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Objectives:

Nanoelectronics from the bottom-up

Large-scale simulations targeted to nanoengineering applications

Predict “many-body-effects” operating principle of emerging devices (plasmonic, etc.)
Operate the full range of electronic spectroscopy: UV-ViS, X-ray, and near IR

www.nessie-code.org

From Fundamental First-Principle Calculations to Nanoengineering Applications: A review of the NESSIE project,
J. Kestyn, E. Polizzi, IEEE nano magazine (Dec. 2020)
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FEAST Algorithm- AX=BXA (Hermitian, Generalized)

Subspace iteration with RR

0. Start: Select random subspace Y., = {y1,¥2, - -, Umo fnxmo (1 >>mg > m)
1. Repeat until convergence

Compute Qm, = p(B~1A)Y,,,

Orthogonalize @,

Compute Ag = Qfm AQm, and Bg = QED BQn,

Solve AgW = BoWAqg with WHBoW = I, xm,

Compute Y, = Qm,W

Check convergence of Y,,, and Aq,, for the m wanted eigenvalues
End
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Subspace iteration with RR

0. Start: Select random subspace Y., = {y1,¥2, - -, Umo fnxmo (1 >>mg > m)
1. Repeat until convergence
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3. Orthogonalize Q,,,
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Standard iteration (power method) big ,
_ = (ARt [ Amg+1/Nili=1
,O(B 1A) — B lA: LrJ CV rate: mo+1/ Nili=1,...,m
gap




FEAST Algorithm- AX=BXA (Hermitian, Generalized)

Subspace iteration with RR

0. Start: Select random subspace Y., = {y1,¥2, - -, Umo fnxmo (1 >>mg > m)
1. Repeat until convergence

2. Compute Qm, = p(B~1A)Y,,,
3. Orthogonalize Q,,,
4, Compute Ag = Q,ﬁﬁ AQm, and Bg = Qin BQm,
5. Solve AgW = BoWAg with WH BoW = I, xm,
6. Compute Y,,, = Qm, W
7. Check convergence of Y,,, and Aq,, for the m wanted eigenvalues
8. End
Standard iteration (power method) /-1 ig ,
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gap

Shift-invert iteration

* 1 linear system solve by iteration
p(B_lA) = (0B — A)_lB AH—-‘—‘!—H-‘—H-H— * fast CV near the shift

* slow CV elsewhere
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Subspace iteration with RR
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1. Repeat until convergence
2. Compute Qm, = p(B~1A)Y,,,
3. Orthogonalize Q,,,
4, Compute Ag = Qfm AQm, and Bg = Qin BQm,
5. Solve AgW = BoWAg with WH BoW = I, xm,
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7. Check convergence of Y,,, and Aq,, for the m wanted eigenvalues
8. End
Standard iteration (power method) big ,
_ = (ARt [ Amg+1/Nili=1
,O(B lA) — B lA: LrJ CV rate: mo+1/ Nili=1,...,m
gap

Shift-invert iteration

* 1 linear system solve by iteration
p(B_lA) = (0B — A)_lB AH—-‘—‘!—H-‘—H-H— * fast CV near the shift

* slow CV elsewhere

Optimal filter: spectral projector

1 H 1 1 1 n"ﬁf\nn/u:/f L1 ot
p(BT1A) = XnX[B = —— ¢ dz(zB— A)7'B gl — == 0
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FEAST Algorithm:

Rational function filter

Ne

pal2) =3
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Hermitian

IMG
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Numerical Quadrature

Solving independent linear systems
(multiple shifts in complex plane)

Ne
Qmy = Y w;jQ%) (B —A)QY) = BYp,
j=1
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FEAST Algorithm: Numerical Quadrature

Rational function filter

Qmo

Solving independent linear systems
(multiple shifts in complex plane)

Ne
=Y wiQW) (2B —A)QY) = BYp,
i=1



FEAST Algorithm:

Rational function filter
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Polizzi, Phys. Rev. B. (2009)

Tang, Polizzi, SIAM SIMAX (2014)
Guettel, Polizzi, Tang, Viaud, SIAM SISC (2015)

Numerical Quadrature

Solving independent linear systems
(multiple shifts in complex plane)
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j=1
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FEAST non-Hermitian algorithm

AX BXA Kestyn, Polizzi, Tang, SIAM, SISC (2015)
. XHBx =1
ARX = BEXA*
¢ Right projector Gauss
1 ~
p(B1A) = 5 j£ dz(zB — A)"'B =X, X1B.
c
® eft projector
1 ~
p(AB™1) = o j{ dzB(zB — A)™! = BX,, X2
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FEAST Solver: Algorithm + Library

Robust, parallel and unified framework for solving various eigenvalue problems

Hermitian

Phys. Rev. B. Vol. 79, 115112
(2009)- Polizzi

SIAM Journal on Matrix
Analysis and Applications

(SIMAX), 35, 354-390 (2014)-

Tang, Polizzi

SIAM Journal on Scientific
Computing (SISC), 37 (4),
pp2100-2122 (2015)- Guttel,
Polizzi, Tang, Viaud

Release dates

non-Hermitian

SIAM Journal on
Scientific Computing
(SISC), 38-5, ppS772-
S$799 (2016) Kestyn,
Polizzi, Tang

Non-Linear
Eigenvalue
* Journal of Computational
Science, V. 27, 107,

(2018), Gavin, Miedlar, *
Polizzi

* arxiv.org/abs/2007.03000,
Breneck, Polizzi

Polizzi

WWw. feast-solver. org

Non-Linear
Eigenvector

J. Chem. Phys. 138,
194101 (2013), Gavin,

F

FEAST Eigenvalue Solver

S
T

[ Home T Features | Documentation | License | Download [ References | Contact/lnfo |

Welcome

The FEAST cigensolver package is a free high-performance numerical library for solving the Hermitian and non-Hermitian cigenvalue problems, and
obtaining all the cigenvalues and (right/lcft) cigenvectors within a given scarch interval or arbitrary domain in the complex planc. Iis originality lics with
a new {ransformative numerical approach to the traditional cigenvaluc algorithm design - the FEAST algorithm. The algorithm takes its inspiration from
the density-matrix representation and contour technique in quantum mechanics. 1t contains clements from complex analysis, numerical lincar
algebra and approximation theory, and it can be defined as an optimal subspace iteration method using approximate spectral projectors. FEAST's main
building block is a numerical quadrature computation consisting of solving independent lincar systems along a complex contour, cach with multiple right
hand sides. A Rayleigh-Ritz procedure is then used to generate  reduced dense eigenvalue problem orders of magnitude smaller than the original one.
The FEAST cigensolver combines simplicity and cfficiency and it offers many important capabilities for achieving high performance, robustness,
accuracy, and scalability on parallcl architecturcs.

FEAST is both a comprehensive library package, and an casy to use software. It includes flexible reverse communication interfaces and ready to use
predefined interfaces for dense, banded and sparse systems.

The current version v3.0 of the FEAST package can address both Hermitian and non-Hermitian eigenvalue problems {real symmetric, real non-
symmetric, complex Hermitian, complex symmetric, or complex general systems) on boih s y and distributed memory architectures (i.c
contains both FEAST-SMP and FEAST-MFI packages).

Note : FEAST (v2.1 SMP) is integrated into INTEL MKL under the name Intel MKL Extended Eigensolver

News & Updates

Jun. 17,2015

FEAST version v3.0 release !
*Support for non-FHermitian problem|
*New/improved integration schemes
*Expert routines - custom contour
*Stochastic estimates

Feb. 20, 2013

FEAST version v2.1 release !
*Hmproved stability
*Adoption by Intel MKL

Mar. 20, 2012

Second FEAST version v2.0 release |
*FEAST-SMP and FEAST-MPI
included

Sep. 4, 2009
First FEAST version v1.0 release !
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-mixed precision
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FEAST Algorithm/Solver at a glance

AX p— A-BX [Nmin s Amax]

{{Large}}

[Q"AQ, Q"BQ] t
==8mall<<

* Select search interval
* Select subspace size M

(good stochastic estimate possible)-
Di Napoli, Saad, Polizzi, NLAA (2015)



FEAST Algorithm/Solver at a glance

* Select search interval
* Select subspace size M

Ax=A\Bx =

<<Large>> [Q"AQ, Q"BQ]
==8mall<<

(good stochastic estimate possible)-
I Di Napoli, Saad, Polizzi, NLAA (2015)

* Robust and systematic convergence
* Standard and Generalized

* Hermitian and non-Hermitian

* Linear and Non-Linear oo
* 3 levels of parallelism

X
* Multiple search intervals 5
* Multiple shifts along the contour
* Linear system solves (zeB—A)Qe =Y




FEAST Algorithm/Solver at a glance

I * Select search interval
GE-AQSY B (Z8-A1Q~Y * Select subspace size M,
A A’B Nmin+Ama J Q=L w.a. (ggod stqchastic esti.mfdte possible)-
X X 4 Di Napoli, Saad, Polizzi, NLAA (2015)
<<Large>> 1Q"AQ, Q"BQ
=>8mall<<
I
* Robust and systematic convergence
* Standard and Generalized
* Hermitian and non-Hermitian
* Linear and Non-Linear =
* 3 levels of parallelism E] EI

* Multiple search intervals nil

* Multiple shifts along the contour |

* Linear system solves (zeB—A)Qe =Y

* Interfaces:

* Predefined: dense, banded, sparse storage using lapack/spike/pardiso/iterative solvers
* RCI: independent of matrix format, mat-vec, and system solvers, can be customized by end users

Used by many third-party Software and Libraries



Difficulties using the basic FEAST algorithm
Basic FEAST

%T(z “1BXdz, T(z)=2zB— A
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Difficulties using the basic FEAST algorithm
Basic FEAST

%T(z “1BXdz, T(z)=2zB— A
T 2m

1- IFEAST (inexact linear system solve using iterative solvers), residual tolerance
needs to be gradually increased over the FEAST iterations.
Remark: convergence is still linear (a linear system solve residual)

o (POme) Tt

2- basic FEAST would not work for non-linear systems (when T(z) is not linear)

Solution: Residual Inverse lterations

1 ~ -
Q= omi I (X — T(z)_lRE) (2 — A)"dz

Rg = BX']\ — AX' FEAST residuals (at a given iteration / linear case)




Residual Inverse Iterations: Application to linear problems

@ Generalization of previous works on residual inverse iterations
® Golub G., Ye Q. BIT p671 (2000)
® A. Neumaier, SIAM J. Numer. Anal. 22 (5) (1985)
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@ Generalization of previous works on residual inverse iterations
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Solve (2;B — A)y = —Rpg
Y = (X 4+7) % (21 —A)~?




Residual Inverse Iterations: Application to linear problems

@ Generalization of previous works on residual inverse iterations
@

@ Reformulation of the contour integration solve (for the linear case)

Rp = BXA — AX
Solve (Z]B — A)Y = B X |gud| Solve (ZJB — A)fy = —Rpg

Y = (X +9) % (51 — A7

@ Theorem 1: The two formulations are equivalent using exact arithmetic

<e€

® Theorem 2: Solving (2,3 — A)y = —Rp with tolerance

is equivalent to solving (z;B — A)Y = BX with tolerance Il 1 lrell
that is € below the convergence of the eigenvalue problem 1BZ]| ~ |z — Al [|BZ]]
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Residual Inverse Iterations: Application to linear problems

Rp = BXA — AX
Solve (2;B — A)y = —Rpg
Y = (X +9) % (51 — A7

@ Consequences:
@ inexact solves with a fix € (e=10" in FEAST v4.0 by default)
@ Jow accuracy (mixed-precision FEAST) for direct or iterative solvers
@ generalization to non-linear systems

Solver FEAST . %EEASE %0
recision: (pardiso - (bicgsta iter. max,
Example: C6H6 P (P ) jacobi prec.)

(P2-FEM generalized),
n=49K, m=6 lowest, m ;=20 n =5 double 8s (3 iter.) 51s (10 iter.)

single 5s (3 iter.) 33s (10 iter.)



Residual Inverse lterations:Application to non-linear problems

@ Examples of eigenvalue problems (from polynomial to general non-linear)
PNz = (MNAg+ N Az + XAy + XA + Ag)x = 0. T(\) = K — MM + i/ XA — 02W1 + iy /A — 02 Ws
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Remark: reduced eigenvalue problem becomes non-linear QHT()\)Qy =0
solved using companion problem for polynomial in v4.0
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Residual Inverse lterations:Application to non-linear problems

@ Examples of eigenvalue problems (from polynomial to general non-linear)
PNz = (MAy 4+ X A5 + XAy + XA + Ag)x = 0. T(\) = K — MM + i/ XA — 02W1 + iy /A — 02 Ws

NLFEAST: residual inverse iteration leads to a non-linear polynomial reduced system

Remark: reduced eigenvalue problem becomes non-linear QHT()\)Qy =0
solved using companion problem for polynomial in v4.0

Beyn’'s method: recent contour integration technique for general non-linear problem
(beyond polynomial)- non-iterative

Upcoming NLFEAST v5: new hybrid NLFEAST-Beyn scheme for general non-linear
problem- iterative approach until convergence.




Residual Inverse lterations:Application to non-linear problems

Hadeler Problem

T(A) = A%B, + (e* — 1)B; + B,
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Conclusion

FEAST v4.0

New implementation using Residual Inverse Iterations

* PFEAST (MPI-MPI-MPI)

* IFEAST (w/o factorization, modest convergence residuals)

* All linear systems are solved inexactly using single precision
* Applicable to non-linear problems (polynomial)

Upcoming v3.0:

* non-linear problems (beyond polynomial)

* Hybrid low-accuracy spike-based MPI solvers (Braegan Spring
* Single precision GPU for linear systems (Chenkai Zhang)

_4£225 . FEAST Eigenvalue Solver

A

[ Home | Features | Documentation | License | Download | References | Contactinfo
News & Updates
‘Welcome

The FEAST library package represents an unified framework for solving various family of eigenvalue problems and achieving  Febr 12 2020

www.feast-solver.org

accuracy, robustness, high-performance and scalability on perallel architectures. Its originality lies with a new transformative
numerical apprach to the traditional cigenvalue algorithm design - the FEAST algorithm.

The FEAST algorithm is a general purpuse eigenvalue solver which takes its inspiration from lhe density-matrix
representation and contour integration technigue In quantum mechanics. The algorithm gathers key elements from complex
analyss, mumerical Linear algebra a approximaton theory, o construct an optmal subspace eraon wchnique using
approximate spectral projectors. FEAST can be used for solving both standard and generalized forms of the Hermitian or
Hermitian problems linear or mzn-hnrar] and it belongs to the family of contour integration eigensolvers, FEAST's main
computational task consists of a numerical quadrature computation that involves solving independent linear systems along &
complex contour, each with multiple right hand sides

1n 4.0, FEAST has been reimplemented using an inverse residual ireration algorithm which enables the linear systems t be
solved with very low accuracy (in single precision) with oo impact on the FEAST double precision converence rate. As 8
result, v4.0 is on average 3-4 (i H han v2 \ and v3.0 using new defa 2.1 has been
featured as [ntel MKL's princi 2013). v4.0 also implements new important features such as [FEAST
(using Inexact lerative solver), Non-linear pulwumullLA'zl and PFEAST with its 3-MP] levels of parallelism.

FEAST is both a comprehensive library package, and an easy (o use software. It includes flexible reverse communication
imterfaces and ready to use driver interfaces for dense, banded and sparse systems.

FEAST version v4.0 release!
*Mmproved faster schemes
=Support for non-linear
(Polynomial)

“Support for extreme eigeavalues
“Mixed Precision

SIFEAST (FEAST w/o
factorization)

*PFEAST (MPI solvers)

Jun. 17, 2015
FEAST version v3.0 release!
*Support for non-FHermitian
problems

“New/Improved lnegration
sehemes

*Expert routlnes - custom contour
=Stochastic estimates

Feb. 20, 2013

FEAST version v2.1 release!
“mproved stability
*Adoption by Intel MKL
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