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Motivation
Accuracy and Reproducibility of Preconditioned Conjugate Gradient

Matrix cond(A) MPI@MN4 MPI+OMP@MN4 MPI MPI+OMP
gyro_k 1.10e+ 09 16,557 16,064 16,518 16,623

Iterations converge with tol = 10−8 for the gyro_k matrix from SuiteSparse
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Motivation
Accuracy and Reproducibility of Preconditioned Conjugate Gradient

Ax = b

while (τ > τmax)

Step Operation
S1 : w := Ad
S2 : ρ := β/< d,w >
S3 : x := x+ ρd
S4 : r := r − ρw
S5 : z := M−1r
S6 : β := < z, r >
S7 : d := (β/βold)d+ z
S8 : τ := < r, r >

end while

CG Residual – Step S8 –
√∑N−1

i=0 r2i
Iter Sequential Parallel w 48 cores
0 0x1.19f179eb7f033p+49 0x1.19f179eb7f033p+49
2 0x1.f86089ece5bd4p+38 0x1.f86089eceaf76p+38
9 0x1.fc59a29d3599ap+28 0x1.fc59a29d32d1bp+28
10 0x1.74f5ccc1d03cbp+22 0x1.74f5ccc201246p+22
... ... ...
40 0x1.7031058dd6bcfp-19 0x1.7031058eaf4c2p-19
42 0x1.4828f76d1aa3p-23 0x1.4828f76bda71ap-23
45 0x1.8646260a2dae8p-26 0x1.8646260a6da06p-26
47 0x1.13fa97e1e76bfp-33 0x1.13fa97e240f7cp-33

The matrix is from the finite-difference
method of a 3D Poisson’s equation with

27 stencil points, cond(A) = 1012,
n=4,019,679, tol = 10−8.
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Computer arithmetic & floating-point numbers

Floating-point arithmetic

▶ Most real numbers cannot be stored exactly; they need to be rounded
and bounded (round-off errors)

▶ Almost all computer hardware and software support the IEEE
Standard for Floating-Point Arithmetic IEEE 754

▶ IEEE 754 adopted in 1985: formats and operations (+,−, ∗, /)
▶ Before 1985: each vendor had its own base and formats
▶ Revised in 2008: fma(a, b, c) = a ∗ b+ c with one rounding
▶ Latest version IEEE 754-2019 includes binary16

▶ Yields a machine-independent model of how floating-point arithmetic
behaves
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Computer arithmetic & floating-point numbers

Non-associativity

▶ Floating-point operations (+,×) are commutative but non-associative

▶ (a+ b) + c ̸= a+ (b+ c)

▶ (−1 + 1) + 2−53 ̸= −1 + (1 + 2−53) in double precision

1 = (1.0000000000000000000000000000000000000000000000000000︸ ︷︷ ︸
1...52

)2

2−53 = (0.0000000000000000000000000000000000000000000000000000︸ ︷︷ ︸
1...52

1)2

▶ Another example is summation in ascending or descending orders

▶ Consequence: results of floating-point computations depend on the
order of computation especially in parallel
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Reproducibility/ Robustness of LA kernels and solvers

Accurate and reproducible computing

▶ Reproducibility – ability to obtain bit-wise identical and accurate
results from run-to-run on the same input data on the same or
different architectures

Challenges
▶ More heterogenous parallelism of current computers

→ GPU accelerators, etc.

▶ A high number of floating-point operations performed
→ Each of them leads to a round-off error

▶ Lack of deterministic execution
→ Dynamic scheduling and compiler optimisation
→ Different rounding modes, e.g. in TensorCore
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Reproducibility/ Robustness of LA kernels and solvers

Control of errors (1/2)

▶ “Infinite” precision: reproducible independently from the inputs
▶ Example: Kulisch accumulator

▶ Large register of size 2,097 (1,022 + 1,023 + 52) bits
▶ Divided into digits of size 64 bits stored as unsigned integers
▶ Due to its size and indirect memory access, Kulisch accumulator is

expensive

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 10 / 31



Reproducibility/ Robustness of LA kernels and solvers

Control of errors (2/2)

▶ Error-Free Transformations (EFT) for summation

Algorithm 1 (Møller-Knuth-
Dekker)
(r, s) = 2sum(a, b)
1: r ← a+ b
2: z ← r − a
3: s← (a− (r − z)) + (b− z)

Algorithm 2 (|a| ≥ |b|)
(r, s) = fast2sum(a, b)
1: r ← a+ b
2: z ← r − a
3: s← b− z

▶ EFT gives access to the rounding errors of individual operations

▶ Store the result and the error in a short array of the same type as
parameters – FP Expansions (FPE)

→ Example: double-double or quad-double
(work well on a set of relatively close numbers)
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Reproducibility/ Robustness of LA kernels and solvers

Reproducible parallel reduction

▶ Based on FPE with EFT
and Kulisch accumulator

▶ Suitable for CPUs, GPUs,
Xeon Phi

▶ Guarantees “inf” precision
→ bit-wise reproducibility

a

aS. Collange et al. Numerical Reproducibility for the Parallel Reduction on Multi-
and Many-Core Architectures. ParCo, 49, 2015, 83-97
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Reproducibility/ Robustness of LA kernels and solvers

Preconditioned BiCGStab
Ax = b

while (τ > τmax)

Step Operation Kernel Comm
S1 : p̂j := M−1pj Apply precond. –
S2 : sj := Ap̂j spmv Alltoallw
S3 : αj := ⟨r0, rj⟩/⟨r0, sj⟩ dot product Allreduce
S4 : qj := rj − αjsj axpy-like –
S5 : q̂j := M−1qj Apply precond. –
S6 : yj := Aq̂j spmv Alltoallw
S7 : ωj := ⟨qj , yj⟩/⟨yj , yj⟩ Two dot products Allreduce
S8 : xj+1 := xj + αj p̂j + ωj q̂j Two axpy –
S9 : rj+1 := qj − ωjyj axpy-like –
S10 : βj := ⟨r0,rj+1⟩

⟨r0,rj⟩ ∗ αj

ωj dot product Allreduce
S11 : τ j+1 := ∥ rj+1 ∥2 dot product (l2 norm) Allreduce
S12 : pj+1 := rj+1 + βj(pj − ωjsj) Two axpy-like –

end while
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Reproducibility/ Robustness of LA kernels and solvers

Reproducibility: required precision
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"Reproducibility of Parallel Preconditioned Conjugate Gradient in Hybrid Parallel
Environments" Roman Iakymchuk, Maria Barreda, Stef Graillat, José I Aliaga, Enrique S
Quintana-Orti. IJHPCA, FirstOnline June 17 2020, vol 34, issue 5, pp. 502-518.

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 14 / 31



Reproducibility/ Robustness of LA kernels and solvers

Re-assuring Reproducibility in Sparse Solvers
Sources of non-reproducibility
▶ parallel reduction: dot product with MPI_Allreduce
▶ compiler auto-replacement of ax+ b in favor of fma (axpy)
▶ a ∗ b+ c ∗ d ∗ e with or without fma (spmv)

Solutions
▶ Combine arithmetic solutions, reorganization of operations, and

sequential executions
→ aiming for lighter or lightweight approaches

▶ spmv computes blocks of rows in parallel, but with a ∗ b+ /− c ∗ d
→ ensure deterministic execution with explicit fma

▶ axpy relies explicitly on fma
▶ accurate and reproducible dot

→ ExBLAS-based approach
→ FPE with size 8 and early-exit

▶ b = Ad d = 1√
N
(1, . . . , 1)T → b = Ad and b = 1√

N
b
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Reproducibility/ Robustness of LA kernels and solvers

BiCGStab: convergence
Residual history for fs_760_3d (5.8K nnz, w/o precond) tol = 10−6

2.98e-08

9.54e-07

3.05e-05

9.77e-04

3.12e-02

1.00e+00

3.20e+01

1.02e+03

3.28e+04

1.05e+06

3.36e+07

 0  100  200  300  400  500  600  700  800

re
si

d
u
al

iterations

BiCGStab-1
BiCGStab-8

ReproBiCGStab

SkyLake nodes: 2x14-core Intel Xeon Gold 6132 CPU @2.6 GHz
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Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: convergence
Residual history for tmt_unsym (4.58M nnz) tol = 10−6
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Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: convergence & reproducibility

Iteration Residual
MPFR Original 1 proc Original 8 procs Exblas & FPE

0 0x1.3566ea57eaf3fp+2 0x1.3566ea57eab49p+2 0x1.3566ea57eab49p+2 0x1.3566ea57eaf3fp+2
1 0x1.146d37f18fbd9p+0 0x1.146d37f18faafp+0 0x1.146d37f18fabp+0 0x1.146d37f18fbd9p+0
... ... ... ... ...
99 0x1.cedf0ff322158p-13 0x1.88008701ba87p-12 0x1.04e23203fa6fcp-12 0x1.cedf0ff322158p-13
100 0x1.be3698f1968cdp-13 0x1.55418acf1af27p-12 0x1.fbf5d3a5d1e49p-13 0x1.be3698f1968cdp-13
... ... ... ... ...

208 0x1.355b0f18f5ac1p-20 0x1.19edf2c932ab8p-18 0x1.b051edae310c7p-20 0x1.355b0f18f5ac1p-20
209 0x1.114dc7c9b6d38p-20 0x1.19b74e383f74ep-18 0x1.a18fc929018d4p-20 0x1.114dc7c9b6d38p-20
210 0x1.03b1920a49a7ap-20 0x1.19c846848f361p-18 0x1.c7eb5bbc198b1p-20 0x1.03b1920a49a7ap-20

Table: Accuracy and reproducibility of the intermediate and final residual against
MPFR for the orsreg_1 matrix (cond(A) = 6.7e+ 03, 14K nnz).
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Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: performance (1/2)
Strong scaling for Queen_4147 (316.5M nnz) tol = 10−6
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Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: performance (2/2)
3D Poisson’s equation with 27 stencil points: n = 16M and tol = 10−8

perturbed matrix (1− 10−4) aka the e-type model
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Pipelined BiCGStab with residual replacement

Preconditioned pipelined BiCGStab
while (τ > τmax)

Step Operation Kernel Comm
S1 : p̂j := r̂j + βj−1(p̂j−1 − ωj−1ŝj−1) Two axpy-like –
S2 : sj := wj + βj−1(sj−1 − ωj−1zj−1) Two axpy-like –
S3 : ŝj := ŵj + βj−1(ŝj−1 − ωj−1ẑj−1) Two axpy-like –
S4 : zj := tj + βj−1(zj−1 − ωj−1vj−1) Two axpy-like –
S5 : qj := rj − αjsj axpy-like –
S6 : q̂j := r̂j − αj ŝj axpy-like –
S7 : yj := wj − αjzj axpy-like –
S8 : ⟨qj , yj⟩, ⟨yj , yj⟩ Two dot products Iallreduce
S9 : ẑj := M−1zj Apply precond. –
S10 : vj := Aẑj spmv Alltoallw
S11 : ωj := ⟨qj , yj⟩/⟨yj , yj⟩ Two dot products Wait for S8
S12 : xj+1 := xj + αj p̂j + ωj q̂j Two axpy –
S13 : rj+1 := qj − ωjyj axpy-like –
S14 : r̂j+1 := q̂j − ωj(ŵj − αj ẑj) Two axpy-like –
S15 : wj+1 := yj − ωj(tj − αjvj) Two axpy-like –
S16 : ⟨r0, rj+1⟩, ⟨r0, wj+1⟩ Four dot products Iallreduce

⟨r0, sj⟩, ⟨r0, zj⟩
S17 : ŵj+1 := M−1wj+1 Apply precond. –
S18 : tj+1 := Aŵj+1 spmv Alltoallw

S19 : βj :=
⟨r0,rj+1⟩
⟨r0,rj⟩

∗ αj

ωj Four dot products Wait for S16

αj+1 :=
⟨r0,rj+1⟩

⟨r0,wj+1⟩+βj⟨r0,sj⟩−βjωj⟨r0,zj⟩
end while

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 22 / 31



Pipelined BiCGStab with residual replacement

p-BiCGStab: convergence
Residual history for orsreg_1 (2.2K nnz) tol = 10−6
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Pipelined BiCGStab with residual replacement

p-BiCGStab: convergence
Residual history for tmt_unsym (918K nnz) tol = 10−6
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Pipelined BiCGStab with residual replacement

p-BiCGStab: performance
3D Poisson’s equation with 27 stencil points: n = 64M and tol = 10−8

perturbed matrix (1− 10−4) aka the e-type model
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Pipelined BiCGStab with residual replacement

p-BiCGStab: residual replacement
▶ Max attainable accuracy below ∥ri∥/∥r0∥ ≤ 10−6 can be an

issue for p-BiCGStab

▶ "Several orders of magnitude on maximal attainable precision
are typically lost when switching to the pipelined algorithm."a

▶ Cause: 11 axpy operations → amplifying local rounding errors

▶ Remedy 1: residual replacement strategy to reset residual ri
and r̂i to their true values every k iterations

▶ Remedy 2: apply the ExBLAS approach
aS. Cools and W. Vanroose. “The communication-hiding pipelined BiCGstab

method for the parallel solution of large unsymmetric linear systems”. In: Parallel
Computing 65 (2017), pp. 1–20.

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 26 / 31



Pipelined BiCGStab with residual replacement

p-BiCGStab: residual replacement
▶ Max attainable accuracy below ∥ri∥/∥r0∥ ≤ 10−6 can be an

issue for p-BiCGStab

▶ "Several orders of magnitude on maximal attainable precision
are typically lost when switching to the pipelined algorithm."a

▶ Cause: 11 axpy operations → amplifying local rounding errors

▶ Remedy 1: residual replacement strategy to reset residual ri
and r̂i to their true values every k iterations

▶ Remedy 2: apply the ExBLAS approach
aS. Cools and W. Vanroose. “The communication-hiding pipelined BiCGstab

method for the parallel solution of large unsymmetric linear systems”. In: Parallel
Computing 65 (2017), pp. 1–20.

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 26 / 31



Pipelined BiCGStab with residual replacement

p-BiCGStab w residual replacement (1/2)
convergence

Residual history for tol = 10−6 and tol = 10−13

2x14 core Intel Xeon Gold 6132 CPU @2.6 GHz
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Pipelined BiCGStab with residual replacement

p-BiCGStab w residual replacement (2/2)
convergence

Residual history for tol = 10−6 and tol = 10−13

2x14 core Intel Xeon Gold 6132 CPU @2.6 GHz
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Summary

Verification of numerical results

How do we verify parallel scientific programs ?

Comparison against

freq Sequential version
rare MPFR version (sequential)
rare MATLAB version

Approaches and initiatives
▶ Numerical verification
▶ Reproducible solvers with ExBLAS
▶ Computer arithmetic tools like VerifiCarlo as part of CI/CD

▶ Detect numerical abnormalities like cancellations, NaNs, etc
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Summary

Summary
▶ Computer arithmetic operates with finite precisions

▶ Implement your algorithms with caution:
▶ select suitable and stable algorithm

▶ trade-off between more accurate or fast version

▶ reduce impact of compiler optimization

▶ accurate and reliable computing can be reinstalled
▶ Future Work

▶ pipelined CG and automatic choice of k = 20− 100 for residual
replacement

▶ theoretical analysis
▶ more examples

Thank you for your attention !1

1This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393)
and IT Dept at Uppsala University
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replacement

▶ theoretical analysis
▶ more examples

Thank you for your attention !1

1This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393)
and IT Dept at Uppsala University
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