High-level tensor algorithms 00000 Underlying building blocks

Knowledge for Tomorrow

Conclusion 00

# Performance of linear solvers in tensor-train format on current multi-core architectures

Melven Röhrig-Zöllner Institute for Software Technology, German Aerospace Center (DLR)

February 27, 2024



Introduction • 0000000 Goal High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

Show performance of mapping tensor algorithms onto linear algebra building blocks

Based on 2 examples... Related talk: Paolo Bientinesi: The Linear Algebra Mapping Problem and how programming languages solve it



Problem definitions

High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

## Approx. large data with low-rank tensor Given:

- dense tensor  $X \in \mathbf{R}^{n_1 \times n_2 \times \cdots \times n_d}$
- desired tolerance ε<sub>tol</sub> or max. rank r<sub>max</sub>

#### Calculate:

▶ Low-rank approximation  $X_{TT}$  with

$$\|X - X_{\mathsf{TT}}\|_F \le \epsilon_{\mathsf{tol}}$$

or

$$X_{ ext{TT}} pprox X, \quad ext{with rank}(X_{ ext{TT}}) \leq r_{ ext{max}}$$

Solve linear system in low-rank tensor format Given:

- ▶ low-rank linear operator  $\mathcal{A}_{\mathsf{TT}}: \mathbf{R}^{n^d} \to \mathbf{R}^{n^d}$
- ▶ low-rank right-hand side  $B_{\mathsf{TT}} \in \mathbf{R}^{n^d}$
- desired tolerance \(\epsilon\_{tol}\)

#### Calculate:

iterative solution X<sub>TT</sub> with

 $\|\mathcal{A}_{\mathsf{TT}} X_{\mathsf{TT}} - \mathcal{B}_{\mathsf{TT}}\|_* \le \epsilon_{\mathsf{tol}}$ 

for some suitable norm  $\|\cdot\|_*$ 



High-level tensor algorithms 00000 Underlying building blocks

#### Tensor-train format

- Known as MPS (matrix-product states) in physics.
- Defined by series of 3d tensors

$$X_1,\cdots,X_d, ext{ with } X_k \in \mathbf{R}^{r_{k-1},n_k,r_k}, r_0=r_d=1$$

with ranks (bond-dimensions)  $r_1, \ldots, r_{d-1}$  and dimensions  $n_1, \ldots, n_d$ .

• Approximates a high-dim. tensor  $X \in \mathbf{R}^{n_1 \times n_2 \times \cdots \times n_d}$  with

$$X_{\mathsf{TT}} := X_1 \times X_2 \times \cdots \times X_d$$

where  $\cdot \times \cdot$  is the contraction:  $X_i \times X_{i+1} := \sum_k (X_i)_{:,:,k} (X_{i+1})_{k,:,:} \in \mathbb{R}^{r_{i-1} \times n_i \times n_{i+1} \times r_{i+1}}$ with a "TT-rank" of  $r := \max(r_1, \ldots, r_{d-1})$ 



(tensor-network notation)





High-level tensor algorithms 00000

00000

Underlying building blocks

#### Tensor-train operator

Known as MPO (matrix-product operator) in physics.



Defined by series of 4d tensors

(tensor-network notation)

$$A_1, \cdots, A_d$$
, with  $A_k \in \mathbf{R}^{r_{\mathrm{Op},k-1}, n_k, n_k, r_{\mathrm{Op},k}}, r_{\mathrm{Op},0} = r_{\mathrm{Op},d} = 1$ 

with ranks  $r_{\text{Op},1}, \ldots, r_{\text{Op},d-1}$  and dimensions  $n_1 \times n_1, \ldots, n_d \times n_d$ .

▶ Provides the high-dim. linear operator  $A_{TT} \in \mathbf{R}^{(n_1 \times n_1) \times (n_2 \times n_2) \times \cdots \times (n_d \times n_d)}$  with

$$\mathcal{A}_{\mathsf{T}\mathsf{T}} := \mathcal{A}_1 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_d$$

In the following, we simply use  $n_1 = \cdots = n_d = n$ .







Underlying building blocks

#### Tensor network notation

Helpful notation from physics to illustrate linear algebra operations in higher dimensions:





High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

#### Tensor unfoldings and orthogonalities

Unfolding a 3d tensor  $T \in \mathbf{R}^{r_l,n,r_r}$  ("matrification"):

"left-unfolding" combines first two dimensions:

$${T_{\mathsf{left}}} := \mathsf{reshape}({\mathcal{T}}, {r_l}n, {r_r}) \in {\mathsf{R}}^{{r_l}n imes {r_r}}$$

"right-unfolding" combines last two dimensions:

$$T_{\text{right}} := \text{reshape}(T, r_l, nr_r) \in \mathbf{R}^{r_l \times nr_r}$$

Orthogonality of a 3d tensor:

► *T* is "left-orthogonal" if its left-unfolding has orthonormal columns:

 $(T_{\text{left}}^T T_{\text{left}} = I \in \mathbf{R}^{r_r \times r_r})$ 

► *T* is "right-orthogonal" if its right-unfolding has orthonormal rows:

$$(T_{\text{right}}T_{\text{right}}^T = I \in \mathbf{R}^{r_l \times r_l})$$





High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

#### Relation between tensor-trains and 2d SVDs

Remark: tensor-train invariant wrt. multiplying with a matrix and its inverse ( $M \in \mathbf{R}^{r_k \times r_k}$ ):

$$X'_{\mathsf{TT}} := X_1 \times \cdots \times (X_k \times M) \times (M^{-1} \times X_{k+1}) \times \cdots \times X_d = X_{\mathsf{TT}}$$

So we can left-orthogonalize  $X_1$  then  $X_2, \ldots$ , up to  $X_{k-1}$ :

$$\begin{array}{ll} X_1' := X_1 \times R_1^{-1}, & X_2' := R_1 \times X_2, & \text{with } X_{1, \mathsf{left}} = Q_1 R_1 \\ X_2'' := X_2' \times R_2^{-1}, & X_3' := R_2 \times X_3, & \text{with } X_{2, \mathsf{left}} = Q_2 R_2 \end{array}$$

And similarly right-orthogonalize  $X_d$  to sub-tensor  $X_k$ ... with an SVD in the last step:

$$X_{k}''' := X_{k}'' \times U_{k+1}, \qquad X_{k+1}'' := V_{k+1}^{T} \times X_{k+1}', \qquad \text{with } X_{k+1, \text{right}} = U_{k+1}SV_{k+1}^{T}$$
  
Resulting in (for  $k = 3$ ):  
$$\prod_{U} \prod_{i=1}^{n_{2}} \prod_{i=1}^{n_{3}} \prod_{i=1}^{n_{4}} \prod_{i=1}^{n_{5}} \prod_{i=1}^{n_{5}}$$



High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

#### Performance of required dense linear algebra operations (on my machine...)

Matrix-matrix product (GEMM)

 $\begin{array}{c} C & \leftarrow & A & B \\ (n \times k) & (n \times m) \ (m \times k) \end{array}$ 

Costs: 2nmk flop, (nk + nm + mk) data transfers compute-bound for min $(n, m, k) \gg 100$ memory-bound for min $(n, m, k) \lesssim 100$ 

(Pivoted) QR decomposition

AP = QR,

with  $Q^T Q = I$ , R upper triangular,  $n \ge m$ . Costs:  $2nm^2 - 2/3m^3$  flop,  $2nm + 1/2m^2$  data transfers memory-bound for  $m \le 100 \rightarrow$  tall-skinny QR (TSQR) Singular value decomposition (SVD)

 $A = USV^{T}$ ,

with  $U^T U = I$ ,  $V^T V = I$ ,  $S = \text{diag}(\sigma_1, \dots, \sigma_r)$ . Costs:  $> 7nm^2$  flop,  $> 2nm + m^2$  data transfers

In practice:  $t_{SVD} \gg t_{QR} > t_{GEMM}$  for similar dimensions



High-level tensor algorithms

Underlying building blocks

Conclusion 00

### Problem 1 – approximate large data with low-rank: TT-SVD

#### Idea

- Based on successive SVDs for each dimension.
- Truncated right-singular vectors become next sub-tensor.

#### Remarks

- Large matrices are tall and skinny (e.g.,  $n^{d-1} \times n$ ).
- Size of X (ideally) decreases in each step.
- Cheap operations are grayed out.

### Algorithm [Oseledets, 2011]

```
Input: Tensor X

for i = 1, ..., d - 1 do

Reshape X to \left(\prod_{k=i+1,d} n_k\right) \times (nr_{i-1})

Calculate SVD: USV^T = X

Choose truncation rank r_i

T_i \leftarrow V_{1:r_i}^T, reshape to r_{i-1} \times n_i \times r_i

X \leftarrow U_{1:r_i}S_{1:r_i}

end for

T_d \leftarrow X, reshape to (r_{d-1} \times n_d \times 1)

Output: Tensor-train (T_1, ..., T_d)
```



#### High-level tensor algorithms

Underlying building blocks

Conclusion 00

#### Problem 2 – solve linear systems: TT-AMEn

#### Idea

- Alternating least-squares (ALS): "optimize" one sub-tensor at a time sweep left-right until convergence
- Orthogonalize all other sub-tensors
   projection onto smaller problem
- Enrich subspace by a few directions of the residual

#### Remarks

- iterative solver (GMRES, CG) for small problems
- Subspace enrichment needed to adapt ranks (for unknown solution rank)
- Complex algorithm with lots of different operations

#### Algorithm [Dolgov, 2014]

**Input:** Operator  $A_{TT}$ , RHS  $B_{TT}$ , initial guess  $X_{TT}$ Right-orthogonalize  $X_d, \ldots, X_2$ while not converged do for i = 1, ..., d - 1 do  $V_{\text{left}} := (X_1, \ldots, X_{i-1}), V_{\text{right}} := (X_{i+1}, \ldots, X_d)$  $\mathcal{V} := V_{\text{left}} \otimes I \otimes V_{\text{right}}$ Approx. solve  $(\mathcal{V}^T \mathcal{A}_{TT} \mathcal{V}) \mathbf{v} = \mathcal{V}^T B_{TT}$ Left-orthogonalize  $X_i \leftarrow v$ Update  $(X_i, X_{i+1})$  to enrich subspace (adds directions to  $X_i$  and zeros to  $X_{i+1}$ ) end for for i = d, ..., 2 do Same as above but right-to-left end for end while **Output:** Approx. solution  $X_{TT}$ 



High-level tensor algorithms

Underlying building blocks

Conclusion 00

#### Problem 2 – solve linear systems: projection onto small problem

Idea: minimize energy  $J(u) := \frac{1}{2} \langle u, Au \rangle - \langle u, b \rangle$  for  $(X_i)$ 



Properties:  $\mathcal{V}^{T}\mathcal{V} = I$   $\mathcal{V}y = X_{TT}$ For spd operator  $\mathcal{A}$ :  $\mathbf{M}$  minimizes  $||X_{TT} - X_{TT}^{*}||_{\mathcal{A}}$   $\mathbf{Cond}(\mathcal{V}^{T}\mathcal{A}\mathcal{V}) \leq \mathbf{Cond}(\mathcal{A})$ Alternative for non-symmetric  $\mathcal{A}$ :  $\mathcal{W}^{T}\mathcal{A}\mathcal{V}y = \mathcal{W}^{T}\mathcal{A},$ 

e.g., with  $\mathcal{W}^T \mathcal{W} = I$  and  $\mathcal{WC} \approx \mathcal{AV}$ .

Conclusion 00

#### Problem 2 – solve linear systems: TT-AMEn subspace enrichment

Idea: directions from steepest descent step for minimizing J(u)

Basis enrichment (for left-to-right sweep):

1. With  $\mathcal{V} := V_{\mathsf{left}} \otimes \mathit{I} \otimes V_{\mathsf{right}}$ , calculate

$$Z_{\mathsf{T}\mathsf{T}} := V_{\mathsf{left}}^{\mathsf{T}} \left( B_{\mathsf{T}\mathsf{T}} - \mathcal{A}_{\mathsf{T}\mathsf{T}} X_{\mathsf{T}\mathsf{T}} \right)$$

- 2. Right-orthogonlize  $Z_{TT}$
- 3. Add leading  $r_{add}$  directions of  $Z_1$  to  $X_i$ :

$$(X_i)_{\mathsf{left}} \leftarrow \begin{pmatrix} (X_i)_{\mathsf{left}} & (Z_1)_{:,1:r_{\mathsf{add}}} \end{pmatrix}, \qquad \qquad (X_{i+1})_{\mathsf{right}} \leftarrow \begin{pmatrix} (X_{i+1})_{\mathsf{right}} \\ 0 \end{pmatrix}$$

 $\Rightarrow$  Increases rank by  $r_{add}$  in each sweep

Remark: this "full" variant needs another costly SVD, cheaper updates for approximating of  $Z_{TT}$  possible



#### High-level tensor algorithms ○○○○●

Underlying building blocks

Conclusion 00

#### Problem 2 – solve linear systems: TT-rank1 preconditioner

Idea:

- ▶ Approximate TT operator with rank-1 TT operator:  $\tilde{A}_{TT} \approx A_{TT}$ , rank( $\tilde{A}_{TT}$ ) = 1
- $\blacktriangleright \text{ Rank-1 inverse is then: } \left(\tilde{A_1}\otimes\tilde{A_2}\otimes\cdots\otimes\tilde{A_d}\right)^{-1} = \tilde{A_1}^{-1}\otimes\tilde{A_2}^{-1}\otimes\cdots\otimes\tilde{A_d}^{-1}$

Two-sided preconditioner (for symm. problems  $\mathcal{L}_{TT}^T = \mathcal{R}_{TT}$ ):

 $\mathcal{L}_{\mathsf{TT}}\mathcal{A}_{\mathsf{TT}}\mathcal{R}_{\mathsf{TT}}\approx \textit{I}$ 

using the SVDs  $\tilde{A}_k = U_k S_k V_k^T$ :

$$L_k := S_k^{-\frac{1}{2}} U_k^T, \qquad \qquad R_k := V_k S_k^{-\frac{1}{2}}$$

 $\Rightarrow$  Reduces the condition number without increasing the rank of the operator





High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

#### Underlying building blocks: TT-SVD

#### Required operation

For  $X \in \mathbf{R}^{n \times m}$ ,  $n \gg m$ , we need:

$$egin{aligned} \|X - BQ^{ op}\|_{F} &\leq au \ X_{1} \leftarrow ext{reshape}(B,\dots) \ X_{2} \leftarrow Q^{ op} \end{aligned}$$

Standard: truncated SVD  $USV^T \approx X$ ,  $X_1 \leftarrow US$ ,  $X_2 \leftarrow V^T$ ,  $X_1' \leftarrow reshape(X_1, ...)$ 

Costs:  $> 7nm^2$  flop, > 2n(m+r) data transfers

Optimized: Q-less TSQR & TSMM+reshape

$$egin{aligned} & \mathcal{Q}R = X, \ & \mathcal{U}SV^{\mathcal{T}} pprox R, \ & X_1 \leftarrow \mathsf{reshape}(XV, \dots), \ & X_2 \leftarrow V^{\mathcal{T}} \end{aligned}$$

Costs: 2nm(m+r) flop, 2n(m+r) data transfers



High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

### TT-SVD performance results [Röhrig-Zöllner, 2022]

#### Further "tricks"

- Combine dimensions to increase compute intensity
- Add padding to avoid bad strides (multiples of 2<sup>k</sup> → cache thrashing)

#### Setup & results

- Decompose random 2<sup>27</sup> tensor
- Data size: 1GB
- ▶ 14-core Intel Skylake Gold 6132
- $\rightarrow\,$  Existing software: >50x slower
- Much closer to roofline performance (N := n<sub>1</sub>n<sub>2</sub> ··· n<sub>d</sub>)
- tntorch first constructs a full-rank TT, then truncates it.





High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

#### Underlying building blocks: orthogonalization in linear solvers

#### Required operation

For  $X := X_1 X_2$ , we need: (with  $X_1 \in \mathbb{R}^{n \times m}$ ,  $X_2 \in \mathbb{R}^{m \times k}$ ,  $m \ll n \approx k$ )

> $QB = X_1$  (rank-revealing)  $X'_1 = Q$  $X'_2 = BX_2$

Standard: pivoted QR

$$\begin{aligned} QR &= X_1 P, \\ X_1' &= Q, \\ X_2' &= RP^T X_2 \end{aligned}$$

Costs: 5nm<sup>2</sup> flop, 6nm data transfers

Optimized: Q-less (TS)QR:

 $\begin{aligned} QR &= X_1 P \\ X_1' &= X_1 P R^{-1} \quad (\text{backward subst.}) \\ X_2' &= R P^T X_2 \end{aligned}$ 

Costs:  $4nm^2$  flop, 5nm data transfers But  $X'_1$  inaccurate for  $cond(R) \gg 1 \Rightarrow$  track errors



High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

#### Underlying building blocks: exploiting pre-existing orthogonalities

Setting: TT-axpby

(e.g., needed for residual  $B_{TT} - A_{TT}X_{TT}$ )

$$Z_{\mathsf{T}\mathsf{T}} = \alpha X_{\mathsf{T}\mathsf{T}} + \beta Y_{\mathsf{T}\mathsf{T}} = Z_1 \times Z_2 \times \cdots \times Z_d$$

with

$$\begin{aligned} & (Z_1)_{1,:,:} = \left( (X_1)_{1,:,:} \quad (Y_1)_{1,:,:} \right), \\ & (Z_i)_{:,j,:} = \left( \begin{pmatrix} X_i \end{pmatrix}_{:,j,:} & 0 \\ 0 \quad (Y_i)_{:,j,:} \end{pmatrix}, \forall j, \ i = 2, \dots, d-1, \\ & (Z_d)_{:,:,1} = \left( \begin{matrix} \alpha(X_d)_{:,:,1} \\ \beta(Y_d)_{:,:,1} \end{matrix} \right). \end{aligned}$$

Then orthogonalize  $Z_{TT}$ .

Idea:  $X_i$  usually already left-/right-orthogonal

 $\Rightarrow$  blocks in  $Z_i$  already orthogonal. Assuming left-orthogonal  $X_{TT}$ , calculate

 $Q_i R_i = (I - \bar{X}_i \bar{X}_i^T) \bar{Y}_i$ 

in each step  $i = 2, \ldots, d-1$  with

$$ar{X}_j := \left( inom{l}{0} imes X_j 
ight)_{ ext{left}}, \quad ar{Y}_j = \left( inom{M_{j-1}}{R_{j-1}} imes Y_j 
ight)_{ ext{left}}.$$



High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

#### Underlying building blocks: truncation in linear solvers

#### Required operation

For  $X = X_1 X_2$  with  $X_2^T X_2 = I$ , we need: (with  $X_1 \in \mathbb{R}^{n \times m}$ ,  $X_2 \in \mathbb{R}^{m \times k}$ ,  $m \ll n \approx k$ )

 $\|$ 

$$egin{aligned} X_1 - QB \|_F &\leq au \ X_1' &= Q \ X_2' &= B X_2 \end{aligned}$$

Standard: truncated SVD

$$egin{aligned} & m{U}m{S}m{V}^{T} pprox X_{1} \ & X_{1}^{\prime} \leftarrow m{U} \ & X_{2}^{\prime} \leftarrow m{S}m{V}^{T}X_{2} \end{aligned}$$

Costs:  $> 7nm^2 + 2nmr$  flop, > 2n(m+r) data transfers

Optimized: Q-less (TS)QR + SVD  $QR = X_1, \quad USV^T \approx R$   $X'_1 = X_1VS^{-1}$  $X'_2 = SV^TX_2$ 

Costs:  $2nm^2 + 4nmr$  flop, nm + 2n(m + r) transfers As before:  $X'_1$  less accurate in "unimportant" directions



#### Underlying building blocks

#### Truncated TT-axpby performance

#### Setup & results

Add 2 tensor-trains  $(X_{TT}, X_{TT})$  of dim.  $50^{10}$ ,

TT-rank  $r_X = 50$ , varying  $r_Y$ 

- both X<sub>TT</sub>, X<sub>TT</sub> previously left-orthogonal
- 64-core AMD EPYC 7773X ("Zen 3 V-Cache")
- Operations needed for  $B_{TT} A_{TT}X_{TT}$

 $\rightarrow$  Roughly 4x speedup





High-level tensor algorithms 00000 Underlying building blocks

#### Underlying building blocks: tensor contractions

#### Required operations

- Most costly part of inner solver (GMRES): Apply TT operator to dense array
- Easily sub-optimal array accesses (cache thrashing)
- ▶ Required contractions: (with e.g. A<sub>2</sub> ∈ R<sup>r</sup><sub>Op</sub>×n×n×r<sub>Op</sub>)

$$(z_1)_{:,:,:,:} \leftarrow \sum_i (A_3)_{:,:,i} x_{:,:,i}$$
  
 $(z_2)_{:,:,:,:} \leftarrow \sum_{i,j} (A_2)_{:,:,i,j} (z_1)_{j,:,:,i}$   
 $y_{:,:,:} \leftarrow \sum_{i,j} (A_1)_{:,i,j} (z_2)_{j,:,:,i}$ 

### Optimizations

- ► Reorder array dimensions → combine several small dimensions
- Padding (first dim.) to avoid bad strides





#### Tensor contractions performance

#### Setup & results

- Operator dimension  $r \times 50 \times r$
- 64-core AMD EPYC 7773X ("Zen 3 V-Cache")
- Comparison to 3 GEMMS of similar dimensions

#### Remark

- Uses loop-over-GEMM with MKL GEMM
- More sophisticated implement. possible ([Springer 2018], no maintained library available?)

Underlying building blocks







High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

#### Complete TT-AMEn performance [Röhrig-Zöllner, 2023]



 $50^{10}$  conv.-diff. operator, random RHS, dashed lines with TT-rank1 preconditioner, AMD EPYC 7773X left: "full" SVD variant, right: ALS/simplified variant

P

High-level tensor algorithms 00000 Underlying building blocks

Conclusion 00

#### Background: self-implemented kernels

Unfortunately, optimizations need some "non-standard" operations...

#### Q-less (tall-skinny) QR

- Never stores Q
- Implementation based on [Demmel, 2012]
- First parallelize over blocks of rows
- Reduction parallelized over columns Background: e.g., n/64 × m not so tall-skinny
- Recursive blocking over columns

#### Memory-bound (fused) operations

- Just to optimize mem.-accesses (same distribution on cores for each call)
- Fused dense axpy+dot, axpy+norm, tall-skinny GEMM (TSMM) + reshape
- In-place triangular solve for very rectangular/tall-skinny matrices

Underlying building blocks

#### Tensor operations mapping problem

#### Optimization steps

- 1. Reformulate tensor algorithm: actually required operations (often  $\neq$  standard LAPACK operations)
- 2. Consider special properties/requirements: e.g., pre-existing orthogonalities, block-structure
- 3. Map required operations onto suitable building blocks
- Optimize data layout: rearrange dimensions & padding (really crucial: e.g. if n mutliple of 4, unpadded n<sup>d</sup> leads to bad strides)
- 5. Implement required "non-standard" kernels (like e.g., Q-less QR)
- $\rightarrow$  High speedups possible! (as illustrated)

Unfortunately, I don't see a generic/automated approach here (except for domain-specific algorithms)





Conclusion

High-level tensor algorithms 00000 Underlying building blocks

#### Summary

- Optimized tensor-train/MPS decomposition (TT-SVD):  $\sim$  50× speedup
- Optimized tensor-train/MPS linear solver:  $\sim$  5× speedup
- Key ingredient: mapping of tensor algorithm onto (very) "rectangular" matrix operations

#### Possible next steps

- Other tensor-train/MPS algorithms (similar "rectangular" operations for  $n_i \gg 2$ )
- Extension to tree tensor-networks





#### Literature

- Röhrig-Zöllner; Thies & Basermann: "Performance of the Low-Rank TT-SVD for Large Dense Tensors on Modern MultiCore CPUs", SISC, 2022
- Röhrig-Zöllner; Becklas; Thies & Basermann: "Performance of linear solvers in tensor-train format on current multicore architectures", submitted to SISC, 2023
- Oseledets: "Tensor-Train Decomposition", SISC, 2011
- Dolgov & Savostyanov: "Alternating Minimal Energy Methods for Linear Systems in Higher Dimensions", SISC, 2014
- ▶ Demmel et.al.: "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC, 2012
- Williams et.al.: "Roofline: An Insightful Visual Performance Model for Multicore Architectures", Comm. of the ACM, 2009
- Anderson et.al.: "LAPACK Users' Guide", SIAM, 1999
- Springer & Bientinesi: "Design of a High-Performance GEMM-like Tensor-Tensor Multiplication", ACM TOMS, 2018



#### TT-AMEn: alternative projection for non-symmetric systems

Setup:

- ► TT-AMEn with inner GMRES
- varying asymmetry

Observations: (work-in-progress!)

 alternative projection beneficial for strongly non-symmetric problems



convection to diffusion ratio

Inner iterations for a  $20^{10}$  conv.-diff. problem with RHS ones.



#### TT-SVD: Building blocks (TSQR and TSMM+reshape)



 $((\sim 25 \cdot 10^6) \times m$  matrix in double-precision (0.2m GB); 16-core Intel CascadeLake Gold 6242.)

#### Comparison of methods: overview

| method                                         | idea                                                                           | properties/problems                       |
|------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|
| TT-GMRES                                       | GMRES<br>adaptive truncation tolerance                                         | global,<br>large intermediate ranks       |
| <b>TT-ALS</b> (alternating least squares)      | projection onto $X_k$ , solve for $k=1,\ldots,d$                               | predefined rank,<br>stuck in local minima |
| TT-MALS<br>(modified ALS)                      | projection onto $(X_k 	imes X_{k+1})$ , solve for $k=1,\ldots,d-1$             | rank-adaptive,<br>larger local problem    |
| <b>TT-AMEn</b><br>(alternating minimal energy) | ALS + enrich basis                                                             | rank-adaptive                             |
| Riemannian optimization<br>methods             | fixed rank $\rightarrow$ smooth submanifold, search direction in tangent space | global, needs<br>special preconditioner   |
|                                                |                                                                                |                                           |

Riemannian optimization not further discussed here (but promising for some applications!)



#### Comparison of methods: results for varying dimension n



(Conv.-diff. problem with RHS ones and conv.-diff. ratio n/2. Dotted line with TT-rank1-preconditioner.)



#### Comparison of methods: results for varying #dimensions d



(Conv.-diff. problem with RHS ones and conv.-diff. ratio 10. Dotted line with TT-rank1-preconditioner.)



#### Comparison of methods: results for varying rank $r_B$ (and $r_X$ )



(Conv.-diff. problem with random RHS and conv.-diff. ratio 10. Dotted line with TT-rank1-preconditioner.)

