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Motivation
Accuracy and Reproducibility of Preconditioned Conjugate Gradient

Matrix  cond(A) MPIGMN4 MPI+OMP@GMN4  MPI MPI4+-OMP
gyro_k 1.10e+4+09 16,557 16,064 16,518 16,623

lterations converge with tol = 1078 for the gyro_k matrix from SuiteSparse

Roman lakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 2/31



Motivation
Accuracy and Reproducibility of Preconditioned Conjugate Gradient

CG Residual — Step S8 -

N-1
> im0 7'1'2

Sequential

| Parallel w 48 cores

0x1.19f179eb7f033p+49

0x1.f86089ece5bd4p+38
0x1.fc59229d3599ap+28
0x1.74f5ccc1d03cbp+22

0x1.7031058dd6bcfp-19
0x1.4828f76d1aa3p-23
0x1.8646260a2dae8p-26
0x1.13fa97e1e76bfp-33

0x1.19f179eb7f033p+49
0x1.f86089eceaf76p+38
0x1.fc59a29d32d1bp+28
0x1.74f5ccc201246p+22

0x1.7031058eaf4c2p-19
0x1.4828f76bda71ap-23
0x1.8646260a6da06p-26
0x1.13fa97e240f7cp-33

Ax =b
. [ fter |
while (7 > Tax) 0
Step Operation 3
S1: |w:= Ad 10
S2: | p =6/<dw> 40
S3: |z :=x+pd ;‘ﬁ
Sd: |r =r—pw 47
S5: |z =Ml
S6: | B =<z,1r>
S7:|d := (ﬂ/ﬂold)d—i-z
S8: |1 i=<r1r>
end while
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The matrix is from the finite-difference
method of a 3D Poisson’s equation with
27 stencil points, cond(A) = 1012,

n=4,019,679, tol = 1078,
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Outline

Computer arithmetic & floating-point numbers
Reproducibility/ Robustness of LA kernels and solvers
Pipelined BiCGStab with residual replacement

Summary
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Computer arithmetic & floating-point numbers
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Computer arithmetic & floating-point numbers

Floating-point arithmetic

» Most real numbers cannot be stored exactly; they need to be rounded
and bounded (round-off errors)
» Almost all computer hardware and software support the IEEE
Standard for Floating-Point Arithmetic IEEE 754
» |EEE 754 adopted in 1985: formats and operations (+, —, , /)
> Before 1985: each vendor had its own base and formats
> Revised in 2008: fma(a,b,c) = a * b+ ¢ with one rounding
> Latest version |IEEE 754-2019 includes binary16
» Yields a machine-independent model of how floating-point arithmetic
behaves
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Computer arithmetic & floating-point numbers

Non-associativity

» Floating-point operations (+,x) are commutative but non-associative

> (a+b)+c#a+(b+c)
> (—=1+1)+27%3# -1+ (1+27°) in double precision
1 = (1.0000000000000000000000000000000000000000000000000000)

1...52

27°% = (0.00000000000000000000000000000000000000000000000000001 )-
1...52

S
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Computer arithmetic & floating-point numbers

Non-associativity

» Floating-point operations (+,x) are commutative but non-associative

> (a+b)+c#a+(b+c)
> (—=1+1)+27%3# -1+ (1+27°) in double precision
1 = (1.0000000000000000000000000000000000000000000000000000)

1...52

27°% = (0.00000000000000000000000000000000000000000000000000001 )-
1...52

» Another example is summation in ascending or descending orders

» Consequence: results of floating-point computations depend on the
order of computation especially in parallel

N\pias”

Roman lakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 7 /31



Reproducibility/ Robustness of LA kernels and solvers
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Reproducibility/ Robustness of LA kernels and solvers

Accurate and reproducible computing

» Reproducibility — ability to obtain bit-wise identical and accurate
results from run-to-run on the same input data on the same or
different architectures

Challenges

» More heterogenous parallelism of current computers
— GPU accelerators, etc.

» A high number of floating-point operations performed
— Each of them leads to a round-off error

> Lack of deterministic execution
— Dynamic scheduling and compiler optimisation

— Different rounding modes, e.g. in TensorCore

S
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Reproducibility/ Robustness of LA kernels and solvers

Control of errors (1/2)

» “Infinite” precision: reproducible independently from the inputs

» Example: Kulisch accumulator

significand 1

significand 2

L1 [ ]

emax 0 emin
2

integral part g fractional part
> Large register of size 2,097 (1,022 + 1,023 + 52) bits
» Divided into digits of size 64 bits stored as unsigned integers

» Due to its size and indirect memory access, Kulisch accumulator is
expensive

2
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Reproducibility/ Robustness of LA kernels and solvers

Control of errors (2/2)

» Error-Free Transformations (EFT) for summation

Algorithm 1 (Mgller-Knuth- Algorithm 2 (|a| > |b])

Dekker) (r,s) = fast2sum(a,b)
(r,s) = 2sum(a, b) LLr<a+b
LLr<a+b 2 ZTr—a
2 zr—a 3 s—b—2z

3305 (a—(r—=2)+((b-=2)

» EFT gives access to the rounding errors of individual operations
» Store the result and the error in a short array of the same type as
parameters — FP Expansions (FPE)

— Example: double-double or quad-double
(work well on a set of relatively close numbers)

\ 2
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Reproducibility/ Robustness of LA kernels and solvers

Reproducible parallel reduction

meneees (1 0+ OO0 -~ O oo - Od

» Based on FPE with EFT
and Kulisch accumulator

» Suitable for CPUs, GPUs,
Xeon Phi

» Guarantees “inf" precision

— bit-wise reproducibility

Level 5 (Rounding)

S. Collange et al. Numerical Reproducibility for the Parallel Reduction on Multi,
and Many-Core Architectures. ParCo, 49, 2015, 83-97 )
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Reproducibility/ Robustness of LA kernels and solvers

Preconditioned BiCGStab

Ax =b

while (7 > Tmax)
Step  Operation Kernel Comm
S1: ;13? = Mflpj Apply precond. —
S2: 57. = Ap’ . . spmv Alltoallw
S3: | = (ro, )/ (vro, s7) dot product Allreduce
S4 : q? =7 — oz? s’ axpy-like -
S5: ¢ =M flq’ Apply precond. -
S6: |y =AY . spmv Alltoallw
ST wjj = (q_j, yj)_/<yj, yj_> _ Two dot products Allreduce
S8: | 2t = ad f ol W Two axpy -
89: | it =¢f — @jyj axpy-like -
S10: ,B]: = % * 3—; dot product Allreduce
S11: ijl = VTJH l2 | dot product ({2 norm) | Allreduce
S12: | pTt = it 4 BI(pT — WIs?) | Two axpy-like -

end while
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Reproducibility/ Robustness of LA kernels and solvers

Reproducibility: required precision

8 8

7 7
g 6 g 6
5 s 505
a a
T g T g
g 2 3
Z 2 5 2

1 1

0 0
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Iterations Tterations

msc01050 (Boeing) gyro_k (Oberwolfach)
NNZ = 26,198 NNZ =1,021,159
cond(A) =9.0e + 15 cond(A) = 1.1e + 09

"Reproducibility of Parallel Preconditioned Conjugate Gradient in Hybrid Parallel
Environments" Roman lakymchuk, Maria Barreda, Stef Graillat, José | Aliaga, Enrlque S
Quintana-Orti. IJHPCA, FirstOnline June 17 2020, vol 34, issue 5, pp. 502-518.
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Reproducibility/ Robustness of LA kernels and solvers

Re-assuring Reproducibility in Sparse Solvers
Sources of non-reproducibility
» parallel reduction: dot product with MPI_Allreduce
» compiler auto-replacement of ax + b in favor of fma (axpy)

» ax b+ cxdxe with or without fma (spmv)
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Reproducibility/ Robustness of LA kernels and solvers

Re-assuring Reproducibility in Sparse Solvers

Sources of non-reproducibility
» parallel reduction: dot product with MPI_Allreduce
» compiler auto-replacement of ax + b in favor of fma (axpy)
» ax b+ cxdxe with or without fma (spmv)

Solutions

» Combine arithmetic solutions, reorganization of operations, and
sequential executions

— aiming for lighter or lightweight approaches
» spmv computes blocks of rows in parallel, but with a xb+ / —cxd
— ensure deterministic execution with explicit fma
> axpy relies explicitly on fma
» accurate and reproducible dot
— ExBLAS-based approach
— FPE with size 8 and early-exit
> b:Add:\/iﬁ(l,...,l)T—H):Adandb:\/iﬁb
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Reproducibility/ Robustness of LA kernels and solvers

BiCGStab: convergence
Residual history for fs_ 760 3d (5.8K nnz, w/o precond) tol = 10~°

3.36e+07 T T T T T T
BiCGStab-1 —

1.05e+06 BiCGStab-8 -

3.28e+04 ReproBiCGStab = _]

1.02e+03
3.20e+01
1.00e+00
3.12e-02
9.77e-04
3.05e-05
9.54e-07

2.98¢-08 —
0 100 200 300 400 500 600 700 8007

residual

1terations
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Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: convergence
Residual history for tmt unsym (4.58M nnz) tol = 10~¢
tmt_unsym

PBiCGStab—1 ——
PBiCGStab—8 —— |
PBiCGStab—-16 ——
iCGStab—-32

3.20e+01

1.00e+00

3.12e-02 W

residual

9.77e-04

3.05e-05

9.54e-07

iterations
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Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: convergence & reproducibility

Iteration

Residual

MPFR

Original 1 proc

Original 8 procs

Exblas & FPE

99
100
208
209
210

0x1.3566ea57eaf3fp+2
0x1.146d37f18fbd9p+0

0x1.cedf0ff322158p-13
0x1.be3698f1968cdp-13

0x1.355b0f18f5ac1p-20
0x1.114dc7c9b6d38p-20
0x1.03b1920a49a7ap-20

0x1.3566ea57eab49p+2
0x1.146d37f18faafp+0

0x1.88008701ba87p-12
0x1.55418acflaf27p-12

0x1.19edf2c932ab8p-18
0x1.19b74e383f74ep-18
0x1.19c846848f361p-18

0x1.3566ea57eab49p+2
0x1.146d37f18fabp+0

0x1.04e23203fabfcp-12
0x1.fbf5d3a5d1e49p-13

0x1.b051edae310c7p-20
0x1.a18fc929018d4p-20
0x1.c7eb5bbc198b1p-20

0x1.3566ea57eaf3fp+2
0x1.146d37f18fbd9p+0

0x1.cedf0ff322158p-13
0x1.be36981968cdp-13

0x1.355b0f18f5ac1p-20
0x1.114dc7c9b6d38p-20
0x1.03b1920a49a7ap-20

Table:

MPER for the orsreg 1 matrix (cond(A) = 6.7e + 03, 14K nnz).

Roman lakymchuk (Uppsala University)

Accuracy and reproducibility of the intermediate and final residual against

Reliable Sparse Solvers
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Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: performance (1/2)
Strong scaling for Queen 4147 (316.5M nnz) tol = 10~°

1000 —
Orig &
ExBLAS -=
—_ FPE &
= 100 ¢
]
=
5
o
Q
E 10t
on
>
<
1

0 5 10 15 20 25 30 35 40 45 50
MPI processes

2x24 core Intel Xeon Gold 6240R CPU ©@2.4 GHz
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Reproducibility/ Robustness of LA kernels and solvers

PBiCGStab: performance (2/2)
3D Poisson's equation with 27 stencil points: n = 16M and tol = 1078

perturbed matrix (1 — 104 ) aka the e- type model
100 ‘
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1 | | | | | | |
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Strong scaling on 32 Intel Xeon Gold 6240R nodes
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Pipelined BiCGStab with residual replacement

Outline

Pipelined BiCGStab with residual replacement
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Pipelined BiCGStab with residual replacement

Preconditioned pipelined BiCGStab

while (7 > Tmax)
Step Operation Kernel Comm
S1: | pl =l 4 BT I(pI T — I TeT T Two axpy-like —
S2: st wl 4 pIT (I Il Two axpy-like —
S3: 87 W) 4 pITL(eI T Iz Two axpy-like -
S4 z]_ t7v+B]_71‘(z]71 —wiTlyi Tl Two axpy-like —
S5 q’ rd —adsd axpy-like -
S6 g7 P — ad gl axpy-like —
ST yj = wl —alzd axpy-like —
S8 ) <qj s yj?, (yj s yj) Two dot products Iallreduce
S9 £ = M—12d Apply precond. -
S10: | o? = AzJ spmv Alltoallw
S11: | w? = (¢, y7)/ (v, y7) Two dot products Wait for S8
S12 :cJ_.Jrl = :cJ +a3:137: +wj(jj Two axpy -
S13: T‘]_Jrl =q’ —wlyl o axpy-like -
S14: | pIFL = gl — I (w7 — ad2d) Two axpy-like -
S15: | witl .= yJ — utJJ (t? — ot ’U‘j) Two axpy-like —
: T, T ,{r, w our dot products allreduce
516 0 ity (r0 i1 Four d d Iallred
(r0, 57y, (r0, 27)
S17 ¢ 11)_-7+1 = M_‘1 w? Apply precond. -
S18: | 9t = At spmv Alltoallw
j (r0,ritly J §
S19: | g7 =g * % Four dot products Wait for S16
(r?,r7) wl
Qi+l = (r9,rdtly
T (0 Ity 4 8T (40 5Ty — BT wI (r0,2T)
end while
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Pipelined BiCGStab with residual replacement

p-BiCGStab: convergence
Residual history for orsreg 1 (2.2K nnz) tol = 10~
orsreg_1

PBiCGStab-1 ——
1.00e+00 PBiCGStab—8 —*— .-
PBiCGStab—16 ——
PBiCGStab—-32 —=—
3.12e-02 PBiCGStab—48 i

= eproPBiCGStab ——
3
3 9.77e-04 | )
3.05e-05 o 1
el |
9.54e—07 ‘
0 50 100 150 200 250

iterations
2x24 core Intel Xeon Gold 6240R CPU ©2.4 GHz
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Pipelined BiCGStab with residual replacement

p-BiCGStab: convergence
Residual history for tmt_unsym (918K nnz) tol = 10~°
tmt_unsym

PBiCGStab—8 —+
PBiCGStab-16 —— |
PBiCGStab-32 —=—
- PBiCGStab—48

» ReproPBiCGStab i

I " PBiCGStab—1 ——

1.00e+00

3.12e-02

residual

9.77e-04

3.05e-05

0 1000 2000 3000 4000 5000 6000 7000

9.54e-07

iterations
2x24 core Intel Xeon Gold 6240R CPU ©2.4 GHz
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Pipelined BiCGStab with residual replacement

p-BiCGStab: performance

3D Poisson's equation with 27 stencil points: n = 64M and tol = 1078

perturbed matrix (1 — 104

) aka the e- type model

100
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0 200 400 600 800 1000 1200 1400 1600

Strong scaling on 32 Intel Xeon Gold 6240R nodes
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Pipelined BiCGStab with residual replacement

p-BiCGStab: residual replacement

» Max attainable accuracy below ||r;||/||7o|| < 1076 can be an
issue for p-BiCGStab

» "Several orders of magnitude on maximal attainable precision
are typically lost when switching to the pipelined algorithm. "

» Cause: 11 axpy operations — amplifying local rounding errors
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Pipelined BiCGStab with residual replacement

p-BiCGStab: residual replacement

» Max attainable accuracy below ||r;||/||7o|| < 1076 can be an
issue for p-BiCGStab

» "Several orders of magnitude on maximal attainable precision
are typically lost when switching to the pipelined algorithm. "

» Cause: 11 axpy operations — amplifying local rounding errors

> Remedy 1: residual replacement strategy to reset residual r;
and 7; to their true values every k iterations
ri = b— A.’L‘i, ’IA'Z = Mﬁl’f'i, Wi = A’f'l,

A P —1  Aa
§; = Ap“ §; = M Si, Z; = ASZ'.

» Remedy 2: apply the ExBLAS approach

@S. Cools and W. Vanroose. “The communication-hiding pipelined BiCGstab
method for the parallel solution of large unsymmetric linear systems”. In: Parallel
Computing 65 (2017), pp. 1-20.

N\pias”
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Pipelined BiCGStab with residual replacement

p-BiCGStab w residual replacement (1/2)

convergence
H H — —6 _ —13
Residual history for tol = 10~° and tol = 10
100 besstk26.rb bwm2000.rb
T
1 B BiCGStab i BN BICGStab
o X p_BiCGStab 102 p_BiCGStab
B W p_BiCGStabEXBLAS ] BN p_BICGStabEXBLAS
BN p_BiCGStabRR B p BiCGStabRR
1072 1074
: o
il

107 My ki w 1076
] AT aRAL b s
=R fii sy 3
g 10 i 2 1078

10-° 10-10

10-¢

10712
1077
0 100 200 300 400 500 600 700 800 0 500 1000 1500 2000 2500

iterations

2x14 core Intel Xeon Gold 6132 CPU ©@2.6 GHz
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Pipelined BiCGStab with residual replacement

p-BiCGStab w residual replacement (2/2)

convergence

Residual history for tol = 1076 and tol = 10713

bfwa782.rb besstk18.rb
W BiCGStab 10719 EE BiCGStab
101 p_BiCGStab '._ p_BiCGStab
BN p_BiCGStabEXBLAS 1034 1 BN p_BICGStabEXBLAS
BN p_BiCGStabRR \ N p_BiCGStabRR
102
105
v \‘\
« 1073 AN o
T \ -7
3 “ 3w
=) X -]
? 107 . o
,pf‘. ’:‘\ 102
10-5 \ H 3 1 \\
VAN [N
Y YN 1071
10-6 v \ N
10°13
1077
0 20 40 60 80 100 0 25 50 75 100 125 150 175 200
iterations iterations

2x14 core Intel Xeon Gold 6132 CPU ©@2.6 GHz
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Summary

Verification of numerical results

‘ How do we verify parallel scientific programs ?
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Summary

Verification of numerical results

‘ How do we verify parallel scientific programs ?

Comparison against

freq Sequential version
rare MPFR version (sequential)
rare MATLAB version
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Summary

Verification of numerical results

‘ How do we verify parallel scientific programs ?

Comparison against
freq Sequential version

rare MPFR version (sequential)
rare MATLAB version

Approaches and initiatives
» Numerical verification

» Reproducible solvers with ExBLAS

» Computer arithmetic tools like VerifiCarlo as part of ClI/CD
» Detect numerical abnormalities like cancellations, NaNs, etc

=
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Summary

Summary
» Computer arithmetic operates with finite precisions

» Implement your algorithms with caution:
» select suitable and stable algorithm

» trade-off between more accurate or fast version

» reduce impact of compiler optimization

P accurate and reliable computing can be reinstalled

» Future Work

» pipelined CG and automatic choice of k = 20 — 100 for residual
replacement

> theoretical analysis

» more examples

'This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393) (4%,
and IT Dept at Uppsala University S
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Summary

Summary
» Computer arithmetic operates with finite precisions
» Implement your algorithms with caution:
» select suitable and stable algorithm
> trade-off between more accurate or fast version

» reduce impact of compiler optimization

P accurate and reliable computing can be reinstalled

» Future Work

» pipelined CG and automatic choice of k = 20 — 100 for residual
replacement

> theoretical analysis

» more examples

Thank you for your attention I*

'This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393) (4%,
and IT Dept at Uppsala University St
Roman lakymchuk (Uppsala University) Reliable Sparse Solvers SIAM PP, March 5-8, 2024 31 /31




	Computer arithmetic & floating-point numbers
	Reproducibility/ Robustness of LA kernels and solvers
	Pipelined BiCGStab with residual replacement
	Summary

