ranks (bond-dimensions) r_{1}, \ldots, r_{d-1} and dimensions $n_{1}, \ldots n_{d}$.

- Approximates a high-dim. tensor $X \in \mathbf{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ with

$$
X_{\mathrm{TT}}:=X_{1} \times X_{2} \times \cdots \times X_{d}
$$

where $\cdot \times \cdot$ is the contraction: $X_{i} \times X_{i+1}:=\sum_{k}\left(X_{i}\right)_{:,:, k}\left(X_{i+1}\right)_{k,:,:} \in \mathbf{R}^{r_{i-1} \times n_{i} \times n_{i+1} \times r_{i+1}}$

- with a "TT-rank" of $r:=\max \left(r_{1}, \ldots, r_{d-1}\right)$
- Known as MPO (matrix-product operator) in physics.
- Defined by series of 4d tensors

$$
A_{1}, \cdots, A_{d}, \text { with } A_{k} \in \mathbf{R}^{r_{\mathrm{Op}}, k-1}, n_{k}, n_{k}, r_{\mathrm{Op}, k}, r_{\mathrm{Op}, 0}=r_{\mathrm{Op}, d}=1
$$

with ranks $r_{\mathrm{Op}, 1}, \ldots, r_{\mathrm{Op}, d-1}$ and dimensions $n_{1} \times n_{1}, \ldots, n_{d} \times n_{d}$.

- Provides the high-dim. linear operator $\mathcal{A}_{\mathrm{TT}} \in \mathbf{R}^{\left(n_{1} \times n_{1}\right) \times\left(n_{2} \times n_{2}\right) \times \cdots \times\left(n_{d} \times n_{d}\right)}$ with

$$
\mathcal{A}_{\mathrm{TT}}:=A_{1} \times A_{2} \times \cdots \times A_{d}
$$

In the following, we simply use $n_{1}=\cdots=n_{d}=n$.

Helpful notation from physics to illustrate linear algebra operations in higher dimensions:

vector

matrix

4d tensor

Contractions:

dot-product

matrix-vector product

matrix-matrix product

contraction of 4d and 3d tensors

Orthogonalities and decompositions:

$Q R$
USV ${ }^{\top}$

Unfolding a 3d tensor $T \in \mathbf{R}^{r, n, r_{r}}$ ("matrification"):

- "left-unfolding" combines first two dimensions:

$$
T_{\text {left }}:=\operatorname{reshape}\left(T, r_{l} n, r_{r}\right) \in \mathbf{R}^{r_{l} n \times r_{r}}
$$

- "right-unfolding" combines last two dimensions:

$$
T_{\text {right }}:=\operatorname{reshape}\left(T, r_{l}, n r_{r}\right) \in \mathbf{R}^{r_{l} \times n r_{r}}
$$

Orthogonality of a 3d tensor:

- T is "left-orthogonal" if its left-unfolding has orthonormal columns:

$$
\left(T_{\text {left }}^{T} T_{\text {left }}=I \in \mathbf{R}^{r_{r} \times r_{r}}\right)
$$

- T is "right-orthogonal" if its right-unfolding has orthonormal rows:

$$
\left(T_{\text {right }} T_{\text {right }}^{T}=I \in \mathbf{R}^{r_{l} \times r_{l}}\right)
$$

Relation between tensor-trains and 2d SVDs

Remark: tensor-train invariant wrt. multiplying with a matrix and its inverse ($M \in \mathbf{R}^{r_{k} \times r_{k}}$):

$$
X_{\mathrm{TT}}^{\prime}:=X_{1} \times \cdots \times\left(X_{k} \times M\right) \times\left(M^{-1} \times X_{k+1}\right) \times \cdots \times X_{d}=X_{\mathrm{TT}}
$$

So we can left-orthogonalize X_{1} then X_{2}, \ldots, up to X_{k-1} :

$$
\begin{array}{lll}
X_{1}^{\prime}:=X_{1} \times R_{1}^{-1}, & X_{2}^{\prime}:=R_{1} \times X_{2}, & \text { with } X_{1, \text { left }}=Q_{1} R_{1} \\
X_{2}^{\prime \prime}:=X_{2}^{\prime} \times R_{2}^{-1}, & X_{3}^{\prime}:=R_{2} \times X_{3}, & \text { with } X_{2, \text { left }}^{\prime}=Q_{2} R_{2}
\end{array}
$$

And similarly right-orthogonalize X_{d} to sub-tensor $X_{k} \ldots$ with an SVD in the last step:

$$
X_{k}^{\prime \prime \prime}:=X_{k}^{\prime \prime} \times U_{k+1}, \quad X_{k+1}^{\prime \prime}:=V_{k+1}^{T} \times X_{k+1}^{\prime}, \quad \text { with } X_{k+1, \text { right }}=U_{k+1} S V_{k+1}^{T}
$$

Resulting in (for $k=3$):

Performance of required dense linear algebra operations (on my machine...)

Matrix-matrix product (GEMM)

$$
\begin{array}{ccc}
C & \leftarrow & A \\
(n \times k) & B \\
(n \times m) & (m \times k)
\end{array}
$$

Costs: $2 n m k$ flop, $(n k+n m+m k)$ data transfers
compute-bound for $\min (n, m, k) \gg 100$
memory-bound for $\min (n, m, k) \lesssim 100$

Singular value decomposition (SVD)

$$
A=U S V^{T},
$$

with $U^{\top} U=I, V^{\top} V=I, S=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$.
Costs: $>7 \mathrm{~nm}^{2}$ flop, $>2 \mathrm{~nm}+\mathrm{m}^{2}$ data transfers

In practice: $t_{\mathrm{SVD}} \gg t_{\mathrm{QR}}>t_{\mathrm{GEMM}}$ for similar dimensions
with $Q^{T} Q=I, R$ upper triangular, $n \geq m$.
Costs: $2 n m^{2}-2 / 3 m^{3}$ flop, $2 n m+1 / 2 m^{2}$ data transfers memory-bound for $m \lesssim 100 \rightarrow$ tall-skinny QR (TSQR)

Problem 1 - approximate large data with low-rank: TT-SVD

Idea

- Based on successive SVDs for each dimension.
- Truncated right-singular vectors become next sub-tensor.

Remarks

- Large matrices are tall and skinny (e.g., $n^{d-1} \times n$).
- Size of X (ideally) decreases in each step.
- Cheap operations are grayed out.

Algorithm [Oseledets, 2011]
Input: Tensor X
for $i=1, \ldots, d-1$ do
Reshape X to $\left(\prod_{k=i+1, d} n_{k}\right) \times\left(n r_{i-1}\right)$
Calculate SVD: $U S V^{T}=X$
Choose truncation rank r_{i}
$T_{i} \leftarrow V_{1: r_{i}}^{T}$, reshape to $r_{i-1} \times n_{i} \times r_{i}$
$X \leftarrow U_{1: r_{i}} S_{1: r_{i}}$
end for
$T_{d} \leftarrow X$, reshape to $\left(r_{d-1} \times n_{d} \times 1\right)$
Output: Tensor-train $\left(T_{1}, \ldots, T_{d}\right)$

Problem 2 - solve linear systems: TT-AMEn

Idea

- Alternating least-squares (ALS): "optimize" one sub-tensor at a time sweep left-right until convergence
- Orthogonalize all other sub-tensors \Rightarrow projection onto smaller problem
- Enrich subspace by a few directions of the residual

Remarks

- iterative solver (GMRES, CG) for small problems
- Subspace enrichment needed to adapt ranks (for unknown solution rank)
- Complex algorithm with lots of different operations

Algorithm [Dolgov, 2014]

Input: Operator $\mathcal{A}_{\mathrm{TT}}, \mathrm{RHS} B_{\mathrm{TT}}$, initial guess X_{TT} Right-orthogonalize X_{d}, \ldots, X_{2} while not converged do
for $i=1, \ldots, d-1$ do
$V_{\text {left }}:=\left(X_{1}, \ldots, X_{i-1}\right), V_{\text {right }}:=\left(X_{i+1}, \ldots, X_{d}\right)$
$\mathcal{V}:=V_{\text {left }} \otimes I \otimes V_{\text {right }}$
Approx. solve $\left(\mathcal{V}^{T} \mathcal{A}_{\mathrm{TT}} \mathcal{V}\right) y=\mathcal{V}^{T} B_{\mathrm{TT}}$
Left-orthogonalize $X_{i} \leftarrow y$
Update (X_{i}, X_{i+1}) to enrich subspace
(adds directions to X_{i} and zeros to X_{i+1})
end for
for $i=d, \ldots, 2$ do
Same as above but right-to-left
end for
end while
Output: Approx. solution $X_{T T}$

Problem 2 - solve linear systems: projection onto small problem

Idea: minimize energy $J(u):=\frac{1}{2}\langle u, \mathcal{A} u\rangle-\langle u, b\rangle$ for $\left(X_{i}\right)$

Properties:

- $\mathcal{V}^{T} \mathcal{V}=I$
- $\mathcal{V}_{y}=X_{\text {TT }}$

For spd operator \mathcal{A} :

- minimizes $\left\|X_{\mathrm{TT}}-X_{\mathrm{TT}}^{*}\right\|_{\mathcal{A}}$
- $\operatorname{cond}\left(\mathcal{V}^{\top} \mathcal{A} \mathcal{V}\right) \leq \operatorname{cond}(\mathcal{A})$

Alternative for non-symmetric \mathcal{A} :
$\mathcal{W}^{T} \mathcal{A} \mathcal{V} y=\mathcal{W}^{\top} \mathcal{A}$
e.g., with $\mathcal{W}^{T} \mathcal{W}=I$ and $\mathcal{W C} \approx \mathcal{A} \mathcal{V}$.

Problem 2 - solve linear systems: TT-AMEn subspace enrichment

Idea: directions from steepest descent step for minimizing $J(u)$
Basis enrichment (for left-to-right sweep):

1. With $\mathcal{V}:=V_{\text {left }} \otimes I \otimes V_{\text {right }}$, calculate

$$
Z_{\mathrm{TT}}:=V_{\text {left }}^{T}\left(B_{\mathrm{TT}}-\mathcal{A}_{\mathrm{TT}} X_{\mathrm{TT}}\right)
$$

2. Right-orthogonlize $Z_{T T}$
3. Add leading $r_{\text {add }}$ directions of Z_{1} to X_{i} :

$$
\left(X_{i}\right)_{\text {left }} \leftarrow\left(\left(X_{i}\right)_{\text {left }} \quad\left(Z_{1}\right)_{:, 1: r_{\text {add }}}\right), \quad\left(X_{i+1}\right)_{\text {right }} \leftarrow\binom{\left(X_{i+1}\right)_{\text {right }}}{0}
$$

\Rightarrow Increases rank by $r_{\text {add }}$ in each sweep
Remark: this "full" variant needs another costly SVD, cheaper updates for approximating of $Z_{\mathrm{T} T}$ possible

Problem 2 - solve linear systems: TT-rank1 preconditioner

Idea:

- Approximate TT operator with rank-1 TT operator: $\tilde{\mathcal{A}}_{\mathrm{TT}} \approx \mathcal{A}_{\mathrm{TT}}, \operatorname{rank}\left(\tilde{\mathcal{A}}_{\mathrm{TT}}\right)=1$
- Rank-1 inverse is then: $\left(\tilde{A_{1}} \otimes \tilde{A}_{2} \otimes \cdots \otimes \tilde{A}_{d}\right)^{-1}={\tilde{A_{1}}}^{-1} \otimes{\tilde{A_{2}}}^{-1} \otimes \cdots \otimes \tilde{A}_{d}{ }^{-1}$

Two-sided preconditioner (for symm. problems $\mathcal{L}_{\mathrm{TT}}^{T}=\mathcal{R}_{\mathrm{TT}}$):

$$
\mathcal{L}_{\mathrm{TT}} \mathcal{A}_{\mathrm{TT}} \mathcal{R}_{\mathrm{TT}} \approx I
$$

using the SVDs $\tilde{A}_{k}=U_{k} S_{k} V_{k}^{T}$:

$$
L_{k}:=S_{k}^{-\frac{1}{2}} U_{k}^{T}, \quad R_{k}:=V_{k} S_{k}^{-\frac{1}{2}}
$$

\Rightarrow Reduces the condition number without increasing the rank of the operator

Underlying building blocks: TT-SVD

Required operation
For $X \in \mathbf{R}^{n \times m}, n \gg m$, we need:

$$
\begin{aligned}
\left\|X-B Q^{T}\right\|_{F} & \leq \tau \\
X_{1} & \leftarrow \operatorname{reshape}(B, \ldots) \\
X_{2} & \leftarrow Q^{T}
\end{aligned}
$$

Standard: truncated SVD

$$
\begin{aligned}
U S V^{T} & \approx X \\
X_{1} & \leftarrow U S \\
X_{2} & \leftarrow V^{T} \\
X_{1}^{\prime} & \leftarrow \operatorname{reshape}\left(X_{1}, \ldots\right)
\end{aligned}
$$

Optimized: Q-less TSQR \& TSMM+reshape

$$
\begin{aligned}
Q R & =X, \\
U S V^{T} & \approx R, \\
X_{1} & \leftarrow \operatorname{reshape}(X V, \ldots), \\
X_{2} & \leftarrow V^{T}
\end{aligned}
$$

Costs: $>7 n m^{2}$ flop, $>2 n(m+r)$ data transfers

TT-SVD performance results [Röhrig-Zöllner, 2022]

Further "tricks"

- Combine dimensions to increase compute intensity
- Add padding to avoid bad strides (multiples of $2^{k} \rightarrow$ cache thrashing)

Setup \& results

- Decompose random 2^{27} tensor
- Data size: 1GB
- 14-core Intel Skylake Gold 6132
\rightarrow Existing software: $>50 x$ slower
- Much closer to roofline performance $\left(N:=n_{1} n_{2} \cdots n_{d}\right)$
- tntorch first constructs a full-rank TT, then truncates it.

Underlying building blocks: orthogonalization in linear solvers

Required operation
For $X:=X_{1} X_{2}$, we need:
(with $X_{1} \in \mathbf{R}^{n \times m}, X_{2} \in \mathbf{R}^{m \times k}, m \ll n \approx k$)

$$
\begin{aligned}
Q B & \left.=X_{1} \quad \text { (rank-revealing }\right) \\
X_{1}^{\prime} & =Q \\
X_{2}^{\prime} & =B X_{2}
\end{aligned}
$$

Standard: pivoted QR

$$
\begin{aligned}
Q R & =X_{1} P, \\
X_{1}^{\prime} & =Q, \\
X_{2}^{\prime} & =R P^{\top} X_{2}
\end{aligned}
$$

Costs: $5 \mathrm{~nm}^{2}$ flop, 6 nm data transfers

Optimized: Q-less (TS)QR:

$$
\begin{aligned}
Q R & =X_{1} P \\
X_{1}^{\prime} & =X_{1} P R^{-1} \quad \text { (backward subst.) } \\
X_{2}^{\prime} & =R P^{T} X_{2}
\end{aligned}
$$

Costs: $4 \mathrm{~nm}^{2}$ flop, 5 nm data transfers
But X_{1}^{\prime} inaccurate for cond $(R) \gg 1 \Rightarrow$ track errors

Underlying building blocks: exploiting pre-existing orthogonalities

Setting: TT-axpby
(e.g., needed for residual $B_{\text {TT }}-\mathcal{A}_{\mathrm{TT}} X_{\mathrm{TT}}$)

$$
Z_{\mathrm{TT}}=\alpha X_{\mathrm{TT}}+\beta Y_{\mathrm{TT}}=Z_{1} \times Z_{2} \times \cdots \times Z_{d}
$$

with

$$
\begin{aligned}
\left(Z_{1}\right)_{1,:,:} & =\left(\begin{array}{lc}
\left(X_{1}\right)_{1,:,:} & \left(Y_{1}\right)_{1,:,:}
\end{array}\right) \\
\left(Z_{i}\right)_{:, j,:} & =\left(\begin{array}{cc}
\left(X_{i}\right)_{:, j,:} & 0 \\
0 & \left(Y_{i}\right)_{:, j,:}
\end{array}\right), \forall j, i=2, \ldots, d-1 \\
\left(Z_{d}\right)_{:,:, 1} & =\binom{\alpha\left(X_{d}\right)_{:,:, 1}}{\beta\left(Y_{d}\right)_{:,:, 1}}
\end{aligned}
$$

Idea: X_{i} usually already left-/right-orthogonal \Rightarrow blocks in Z_{i} already orthogonal. Assuming left-orthogonal X_{TT}, calculate

$$
Q_{i} R_{i}=\left(I-\bar{X}_{i} \bar{X}_{i}^{T}\right) \bar{Y}_{i}
$$

in each step $i=2, \ldots, d-1$ with

$$
\bar{X}_{j}:=\left(\binom{I}{0} \times X_{j}\right)_{\mathrm{left}}, \quad \bar{Y}_{j}=\left(\binom{M_{j-1}}{R_{j-1}} \times Y_{j}\right)_{\mathrm{left}}
$$

Then orthogonalize Z_{TT}.

Underlying building blocks: truncation in linear solvers

Required operation

For $X=X_{1} X_{2}$ with $X_{2}^{\top} X_{2}=I$, we need:
(with $X_{1} \in \mathbf{R}^{n \times m}, X_{2} \in \mathbf{R}^{m \times k}, m \ll n \approx k$)

$$
\begin{aligned}
\left\|X_{1}-Q B\right\|_{F} & \leq \tau \\
X_{1}^{\prime} & =Q \\
X_{2}^{\prime} & =B X_{2}
\end{aligned}
$$

Standard: truncated SVD

$$
\begin{aligned}
U S V^{\top} & \approx X_{1} \\
X_{1}^{\prime} & \leftarrow U \\
X_{2}^{\prime} & \leftarrow S V^{T} X_{2}
\end{aligned}
$$

Costs: $>7 n m^{2}+2 n m r$ flop, $>2 n(m+r)$ data transfers

Optimized: Q-less (TS)QR + SVD

$$
\begin{aligned}
Q R & =X_{1}, \quad U S V^{T} \approx R \\
X_{1}^{\prime} & =X_{1} V S^{-1} \\
X_{2}^{\prime} & =S V^{T} X_{2}
\end{aligned}
$$

Costs: $2 n m^{2}+4 n m r$ flop, $n m+2 n(m+r)$ transfers As before: X_{1}^{\prime} less accurate in "unimportant" directions

Truncated TT-axpby performance

Setup \& results

- Add 2 tensor-trains $\left(X_{\mathrm{TT}}, X_{\mathrm{TT}}\right)$ of dim. 50^{10},
TT-rank $r_{X}=50$, varying r_{Y}
- both $X_{\mathrm{TT}}, X_{\mathrm{TT}}$ previously left-orthogonal
- 64-core AMD EPYC 7773X ("Zen 3 V-Cache")
- Operations needed for $B_{T T}-\mathcal{A}_{T T} X_{T T}$
\rightarrow Roughly 4x speedup

Underlying building blocks: tensor contractions

Required operations

- Most costly part of inner solver (GMRES): Apply TT operator to dense array
- Easily sub-optimal array accesses (cache thrashing)
- Required contractions:
(with e.g. $A_{2} \in \mathrm{R}^{r_{\mathrm{Op}} \times n \times n \times r_{\mathrm{Op}} \text {) }}$

$$
\begin{aligned}
\left(z_{1}\right)_{:,,,:,:,:} & \leftarrow \sum_{i}\left(A_{3}\right)_{:,, i, i} x_{:,, i, i} \\
\left(z_{2}\right)_{:,,:,:,:} & \leftarrow \sum_{i, j}\left(A_{2}\right)_{:,, i, i, j}\left(z_{1}\right)_{j,:,, i} \\
y_{:,,:,:} & \leftarrow \sum_{i, j}\left(A_{1}\right)_{:, i, j}\left(z_{2}\right)_{j,:,:, i}
\end{aligned}
$$

Optimizations

- Reorder array dimensions \rightarrow combine several small dimensions
- Padding (first dim.) to avoid bad strides

Tensor contractions performance

Setup \& results

- Operator dimension $r \times 50 \times r$
- 64-core AMD EPYC 7773X ("Zen 3 V-Cache")
- Comparison to 3 GEMMS of similar dimensions

Remark

- Uses loop-over-GEMM with MKL GEMM
- More sophisticated implement. possible ([Springer 2018], no maintained library available?)

Complete TT-AMEn performance [Röhrig-Zöllner, 2023]

50^{10} conv.-diff. operator, random RHS, dashed lines with TT-rank1 preconditioner, AMD EPYC 7773X left: "full" SVD variant, right: ALS/simplified variant

Unfortunately, optimizations need some "non-standard" operations...

Q-less (tall-skinny) QR

- Never stores Q
- Implementation based on [Demmel, 2012]
- First parallelize over blocks of rows
- Reduction parallelized over columns Background: e.g., $n / 64 \times m$ not so tall-skinny
- Recursive blocking over columns

Memory-bound (fused) operations

- Just to optimize mem.-accesses (same distribution on cores for each call)
- Fused dense axpy+dot, axpy+norm, tall-skinny GEMM (TSMM) + reshape
- In-place triangular solve for very rectangular/tall-skinny matrices

Optimization steps

1. Reformulate tensor algorithm: actually required operations (often \neq standard LAPACK operations)
2. Consider special properties/requirements: e.g., pre-existing orthogonalities, block-structure
3. Map required operations onto suitable building blocks
4. Optimize data layout: rearrange dimensions \& padding (really crucial: e.g. if n mutliple of 4 , unpadded n^{d} leads to bad strides)
5. Implement required "non-standard" kernels (like e.g., Q-less QR)
\rightarrow High speedups possible! (as illustrated)

Unfortunately, I don't see a generic/automated approach here (except for domain-specific algorithms)

Summary

- Optimized tensor-train/MPS decomposition (TT-SVD): $\sim 50 \times$ speedup
- Optimized tensor-train/MPS linear solver: $\sim 5 \times$ speedup
- Key ingredient: mapping of tensor algorithm onto (very) "rectangular" matrix operations

Possible next steps

- Other tensor-train/MPS algorithms (similar "rectangular" operations for $n_{i} \gg 2$)
- Extension to tree tensor-networks

Wh 4

Literature

- Röhrig-Zöllner; Thies \& Basermann: "Performance of the Low-Rank TT-SVD for Large Dense Tensors on Modern MultiCore CPUs", SISC, 2022
- Röhrig-Zöllner; Becklas; Thies \& Basermann: "Performance of linear solvers in tensor-train format on current multicore architectures", submitted to SISC, 2023
- Oseledets: "Tensor-Train Decomposition", SISC, 2011
- Dolgov \& Savostyanov: "Alternating Minimal Energy Methods for Linear Systems in Higher Dimensions", SISC, 2014
- Demmel et.al.: "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC, 2012
- Williams et.al.: "Roofline: An Insightful Visual Performance Model for Multicore Architectures", Comm. of the ACM, 2009
- Anderson et.al.: "LAPACK Users' Guide", SIAM, 1999
- Springer \& Bientinesi: "Design of a High-Performance GEMM-like Tensor-Tensor Multiplication", ACM TOMS, 2018

TT-AMEn: alternative projection for non-symmetric systems

Setup:

- TT-AMEn with inner GMRES
- varying asymmetry

Observations: (work-in-progress!)

- alternative projection beneficial for strongly non-symmetric problems

TT-SVD: Building blocks (TSQR and TSMM+reshape)

$$
\left(\left(\sim 25 \cdot 10^{6}\right) \times m \text { matrix in double-precision }(0.2 m \mathrm{~GB}) ; 16\right. \text {-core Intel CascadeLake Gold 6242.) }
$$

Comparison of methods: overview

method	idea	properties/problems
TT-GMRES	GMRES adaptive truncation tolerance	global, large intermediate ranks
TT-ALS (alternating least squares)	projection onto X_{k}, solve for $k=1, \ldots, d$	predefined rank, stuck in local minima
TT-MALS (modified ALS)	projection onto $\left(X_{k} \times X_{k+1}\right)$, solve for $k=1, \ldots, d-1$	rank-adaptive, larger local problem
TT-AMEn (alternating minimal energy)	ALS + enrich basis	rank-adaptive
Riemannian optimization methods	fixed rank \rightarrow smooth submanifold, search direction in tangent space	global, needs special preconditioner

Riemannian optimization not further discussed here (but promising for some applications!)

Comparison of methods: results for varying dimension n

(Conv.-diff. problem with RHS ones and conv.-diff. ratio $n / 2$. Dotted line with TT-rank1-preconditioner.)

Comparison of methods: results for varying \#dimensions d

(Conv.-diff. problem with RHS ones and conv.-diff. ratio 10. Dotted line with TT-rank1-preconditioner.)

Comparison of methods: results for varying rank r_{B} (and r_{X})

(Conv.-diff. problem with random RHS and conv.-diff. ratio 10. Dotted line with TT-rank1-preconditioner.)

