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Goal

Show performance of mapping tensor algorithms onto linear algebra building blocks

Based on 2 examples. . .
Related talk: Paolo Bientinesi: The Linear Algebra Mapping Problem and how programming languages solve it

https://www.youtube.com/watch?v=PDAcuw1oQNs
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Problem definitions

Approx. large data with low-rank tensor
Given:
▶ dense tensor X ∈ Rn1×n2×···×nd

▶ desired tolerance ϵtol or max. rank rmax

Calculate:
▶ Low-rank approximation XTT with

∥X − XTT∥F ≤ ϵtol

or

XTT ≈ X , with rank(XTT) ≤ rmax

Solve linear system in low-rank tensor format
Given:
▶ low-rank linear operator ATT : Rnd → Rnd

▶ low-rank right-hand side BTT ∈ Rnd

▶ desired tolerance ϵtol

Calculate:
▶ iterative solution XTT with

∥ATTXTT − BTT∥∗ ≤ ϵtol

for some suitable norm ∥ · ∥∗
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Tensor-train format

▶ Known as MPS (matrix-product states) in physics.

▶ Defined by series of 3d tensors
(tensor-network notation)

X1, · · · , Xd , with Xk ∈ Rrk−1,nk ,rk , r0 = rd = 1

with ranks (bond-dimensions) r1, . . . , rd−1 and dimensions n1, . . . nd .
▶ Approximates a high-dim. tensor X ∈ Rn1×n2×···×nd with

XTT := X1 × X2 × · · · × Xd

where · × · is the contraction: Xi × Xi+1 :=
∑

k(Xi ):,:,k(Xi+1)k,:,: ∈ Rri−1×ni ×ni+1×ri+1

▶ with a “TT-rank” of r := max(r1, . . . , rd−1)
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Tensor-train operator

▶ Known as MPO (matrix-product operator) in physics.

▶ Defined by series of 4d tensors
(tensor-network notation)

A1, · · · , Ad , with Ak ∈ RrOp,k−1,nk ,nk ,rOp,k , rOp,0 = rOp,d = 1

with ranks rOp,1, . . . , rOp,d−1 and dimensions n1 × n1, . . . , nd × nd .
▶ Provides the high-dim. linear operator ATT ∈ R(n1×n1)×(n2×n2)×···×(nd ×nd ) with

ATT := A1 × A2 × · · · × Ad

In the following, we simply use n1 = · · · = nd = n.
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Tensor network notation

Helpful notation from physics to illustrate linear algebra operations in higher dimensions:

scalar vector matrix 3d tensor 4d tensor

Contractions:

dot-product matrix-vector product matrix-matrix product contraction of 4d and 3d tensors

Orthogonalities and decompositions:

vT v=1 QT Q=I QR USV T
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Tensor unfoldings and orthogonalities

Unfolding a 3d tensor T ∈ Rrl ,n,rr (“matrification”):
▶ “left-unfolding” combines first two dimensions:

Tleft := reshape(T , rl n, rr ) ∈ Rrl n×rr

▶ “right-unfolding” combines last two dimensions:

Tright := reshape(T , rl , nrr ) ∈ Rrl ×nrr

Orthogonality of a 3d tensor:
▶ T is “left-orthogonal” if its left-unfolding has orthonormal columns:

(T T
leftTleft = I ∈ Rrr ×rr )

▶ T is “right-orthogonal” if its right-unfolding has orthonormal rows:

(TrightT T
right = I ∈ Rrl ×rl )
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Relation between tensor-trains and 2d SVDs

Remark: tensor-train invariant wrt. multiplying with a matrix and its inverse (M ∈ Rrk ×rk ):

X ′
TT := X1 × · · · × (Xk ×M)× (M−1 × Xk+1)× · · · × Xd = XTT

So we can left-orthogonalize X1 then X2, . . . , up to Xk−1:

X ′
1 := X1 × R−1

1 , X ′
2 := R1 × X2, with X1,left = Q1R1

X ′′
2 := X ′

2 × R−1
2 , X ′

3 := R2 × X3, with X ′
2,left = Q2R2

And similarly right-orthogonalize Xd to sub-tensor Xk . . . with an SVD in the last step:

X ′′′
k := X ′′

k × Uk+1, X ′′
k+1 := V T

k+1 × X ′
k+1, with Xk+1,right = Uk+1SV T

k+1

Resulting in (for k = 3):

U S V T
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Performance of required dense linear algebra operations (on my machine. . . )

Matrix-matrix product (GEMM)
C ← A B

(n × k) (n ×m) (m × k)

Costs: 2nmk flop, (nk + nm + mk) data transfers
compute-bound for min(n, m, k)≫ 100
memory-bound for min(n, m, k) ≲ 100

(Pivoted) QR decomposition
AP = QR,

with QT Q = I, R upper triangular, n ≥ m.
Costs: 2nm2 − 2/3m3 flop, 2nm + 1/2m2 data transfers
memory-bound for m ≲ 100 → tall-skinny QR (TSQR)

Singular value decomposition (SVD)
A = USV T ,

with UT U = I, V T V = I, S = diag(σ1, . . . , σr ).
Costs: > 7nm2 flop, > 2nm + m2 data transfers

In practice: tSVD ≫ tQR > tGEMM for similar dimensions
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Problem 1 – approximate large data with low-rank: TT-SVD

Idea
▶ Based on successive SVDs for each dimension.
▶ Truncated right-singular vectors become next

sub-tensor.

Remarks
▶ Large matrices are tall and skinny (e.g., nd−1 × n).
▶ Size of X (ideally) decreases in each step.
▶ Cheap operations are grayed out.

Algorithm [Oseledets, 2011]
Input: Tensor X

for i = 1, . . . , d − 1 do
Reshape X to

(∏
k=i+1,d nk

)
× (nri−1)

Calculate SVD: USV T = X
Choose truncation rank ri
Ti ← V T

1:ri
, reshape to ri−1 × ni × ri

X ← U1:ri S1:ri
end for
Td ← X , reshape to (rd−1 × nd × 1)

Output: Tensor-train (T1, . . . , Td )
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Problem 2 – solve linear systems: TT-AMEn

Idea
▶ Alternating least-squares (ALS):

“optimize” one sub-tensor at a time
sweep left-right until convergence

▶ Orthogonalize all other sub-tensors
⇒ projection onto smaller problem

▶ Enrich subspace by a few directions of the residual

Remarks
▶ iterative solver (GMRES, CG) for small problems
▶ Subspace enrichment needed to adapt ranks

(for unknown solution rank)
▶ Complex algorithm with lots of different operations

Algorithm [Dolgov, 2014]
Input: Operator ATT, RHS BTT, initial guess XTT

Right-orthogonalize Xd , . . . , X2
while not converged do

for i = 1, . . . , d − 1 do
Vleft := (X1, . . . , Xi−1), Vright := (Xi+1, . . . , Xd )
V := Vleft ⊗ I ⊗ Vright
Approx. solve (VTATTV)y = VT BTT
Left-orthogonalize Xi ← y
Update (Xi , Xi+1) to enrich subspace
(adds directions to Xi and zeros to Xi+1)

end for
for i = d , . . . , 2 do

Same as above but right-to-left
end for

end while
Output: Approx. solution XTT
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Problem 2 – solve linear systems: projection onto small problem

Idea: minimize energy J(u) := 1
2 ⟨u,Au⟩ − ⟨u, b⟩ for (Xi )

V T A V y = V T BTT

Properties:
▶ VTV = I
▶ Vy = XTT

For spd operator A:
▶ minimizes ∥XTT − X∗

TT∥A

▶ cond(VTAV) ≤ cond(A)
Alternative for non-symmetric A:

WTAVy =WTA,

e.g., with WTW = I and WC ≈ AV.
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Problem 2 – solve linear systems: TT-AMEn subspace enrichment

Idea: directions from steepest descent step for minimizing J(u)

Basis enrichment (for left-to-right sweep):
1. With V := Vleft ⊗ I ⊗ Vright, calculate

ZTT := V T
left (BTT −ATTXTT)

2. Right-orthogonlize ZTT

3. Add leading radd directions of Z1 to Xi :

(Xi )left ←
(

(Xi )left (Z1):,1:radd

)
, (Xi+1)right ←

(
(Xi+1)right

0

)
⇒ Increases rank by radd in each sweep

Remark: this “full” variant needs another costly SVD, cheaper updates for approximating of ZTT possible
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Problem 2 – solve linear systems: TT-rank1 preconditioner

Idea:
▶ Approximate TT operator with rank-1 TT operator: ÃTT ≈ ATT, rank(ÃTT) = 1

▶ Rank-1 inverse is then:
(

Ã1 ⊗ Ã2 ⊗ · · · ⊗ Ãd
)−1 = Ã1

−1 ⊗ Ã2
−1 ⊗ · · · ⊗ Ãd

−1

Two-sided preconditioner (for symm. problems LT
TT = RTT):

LTTATTRTT ≈ I

using the SVDs Ãk = UkSkV T
k :

Lk := S− 1
2

k UT
k , Rk := VkS− 1

2
k

⇒ Reduces the condition number without increasing the rank of the operator



Introduction High-level tensor algorithms Underlying building blocks Conclusion

Underlying building blocks: TT-SVD

Required operation
For X ∈ Rn×m, n≫ m, we need:

∥X − BQT ∥F ≤ τ

X1 ← reshape(B, . . . )

X2 ← QT

Standard: truncated SVD
USV T ≈ X ,

X1 ← US,

X2 ← V T ,

X ′
1 ← reshape(X1, . . . )

Costs: > 7nm2 flop, > 2n(m + r) data transfers

Optimized: Q-less TSQR & TSMM+reshape
QR = X ,

USV T ≈ R,

X1 ← reshape(XV , . . . ),

X2 ← V T

Costs: 2nm(m + r) flop, 2n(m + r) data transfers
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TT-SVD performance results [Röhrig-Zöllner, 2022]

Further “tricks”
▶ Combine dimensions to increase

compute intensity
▶ Add padding to avoid bad strides

(multiples of 2k → cache thrashing)

Setup & results
▶ Decompose random 227 tensor
▶ Data size: 1GB
▶ 14-core Intel Skylake Gold 6132
→ Existing software: >50x slower
▶ Much closer to roofline performance

(N := n1n2 · · · nd )
▶ tntorch first constructs a full-rank TT,

then truncates it.
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Underlying building blocks: orthogonalization in linear solvers

Required operation
For X := X1X2, we need:
(with X1 ∈ Rn×m, X2 ∈ Rm×k , m≪ n ≈ k)

QB = X1 (rank-revealing)
X ′

1 = Q
X ′

2 = BX2

Standard: pivoted QR
QR = X1P,

X ′
1 = Q,

X ′
2 = RPT X2

Costs: 5nm2 flop, 6nm data transfers

Optimized: Q-less (TS)QR:
QR = X1P

X ′
1 = X1PR−1 (backward subst.)

X ′
2 = RPT X2

Costs: 4nm2 flop, 5nm data transfers
But X ′

1 inaccurate for cond(R)≫ 1 ⇒ track errors
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Underlying building blocks: exploiting pre-existing orthogonalities

Setting: TT-axpby
(e.g., needed for residual BTT −ATTXTT)

ZTT = αXTT + βYTT = Z1 × Z2 × · · · × Zd

with

(Z1)1,:,: =
(

(X1)1,:,: (Y1)1,:,:
)

,

(Zi ):,j,: =
(

(Xi ):,j,: 0
0 (Yi ):,j,:

)
,∀j, i = 2, . . . , d − 1,

(Zd ):,:,1 =
(

α(Xd ):,:,1
β(Yd ):,:,1

)
.

Then orthogonalize ZTT.

Idea: Xi usually already left-/right-orthogonal
⇒ blocks in Zi already orthogonal.
Assuming left-orthogonal XTT, calculate

Qi Ri = (I − X̄i X̄T
i )Ȳi

in each step i = 2, . . . , d − 1 with

X̄j :=
((

I
0

)
× Xj

)
left

, Ȳj =
((

Mj−1
Rj−1

)
× Yj

)
left

.
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Underlying building blocks: truncation in linear solvers

Required operation
For X = X1X2 with XT

2 X2 = I, we need:
(with X1 ∈ Rn×m, X2 ∈ Rm×k , m≪ n ≈ k)

∥X1 − QB∥F ≤ τ

X ′
1 = Q

X ′
2 = BX2

Standard: truncated SVD
USV T ≈ X1

X ′
1 ← U

X ′
2 ← SV T X2

Costs: > 7nm2 + 2nmr flop, > 2n(m + r) data transfers

Optimized: Q-less (TS)QR + SVD
QR = X1, USV T ≈ R

X ′
1 = X1VS−1

X ′
2 = SV T X2

Costs: 2nm2 + 4nmr flop, nm + 2n(m + r) transfers
As before: X ′

1 less accurate in “unimportant” directions
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Truncated TT-axpby performance

Setup & results
▶ Add 2 tensor-trains (XTT, XTT) of dim.

5010,
TT-rank rX = 50, varying rY

▶ both XTT, XTT previously
left-orthogonal

▶ 64-core AMD EPYC 7773X
(“Zen 3 V-Cache”)

▶ Operations needed for BTT −ATTXTT

→ Roughly 4x speedup
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Underlying building blocks: tensor contractions

Required operations
▶ Most costly part of inner solver (GMRES):

Apply TT operator to dense array
▶ Easily sub-optimal array accesses (cache thrashing)
▶ Required contractions:

(with e.g. A2 ∈ RrOp×n×n×rOp )

(z1):,:,:,: ←
∑

i

(A3):,:,i x:,:,i

(z2):,:,:,: ←
∑

i,j

(A2):,:,i,j (z1)j,:,:,i

y:,:,: ←
∑

i,j

(A1):,i,j (z2)j,:,:,i

Optimizations
▶ Reorder array dimensions
→ combine several small dimensions

▶ Padding (first dim.) to avoid bad strides

(A1, A2, A3) x = y
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Tensor contractions performance

Setup & results
▶ Operator dimension r × 50× r
▶ 64-core AMD EPYC 7773X

(“Zen 3 V-Cache”)
▶ Comparison to 3 GEMMS of similar

dimensions

Remark
▶ Uses loop-over-GEMM with MKL

GEMM
▶ More sophisticated implement. possible

([Springer 2018], no maintained library
available?)
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Complete TT-AMEn performance [Röhrig-Zöllner, 2023]
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Background: self-implemented kernels

Unfortunately, optimizations need some “non-standard” operations. . .

Q-less (tall-skinny) QR
▶ Never stores Q
▶ Implementation based on [Demmel, 2012]
▶ First parallelize over blocks of rows
▶ Reduction parallelized over columns

Background: e.g., n/64×m not so tall-skinny
▶ Recursive blocking over columns

Memory-bound (fused) operations
▶ Just to optimize mem.-accesses

(same distribution on cores for each call)
▶ Fused dense axpy+dot, axpy+norm, tall-skinny

GEMM (TSMM) + reshape
▶ In-place triangular solve for very

rectangular/tall-skinny matrices
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Tensor operations mapping problem

Optimization steps
1. Reformulate tensor algorithm: actually required operations (often ̸= standard LAPACK operations)
2. Consider special properties/requirements: e.g., pre-existing orthogonalities, block-structure
3. Map required operations onto suitable building blocks
4. Optimize data layout: rearrange dimensions & padding

(really crucial: e.g. if n mutliple of 4, unpadded nd leads to bad strides)
5. Implement required “non-standard” kernels (like e.g., Q-less QR)

→ High speedups possible! (as illustrated)

Unfortunately, I don’t see a generic/automated approach here (except for domain-specific algorithms)
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Conclusion

Summary
▶ Optimized tensor-train/MPS decomposition (TT-SVD): ∼ 50× speedup
▶ Optimized tensor-train/MPS linear solver: ∼ 5× speedup
▶ Key ingredient: mapping of tensor algorithm onto (very) “rectangular” matrix operations

Possible next steps
▶ Other tensor-train/MPS algorithms (similar “rectangular” operations for ni ≫ 2)
▶ Extension to tree tensor-networks
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TT-AMEn: alternative projection for non-symmetric systems

Setup:
▶ TT-AMEn with inner GMRES
▶ varying asymmetry

Observations: (work-in-progress!)
▶ alternative projection beneficial for strongly

non-symmetric problems 0
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TT-SVD: Building blocks (TSQR and TSMM+reshape)
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Comparison of methods: overview

method idea properties/problems

TT-GMRES GMRES
adaptive truncation tolerance

global,
large intermediate ranks

TT-ALS
(alternating least squares)

projection onto Xk ,
solve for k = 1, . . . , d

predefined rank,
stuck in local minima

TT-MALS
(modified ALS)

projection onto (Xk × Xk+1),
solve for k = 1, . . . , d − 1

rank-adaptive,
larger local problem

TT-AMEn
(alternating minimal energy) ALS + enrich basis rank-adaptive

Riemannian optimization
methods

fixed rank → smooth submanifold,
search direction in tangent space

global, needs
special preconditioner

Riemannian optimization not further discussed here (but promising for some applications!)



Comparison of methods: results for varying dimension n
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Comparison of methods: results for varying #dimensions d
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Comparison of methods: results for varying rank rB (and rX )
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