
Pipelined Sparse Solvers: Can More Reliable
Computations Help Us to Converge Faster?

Roman Iakymchuk
joint work with

José Aliaga (UJI), Stef Graillat (SU), Mykhailo Havdiak (LNU)

Uppsala University and Umeå University
Sweden

roman.iakymchuk@it.uu.se

SIAM PP 2024
Baltimore, MD, USA

March 5-8, 2024

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 1 / 31

Motivation
Accuracy and Reproducibility of Preconditioned Conjugate Gradient

Matrix cond(A) MPI@MN4 MPI+OMP@MN4 MPI MPI+OMP
gyro_k 1.10e+ 09 16,557 16,064 16,518 16,623

Iterations converge with tol = 10−8 for the gyro_k matrix from SuiteSparse

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 2 / 31

Motivation
Accuracy and Reproducibility of Preconditioned Conjugate Gradient

Ax = b

while (τ > τmax)

Step Operation
S1 : w := Ad
S2 : ρ := β/< d,w >
S3 : x := x+ ρd
S4 : r := r − ρw
S5 : z := M−1r
S6 : β := < z, r >
S7 : d := (β/βold)d+ z
S8 : τ := < r, r >

end while

CG Residual – Step S8 –
√∑N−1

i=0 r2i
Iter Sequential Parallel w 48 cores
0 0x1.19f179eb7f033p+49 0x1.19f179eb7f033p+49
2 0x1.f86089ece5bd4p+38 0x1.f86089eceaf76p+38
9 0x1.fc59a29d3599ap+28 0x1.fc59a29d32d1bp+28
10 0x1.74f5ccc1d03cbp+22 0x1.74f5ccc201246p+22
...
40 0x1.7031058dd6bcfp-19 0x1.7031058eaf4c2p-19
42 0x1.4828f76d1aa3p-23 0x1.4828f76bda71ap-23
45 0x1.8646260a2dae8p-26 0x1.8646260a6da06p-26
47 0x1.13fa97e1e76bfp-33 0x1.13fa97e240f7cp-33

The matrix is from the finite-difference
method of a 3D Poisson’s equation with

27 stencil points, cond(A) = 1012,
n=4,019,679, tol = 10−8.

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 3 / 31

Outline

Computer arithmetic & floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 4 / 31

Computer arithmetic & floating-point numbers

Outline

Computer arithmetic & floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 5 / 31

Computer arithmetic & floating-point numbers

Floating-point arithmetic

▶ Most real numbers cannot be stored exactly; they need to be rounded
and bounded (round-off errors)

▶ Almost all computer hardware and software support the IEEE
Standard for Floating-Point Arithmetic IEEE 754

▶ IEEE 754 adopted in 1985: formats and operations (+,−, ∗, /)
▶ Before 1985: each vendor had its own base and formats
▶ Revised in 2008: fma(a, b, c) = a ∗ b+ c with one rounding
▶ Latest version IEEE 754-2019 includes binary16

▶ Yields a machine-independent model of how floating-point arithmetic
behaves

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 6 / 31

Computer arithmetic & floating-point numbers

Non-associativity

▶ Floating-point operations (+,×) are commutative but non-associative

▶ (a+ b) + c ̸= a+ (b+ c)

▶ (−1 + 1) + 2−53 ̸= −1 + (1 + 2−53) in double precision

1 = (1.00︸ ︷︷ ︸
1...52

)2

2−53 = (0.00︸ ︷︷ ︸
1...52

1)2

▶ Another example is summation in ascending or descending orders

▶ Consequence: results of floating-point computations depend on the
order of computation especially in parallel

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 7 / 31

Computer arithmetic & floating-point numbers

Non-associativity

▶ Floating-point operations (+,×) are commutative but non-associative

▶ (a+ b) + c ̸= a+ (b+ c)

▶ (−1 + 1) + 2−53 ̸= −1 + (1 + 2−53) in double precision

1 = (1.00︸ ︷︷ ︸
1...52

)2

2−53 = (0.00︸ ︷︷ ︸
1...52

1)2

▶ Another example is summation in ascending or descending orders

▶ Consequence: results of floating-point computations depend on the
order of computation especially in parallel

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 7 / 31

Reproducibility/ Robustness of LA kernels and solvers

Outline

Computer arithmetic & floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 8 / 31

Reproducibility/ Robustness of LA kernels and solvers

Accurate and reproducible computing

▶ Reproducibility – ability to obtain bit-wise identical and accurate
results from run-to-run on the same input data on the same or
different architectures

Challenges
▶ More heterogenous parallelism of current computers

→ GPU accelerators, etc.

▶ A high number of floating-point operations performed
→ Each of them leads to a round-off error

▶ Lack of deterministic execution
→ Dynamic scheduling and compiler optimisation
→ Different rounding modes, e.g. in TensorCore

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 9 / 31

Reproducibility/ Robustness of LA kernels and solvers

Control of errors (1/2)

▶ “Infinite” precision: reproducible independently from the inputs
▶ Example: Kulisch accumulator

▶ Large register of size 2,097 (1,022 + 1,023 + 52) bits
▶ Divided into digits of size 64 bits stored as unsigned integers
▶ Due to its size and indirect memory access, Kulisch accumulator is

expensive

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 10 / 31

Reproducibility/ Robustness of LA kernels and solvers

Control of errors (2/2)

▶ Error-Free Transformations (EFT) for summation

Algorithm 1 (Møller-Knuth-
Dekker)
(r, s) = 2sum(a, b)
1: r ← a+ b
2: z ← r − a
3: s← (a− (r − z)) + (b− z)

Algorithm 2 (|a| ≥ |b|)
(r, s) = fast2sum(a, b)
1: r ← a+ b
2: z ← r − a
3: s← b− z

▶ EFT gives access to the rounding errors of individual operations

▶ Store the result and the error in a short array of the same type as
parameters – FP Expansions (FPE)

→ Example: double-double or quad-double
(work well on a set of relatively close numbers)

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 11 / 31

Reproducibility/ Robustness of LA kernels and solvers

Reproducible parallel reduction

▶ Based on FPE with EFT
and Kulisch accumulator

▶ Suitable for CPUs, GPUs,
Xeon Phi

▶ Guarantees “inf” precision
→ bit-wise reproducibility

a

aS. Collange et al. Numerical Reproducibility for the Parallel Reduction on Multi-
and Many-Core Architectures. ParCo, 49, 2015, 83-97

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 12 / 31

Reproducibility/ Robustness of LA kernels and solvers

Preconditioned BiCGStab
Ax = b

while (τ > τmax)

Step Operation Kernel Comm
S1 : p̂j := M−1pj Apply precond. –
S2 : sj := Ap̂j spmv Alltoallw
S3 : αj := ⟨r0, rj⟩/⟨r0, sj⟩ dot product Allreduce
S4 : qj := rj − αjsj axpy-like –
S5 : q̂j := M−1qj Apply precond. –
S6 : yj := Aq̂j spmv Alltoallw
S7 : ωj := ⟨qj , yj⟩/⟨yj , yj⟩ Two dot products Allreduce
S8 : xj+1 := xj + αj p̂j + ωj q̂j Two axpy –
S9 : rj+1 := qj − ωjyj axpy-like –
S10 : βj := ⟨r0,rj+1⟩

⟨r0,rj⟩ ∗ αj

ωj dot product Allreduce
S11 : τ j+1 := ∥ rj+1 ∥2 dot product (l2 norm) Allreduce
S12 : pj+1 := rj+1 + βj(pj − ωjsj) Two axpy-like –

end while

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 13 / 31

Reproducibility/ Robustness of LA kernels and solvers

Reproducibility: required precision

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000 1200 1400

S
ig

n
if

ic
an

t
F

P
E

 d
ig

it
s

Iterations

datafile using 1:2

msc01050 (Boeing)
NNZ = 26, 198
cond(A) = 9.0e+ 15

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

S
ig

n
if

ic
an

t
F

P
E

 d
ig

it
s

Iterations

datafile using 1:2

gyro_k (Oberwolfach)
NNZ = 1, 021, 159
cond(A) = 1.1e+ 09

"Reproducibility of Parallel Preconditioned Conjugate Gradient in Hybrid Parallel
Environments" Roman Iakymchuk, Maria Barreda, Stef Graillat, José I Aliaga, Enrique S
Quintana-Orti. IJHPCA, FirstOnline June 17 2020, vol 34, issue 5, pp. 502-518.

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 14 / 31

Reproducibility/ Robustness of LA kernels and solvers

Re-assuring Reproducibility in Sparse Solvers
Sources of non-reproducibility
▶ parallel reduction: dot product with MPI_Allreduce
▶ compiler auto-replacement of ax+ b in favor of fma (axpy)
▶ a ∗ b+ c ∗ d ∗ e with or without fma (spmv)

Solutions
▶ Combine arithmetic solutions, reorganization of operations, and

sequential executions
→ aiming for lighter or lightweight approaches

▶ spmv computes blocks of rows in parallel, but with a ∗ b+ /− c ∗ d
→ ensure deterministic execution with explicit fma

▶ axpy relies explicitly on fma
▶ accurate and reproducible dot

→ ExBLAS-based approach
→ FPE with size 8 and early-exit

▶ b = Ad d = 1√
N
(1, . . . , 1)T → b = Ad and b = 1√

N
b

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 15 / 31

Reproducibility/ Robustness of LA kernels and solvers

Re-assuring Reproducibility in Sparse Solvers
Sources of non-reproducibility
▶ parallel reduction: dot product with MPI_Allreduce
▶ compiler auto-replacement of ax+ b in favor of fma (axpy)
▶ a ∗ b+ c ∗ d ∗ e with or without fma (spmv)

Solutions
▶ Combine arithmetic solutions, reorganization of operations, and

sequential executions
→ aiming for lighter or lightweight approaches

▶ spmv computes blocks of rows in parallel, but with a ∗ b+ /− c ∗ d
→ ensure deterministic execution with explicit fma

▶ axpy relies explicitly on fma
▶ accurate and reproducible dot

→ ExBLAS-based approach
→ FPE with size 8 and early-exit

▶ b = Ad d = 1√
N
(1, . . . , 1)T → b = Ad and b = 1√

N
b

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 15 / 31

Reproducibility/ Robustness of LA kernels and solvers

BiCGStab: convergence
Residual history for fs_760_3d (5.8K nnz, w/o precond) tol = 10−6

2.98e-08

9.54e-07

3.05e-05

9.77e-04

3.12e-02

1.00e+00

3.20e+01

1.02e+03

3.28e+04

1.05e+06

3.36e+07

 0 100 200 300 400 500 600 700 800

re
si

d
u
al

iterations

BiCGStab-1
BiCGStab-8

ReproBiCGStab

SkyLake nodes: 2x14-core Intel Xeon Gold 6132 CPU @2.6 GHz
Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 16 / 31

Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: convergence
Residual history for tmt_unsym (4.58M nnz) tol = 10−6

9.54e−07

3.05e−05

9.77e−04

3.12e−02

1.00e+00

3.20e+01

 0 1000 2000 3000 4000 5000 6000 7000 8000

re
si

d
u
al

iterations

tmt_unsym

PBiCGStab−1
PBiCGStab−8

PBiCGStab−16
PBiCGStab−32
PBiCGStab−48

ReproPBiCGStab

2x24 core Intel Xeon Gold 6240R CPU @2.4 GHz
Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 17 / 31

Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: convergence & reproducibility

Iteration Residual
MPFR Original 1 proc Original 8 procs Exblas & FPE

0 0x1.3566ea57eaf3fp+2 0x1.3566ea57eab49p+2 0x1.3566ea57eab49p+2 0x1.3566ea57eaf3fp+2
1 0x1.146d37f18fbd9p+0 0x1.146d37f18faafp+0 0x1.146d37f18fabp+0 0x1.146d37f18fbd9p+0
...
99 0x1.cedf0ff322158p-13 0x1.88008701ba87p-12 0x1.04e23203fa6fcp-12 0x1.cedf0ff322158p-13
100 0x1.be3698f1968cdp-13 0x1.55418acf1af27p-12 0x1.fbf5d3a5d1e49p-13 0x1.be3698f1968cdp-13
...

208 0x1.355b0f18f5ac1p-20 0x1.19edf2c932ab8p-18 0x1.b051edae310c7p-20 0x1.355b0f18f5ac1p-20
209 0x1.114dc7c9b6d38p-20 0x1.19b74e383f74ep-18 0x1.a18fc929018d4p-20 0x1.114dc7c9b6d38p-20
210 0x1.03b1920a49a7ap-20 0x1.19c846848f361p-18 0x1.c7eb5bbc198b1p-20 0x1.03b1920a49a7ap-20

Table: Accuracy and reproducibility of the intermediate and final residual against
MPFR for the orsreg_1 matrix (cond(A) = 6.7e+ 03, 14K nnz).

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 18 / 31

Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: performance (1/2)
Strong scaling for Queen_4147 (316.5M nnz) tol = 10−6

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

av
g
 t

im
e

p
er

 l
o
o
p
 [

se
cs

]

MPI processes

Orig
ExBLAS

FPE

2x24 core Intel Xeon Gold 6240R CPU @2.4 GHz
Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 19 / 31

Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: performance (2/2)
3D Poisson’s equation with 27 stencil points: n = 16M and tol = 10−8

perturbed matrix (1− 10−4) aka the e-type model

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600

m
ed

ia
n
 t

im
e

p
er

 l
o
o
p
 [

se
cs

]

MPI processes

Orig
ExBLAS

FPE

Strong scaling on 32 Intel Xeon Gold 6240R nodes
Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 20 / 31

Pipelined BiCGStab with residual replacement

Outline

Computer arithmetic & floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 21 / 31

Pipelined BiCGStab with residual replacement

Preconditioned pipelined BiCGStab
while (τ > τmax)

Step Operation Kernel Comm
S1 : p̂j := r̂j + βj−1(p̂j−1 − ωj−1ŝj−1) Two axpy-like –
S2 : sj := wj + βj−1(sj−1 − ωj−1zj−1) Two axpy-like –
S3 : ŝj := ŵj + βj−1(ŝj−1 − ωj−1ẑj−1) Two axpy-like –
S4 : zj := tj + βj−1(zj−1 − ωj−1vj−1) Two axpy-like –
S5 : qj := rj − αjsj axpy-like –
S6 : q̂j := r̂j − αj ŝj axpy-like –
S7 : yj := wj − αjzj axpy-like –
S8 : ⟨qj , yj⟩, ⟨yj , yj⟩ Two dot products Iallreduce
S9 : ẑj := M−1zj Apply precond. –
S10 : vj := Aẑj spmv Alltoallw
S11 : ωj := ⟨qj , yj⟩/⟨yj , yj⟩ Two dot products Wait for S8
S12 : xj+1 := xj + αj p̂j + ωj q̂j Two axpy –
S13 : rj+1 := qj − ωjyj axpy-like –
S14 : r̂j+1 := q̂j − ωj(ŵj − αj ẑj) Two axpy-like –
S15 : wj+1 := yj − ωj(tj − αjvj) Two axpy-like –
S16 : ⟨r0, rj+1⟩, ⟨r0, wj+1⟩ Four dot products Iallreduce

⟨r0, sj⟩, ⟨r0, zj⟩
S17 : ŵj+1 := M−1wj+1 Apply precond. –
S18 : tj+1 := Aŵj+1 spmv Alltoallw

S19 : βj :=
⟨r0,rj+1⟩
⟨r0,rj⟩

∗ αj

ωj Four dot products Wait for S16

αj+1 :=
⟨r0,rj+1⟩

⟨r0,wj+1⟩+βj⟨r0,sj⟩−βjωj⟨r0,zj⟩
end while

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 22 / 31

Pipelined BiCGStab with residual replacement

p-BiCGStab: convergence
Residual history for orsreg_1 (2.2K nnz) tol = 10−6

9.54e−07

3.05e−05

9.77e−04

3.12e−02

1.00e+00

 0 50 100 150 200 250

re
si

d
u
al

iterations

orsreg_1

PBiCGStab−1
PBiCGStab−8

PBiCGStab−16
PBiCGStab−32
PBiCGStab−48

ReproPBiCGStab

2x24 core Intel Xeon Gold 6240R CPU @2.4 GHz
Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 23 / 31

Pipelined BiCGStab with residual replacement

p-BiCGStab: convergence
Residual history for tmt_unsym (918K nnz) tol = 10−6

9.54e−07

3.05e−05

9.77e−04

3.12e−02

1.00e+00

 0 1000 2000 3000 4000 5000 6000 7000

re
si

d
u
al

iterations

tmt_unsym

PBiCGStab−1
PBiCGStab−8

PBiCGStab−16
PBiCGStab−32
PBiCGStab−48

ReproPBiCGStab

2x24 core Intel Xeon Gold 6240R CPU @2.4 GHz
Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 24 / 31

Pipelined BiCGStab with residual replacement

p-BiCGStab: performance
3D Poisson’s equation with 27 stencil points: n = 64M and tol = 10−8

perturbed matrix (1− 10−4) aka the e-type model

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600

m
ed

ia
n
 t

im
e

p
er

 l
o
o
p
 [

se
cs

]

MPI processes

Orig
ExBLAS

FPE

Strong scaling on 32 Intel Xeon Gold 6240R nodes
Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 25 / 31

Pipelined BiCGStab with residual replacement

p-BiCGStab: residual replacement
▶ Max attainable accuracy below ∥ri∥/∥r0∥ ≤ 10−6 can be an

issue for p-BiCGStab

▶ "Several orders of magnitude on maximal attainable precision
are typically lost when switching to the pipelined algorithm."a

▶ Cause: 11 axpy operations → amplifying local rounding errors

▶ Remedy 1: residual replacement strategy to reset residual ri
and r̂i to their true values every k iterations

▶ Remedy 2: apply the ExBLAS approach
aS. Cools and W. Vanroose. “The communication-hiding pipelined BiCGstab

method for the parallel solution of large unsymmetric linear systems”. In: Parallel
Computing 65 (2017), pp. 1–20.

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 26 / 31

Pipelined BiCGStab with residual replacement

p-BiCGStab: residual replacement
▶ Max attainable accuracy below ∥ri∥/∥r0∥ ≤ 10−6 can be an

issue for p-BiCGStab

▶ "Several orders of magnitude on maximal attainable precision
are typically lost when switching to the pipelined algorithm."a

▶ Cause: 11 axpy operations → amplifying local rounding errors

▶ Remedy 1: residual replacement strategy to reset residual ri
and r̂i to their true values every k iterations

▶ Remedy 2: apply the ExBLAS approach
aS. Cools and W. Vanroose. “The communication-hiding pipelined BiCGstab

method for the parallel solution of large unsymmetric linear systems”. In: Parallel
Computing 65 (2017), pp. 1–20.

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 26 / 31

Pipelined BiCGStab with residual replacement

p-BiCGStab w residual replacement (1/2)
convergence

Residual history for tol = 10−6 and tol = 10−13

2x14 core Intel Xeon Gold 6132 CPU @2.6 GHz

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 27 / 31

Pipelined BiCGStab with residual replacement

p-BiCGStab w residual replacement (2/2)
convergence

Residual history for tol = 10−6 and tol = 10−13

2x14 core Intel Xeon Gold 6132 CPU @2.6 GHz

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 28 / 31

Summary

Outline

Computer arithmetic & floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 29 / 31

Summary

Verification of numerical results

How do we verify parallel scientific programs ?

Comparison against

freq Sequential version
rare MPFR version (sequential)
rare MATLAB version

Approaches and initiatives
▶ Numerical verification
▶ Reproducible solvers with ExBLAS
▶ Computer arithmetic tools like VerifiCarlo as part of CI/CD

▶ Detect numerical abnormalities like cancellations, NaNs, etc

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 30 / 31

Summary

Verification of numerical results

How do we verify parallel scientific programs ?

Comparison against

freq Sequential version
rare MPFR version (sequential)
rare MATLAB version

Approaches and initiatives
▶ Numerical verification
▶ Reproducible solvers with ExBLAS
▶ Computer arithmetic tools like VerifiCarlo as part of CI/CD

▶ Detect numerical abnormalities like cancellations, NaNs, etc

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 30 / 31

Summary

Verification of numerical results

How do we verify parallel scientific programs ?

Comparison against

freq Sequential version
rare MPFR version (sequential)
rare MATLAB version

Approaches and initiatives
▶ Numerical verification
▶ Reproducible solvers with ExBLAS
▶ Computer arithmetic tools like VerifiCarlo as part of CI/CD

▶ Detect numerical abnormalities like cancellations, NaNs, etc

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 30 / 31

Summary

Summary
▶ Computer arithmetic operates with finite precisions

▶ Implement your algorithms with caution:
▶ select suitable and stable algorithm

▶ trade-off between more accurate or fast version

▶ reduce impact of compiler optimization

▶ accurate and reliable computing can be reinstalled
▶ Future Work

▶ pipelined CG and automatic choice of k = 20− 100 for residual
replacement

▶ theoretical analysis
▶ more examples

Thank you for your attention !1

1This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393)
and IT Dept at Uppsala University

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 31 / 31

Summary

Summary
▶ Computer arithmetic operates with finite precisions

▶ Implement your algorithms with caution:
▶ select suitable and stable algorithm

▶ trade-off between more accurate or fast version

▶ reduce impact of compiler optimization

▶ accurate and reliable computing can be reinstalled
▶ Future Work

▶ pipelined CG and automatic choice of k = 20− 100 for residual
replacement

▶ theoretical analysis
▶ more examples

Thank you for your attention !1

1This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393)
and IT Dept at Uppsala University

Roman Iakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 31 / 31

	Computer arithmetic & floating-point numbers
	Reproducibility/ Robustness of LA kernels and solvers
	Pipelined BiCGStab with residual replacement
	Summary

