Pipelined Sparse Solvers: Can More Reliable Computations Help Us to Converge Faster?

Roman lakymchuk

joint work with José Aliaga (UJI), Stef Graillat (SU), Mykhailo Havdiak (LNU)

> Uppsala University and Umeå University Sweden roman.iakymchuk@it.uu.se

> > SIAM PP 2024 Baltimore, MD, USA March 5-8, 2024

Motivation

Accuracy and Reproducibility of Preconditioned Conjugate Gradient

Matrix	cond(A)	MPI@MN4	MPI+OMP@MN4	MPI	MPI+OMP
gyro_k	1.10e + 09	16,557	16,064	16,518	16,623

Iterations converge with $tol = 10^{-8}$ for the gyro_k matrix from SuiteSparse

Roman lakymchuk (Uppsala University)

Motivation

Accuracy and Reproducibility of Preconditioned Conjugate Gradient

Ax = b

CG Residual – Step S8 – $$	$\sum_{i=0}^{N-1} r_i^2$
----------------------------	--------------------------

while $(\tau > \tau_{\max})$					
Step	Operation				
S1:	w := Ad				
S2:	$\rho \ := \beta / < d, w >$				
S3:	$x := x + \rho d$				
S4:	$r := r - \rho w$				
S5:	$z := M^{-1}r$				
S6:	$\beta := < z, r >$				
S7:	$d := (\beta/\beta_{old})d + z$				
S8:	$\tau \ := < r, r >$				
end while					

lter	Sequential	Parallel w 48 cores
0	0x1.19f179eb7f033p+49	0x1.19f179eb7f033p+49
2	0x1.f86089ece 5bd4 p+38	0x1.f86089eceaf76p+38
9	0x1.fc59a29d3 599a p+28	0x1.fc59a29d32d1bp+28
10	0x1.74f5ccc1d03cbp+22	0x1.74f5ccc201246p+22
40	0×1.7031058 dd6bcf p-19	0×1.7031058eaf4c2p-19
42	0x1.4828f76 d1aa3 p-23	0x1.4828f76 bda71a p-23
45	0x1.8646260a2dae8p-26	0x1.8646260a 6da06 p-26
47	0x1.13fa97e 1e76bf p-33	0x1.13fa97e240f7cp-33

The matrix is from the finite-difference method of a 3D Poisson's equation with 27 stencil points, $cond(A) = 10^{12}$, n=4,019,679, $tol = 10^{-8}$.

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman lakymchuk (Uppsala University)

Outline

Computer arithmetic & floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 5/31

Floating-point arithmetic

- Most real numbers cannot be stored exactly; they need to be rounded and bounded (round-off errors)
- Almost all computer hardware and software support the IEEE
 Standard for Floating-Point Arithmetic IEEE 754
- ▶ IEEE 754 adopted in 1985: formats and operations (+, -, *, /)
 - Before 1985: each vendor had its own base and formats
 - Revised in 2008: fma(a, b, c) = a * b + c with one rounding
 - Latest version IEEE 754-2019 includes binary16
- Yields a machine-independent model of how floating-point arithmetic behaves

Non-associativity

▶ Floating-point operations (+,×) are commutative but non-associative

Roman lakymchuk (Uppsala University)

Non-associativity

▶ Floating-point operations (+,×) are commutative but non-associative

- Another example is summation in ascending or descending orders
- Consequence: results of floating-point computations depend on the order of computation especially in parallel

Roman lakymchuk (Uppsala University)

Outline

Computer arithmetic & floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman lakymchuk (Uppsala University)

Accurate and reproducible computing

Reproducibility – ability to obtain bit-wise identical and accurate results from run-to-run on the same input data on the same or different architectures

Challenges

- \blacktriangleright More heterogenous parallelism of current computers \rightarrow GPU accelerators, etc.
- A high number of floating-point operations performed
 → Each of them leads to a round-off error
- Lack of deterministic execution
 - $\rightarrow\,$ Dynamic scheduling and compiler optimisation
 - ightarrow Different rounding modes, e.g. in TensorCore

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 9 / 31

Control of errors (1/2)

- "Infinite" precision: reproducible independently from the inputs
- Example: Kulisch accumulator

- ► Large register of size 2,097 (1,022 + 1,023 + 52) bits
- Divided into digits of size 64 bits stored as unsigned integers
- Due to its size and indirect memory access, Kulisch accumulator is expensive

Control of errors (2/2)

Error-Free Transformations (EFT) for summation

Algorithm	1	(Møller-Knuth-	Algorithm 2 ($ a > b $)
Dekker)			$\frac{1}{(r,s) = \texttt{fast2sum}(a,b)}$
$\overline{(r,s)} = 2 \operatorname{sur}$	n(a,	<i>b</i>)	1: $r \leftarrow a + b$
1: $r \leftarrow a +$	b		2: $z \leftarrow r - a$
2: $z \leftarrow r -$	a		3: $s \leftarrow b - z$
3: $s \leftarrow (a -$	-(r	(-z)) + (b-z)	

- ▶ EFT gives access to the rounding errors of individual operations
- Store the result and the error in a short array of the same type as parameters – FP Expansions (FPE)
- → Example: double-double or quad-double (work well on a set of relatively close numbers)

- Based on FPE with EFT and Kulisch accumulator
- Suitable for CPUs, GPUs, Xeon Phi
- Guarantees "inf" precision
- \rightarrow bit-wise reproducibility

^aS. Collange et al. Numerical Reproducibility for the Parallel Reduction on Multiand Many-Core Architectures. ParCo, 49, 2015, 83-97

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 12/31

Preconditioned BiCGStab

Ax = b

while ($ au$ >	> $ au_{ m max}$)		
Step	Ope	ration	Kernel	Comm
S1:	\hat{p}^{j}	$:= M^{-1}p^j$	Apply precond.	-
S2:	s^{j}	$:= A\hat{p}^j$	spmv	Alltoallw
S3:	α^{j}	$:=\langle r^0, r^j angle / \langle r^0, s^j angle$	dot product	Allreduce
S4:	q^{j}	$:= r^j - \alpha^j s^j$	axpy-like	_
S5:	\hat{q}^{j}	$:= M^{-1}q^j$	Apply precond.	_
S6:	y^{j}	$:= A\hat{q}^j$	spmv	Alltoallw
S7:	ω^{j}	$:= \langle q^j, y^j angle / \langle y^j, y^j angle$	Two dot products	Allreduce
S8:	x^{j+1}	$x := x^j + \alpha^j \hat{p}^j + \omega^j \hat{q}^j$	Two axpy	—
S9:	r^{j+1}	$:= q^j - \omega^j y^j$	axpy-like	_
S10:	β^{j}	$:= \frac{\langle r^0, r^{j+1} \rangle}{\langle r^0, r^j \rangle} * \frac{\alpha^j}{\omega^j}$	dot product	Allreduce
S11:	τ^{j+1}	$:= \ r^{j+1} \ _2$	dot product (l2 norm)	Allreduce
S12:	p^{j+1}	$:= r^{j+1} + \beta^j (p^j - \omega^j s^j)$	Two axpy-like	-
end while			1	Set

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 13 / 31

Reproducibility: required precision

"Reproducibility of Parallel Preconditioned Conjugate Gradient in Hybrid Parallel Environments" Roman lakymchuk, Maria Barreda, Stef Graillat, José I Aliaga, Enrique S Quintana-Orti. IJHPCA, FirstOnline June 17 2020, vol 34, issue 5, pp. 502-518.

Re-assuring Reproducibility in Sparse Solvers Sources of non-reproducibility

- parallel reduction: dot product with MPI_Allreduce
- compiler auto-replacement of ax + b in favor of fma (axpy)
- a * b + c * d * e with or without fma (spmv)

Re-assuring Reproducibility in Sparse Solvers Sources of non-reproducibility

- parallel reduction: dot product with MPI_Allreduce
- compiler auto-replacement of ax + b in favor of fma (axpy)
- a * b + c * d * e with or without fma (spmv)

Solutions

- Combine arithmetic solutions, reorganization of operations, and sequential executions
 - ightarrow aiming for lighter or lightweight approaches
- ▶ spmv computes blocks of rows in parallel, but with a * b + / c * d
 - $\rightarrow\,$ ensure deterministic execution with explicit fma
- axpy relies explicitly on fma
- accurate and reproducible dot
 - \rightarrow ExBLAS-based approach
 - $\rightarrow\,$ FPE with size 8 and early-exit

▶
$$b = Ad \ d = \frac{1}{\sqrt{N}}(1, \dots, 1)^T \rightarrow b = Ad$$
 and $b = \frac{1}{\sqrt{N}}b$

BiCGStab: convergence Residual history for *fs* 760 3d (5.8K nnz, w/o precond) $tol = 10^{-6}$

residual

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 16 / 31

Roman lakymchuk (Uppsala University)

SIAM PP, March 5-8, 2024 17 / 31

PBiCGStab: convergence & reproducibility

Iteration	Residual			
	MPFR	Original 1 proc	Original 8 procs	Exblas & FPE
0	0x1.3566ea57eaf3fp+2	0x1.3566ea57ea b49 p+2	0x1.3566ea57ea b49 p+2	0x1.3566ea57eaf3fp+2
1	0x1.146d37f18fbd9p+0	0x1.146d37f18f aaf p+0	0x1.146d37f18f ab p+0	0x1.146d37f18fbd9p+0
99	0x1.cedf0ff322158p-13	0x1.88008701ba87p-12	0x1.04e23203fa6fcp-12	0x1.cedf0ff322158p-13
100	0x1.be3698f1968cdp-13	0x1.55418acf1af27p-12	0x1.fbf5d3a5d1e49p-13	0x1.be3698f1968cdp-13
208	0x1.355b0f18f5ac1p-20	0x1.19edf2c932ab8p-18	0x1.b051edae310c7p-20	0x1.355b0f18f5ac1p-20
209	0x1.114dc7c9b6d38p-20	0x1.19b74e383f74ep-18	0x1.a18fc929018d4p-20	0x1.114dc7c9b6d38p-20
210	0x1.03b1920a49a7ap-20	0x1.19c846848f361p-18	0x1.c7eb5bbc198b1p-20	0x1.03b1920a49a7ap-20

Table: Accuracy and reproducibility of the intermediate and final residual against MPFR for the *orsreg_1* matrix (cond(A) = 6.7e + 03, 14K nnz).

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 18 / 31

SIAM PP, March 5-8, 2024 19 / 31

Pipelined BiCGStab with residual replacement

Outline

Computer arithmetic & floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 21/31

Preconditioned pipelined BiCGStab

while $(\tau > \tau_{max})$

Step	Operation	Kernel	Comm
S1 :	$\hat{p}^{j} := \hat{r}^{j} + \beta^{j-1} (\hat{p}^{j-1} - \omega^{j-1} \hat{s}^{j-1})$	Two axpy-like	-
S2:	$s^{j} := w^{j} + \beta^{j-1} (s^{j-1} - \omega^{j-1} z^{j-1})$	Two axpy-like	-
S3:	$\hat{s}^{j} := \hat{w}^{j} + \beta^{j-1} (\hat{s}^{j-1} - \omega^{j-1} \hat{z}^{j-1})$	Two axpy-like	-
S4:	$z^{j} := t^{j} + \beta^{j-1} (z^{j-1} - \omega^{j-1} v^{j-1})$	Two axpy-like	—
S5:	$q^j := r^j - \alpha^j s^j$	axpy-like	—
S6:	$\hat{q}^j := \hat{r}^j - \alpha^j \hat{s}^j$	axpy-like	—
S7:	$y^j := w^j - \alpha^j z^j$	axpy-like	
S8:	$\langle q^j,y^j angle,\langle y^j,y^j angle$	Two dot products	Iallreduce
S9:	$\hat{z}^{j} := M^{-1}z^{j}$	Apply precond.	-
S10:	$v^j := A\hat{z}^j$	spmv	Alltoallw
S11:	$\omega^j := \langle q^j, y^j \rangle / \langle y^j, y^j \rangle$	Two dot products	Wait for S8
S12:	$x^{j+1} := x^j + \alpha^j \hat{p}^j + \omega^j \hat{q}^j$	Two axpy	-
S13:	$r^{j+1} := q^j - \omega^j y^j$	axpy-like	-
S14:	$\hat{r}^{j+1} := \hat{q}^j - \omega^j (\hat{w}^j - \alpha^j \hat{z}^j)$	Two axpy-like	-
S15:	$w^{j+1} := y^j - \omega^j (t^j - \alpha^j v^j)$	Two axpy-like	_
S16:	$\langle r^0, r^{j+1} \rangle, \langle r^0, w^{j+1} \rangle$	Four dot products	Iallreduce
	$\langle r^0, s^j \rangle, \langle r^0, z^j \rangle$		
S17:	$\hat{w}^{j+1} := M^{-1} w^{j+1}$	Apply precond.	-
S18:	$t^{j+1} := A\hat{w}^{j+1}$	spmv	Alltoallw
S19:	$\beta^{j} := \frac{\langle r^{0}, r^{j+1} \rangle}{\langle r^{0}, r^{j} \rangle} * \frac{\alpha^{j}}{\omega^{j}}$	Four dot products	Wait for S16
	$\alpha^{j+1} := \frac{\langle r^{j}, r^{j} \rangle}{\frac{\langle r^{0}, r^{j+1} \rangle}}}}$		
end while	$ \langle r^{0}, w^{j+1}\rangle + \beta^{j} \langle r^{0}, s^{j} \rangle - \beta^{j} \omega^{j} \langle r^{0}, z^{j} \rangle$		

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 22 / 31

Pipelined BiCGStab with residual replacement

SIAM PP, March 5-8, 2024 24 / 31

p-BiCGStab: performance

p-BiCGStab: residual replacement

- ▶ Max attainable accuracy below $||r_i||/||r_0|| \le 10^{-6}$ can be an issue for p-BiCGStab
- "Several orders of magnitude on maximal attainable precision are typically lost when switching to the pipelined algorithm."^a
- ▶ Cause: 11 axpy operations \rightarrow amplifying local rounding errors

Roman lakymchuk (Uppsala University)

p-BiCGStab: residual replacement

- ▶ Max attainable accuracy below $||r_i||/||r_0|| \le 10^{-6}$ can be an issue for p-BiCGStab
- "Several orders of magnitude on maximal attainable precision are typically lost when switching to the pipelined algorithm."^a
- ▶ Cause: 11 axpy operations \rightarrow amplifying local rounding errors

 Remedy 1: residual replacement strategy to reset residual r_i and r̂_i to their true values every k iterations r_i := b - Ax_i, r̂_i := M⁻¹r_i, w_i := Ar̂_i, s_i := Ap̂_i, ŝ_i := M⁻¹s_i, z_i := Aŝ_i.

Remedy 2: apply the ExBLAS approach

^aS. Cools and W. Vanroose. "The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems". In: Parallel Computing 65 (2017), pp. 1–20.

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 26 / 31

Pipelined BiCGStab with residual replacement

p-BiCGStab w residual replacement (1/2)

convergence

Residual history for $tol = 10^{-6}$ and $tol = 10^{-13}$

2x14 core Intel Xeon Gold 6132 CPU @2.6 GHz

Roman lakymchuk (Uppsala University)

Pipelined BiCGStab with residual replacement

p-BiCGStab w residual replacement (2/2)

convergence

Residual history for $tol = 10^{-6}$ and $tol = 10^{-13}$

2x14 core Intel Xeon Gold 6132 CPU @2.6 GHz

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 28 / 31

Outline

Computer arithmetic & floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Roman lakymchuk (Uppsala University)

Reliable Sparse Solvers

SIAM PP, March 5-8, 2024 29 / 31

Summary

Verification of numerical results

How do we verify parallel scientific programs ?

Roman lakymchuk (Uppsala University)

Summary

Verification of numerical results

How do we verify parallel scientific programs ?

Comparison against

- freq Sequential version
- rare MPFR version (sequential)
- rare MATLAB version

Roman lakymchuk (Uppsala University)

Verification of numerical results

How do we verify parallel scientific programs ?

- Comparison against
- freq Sequential version
- rare MPFR version (sequential)
- rare MATLAB version

Approaches and initiatives

- Numerical verification
- Reproducible solvers with ExBLAS
- Computer arithmetic tools like VerifiCarlo as part of CI/CD
 - Detect numerical abnormalities like cancellations, NaNs, etc

Roman lakymchuk (Uppsala University)

Summary

Summary

- Computer arithmetic operates with finite precisions
- Implement your algorithms with caution:
 - select suitable and stable algorithm
 - trade-off between more accurate or fast version
 - reduce impact of compiler optimization
- accurate and reliable computing can be reinstalled
- Future Work
 - ▶ pipelined CG and automatic choice of k = 20 100 for residual replacement
 - theoretical analysis
 - more examples

 1 This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393) and IT Dept at Uppsala University

Summary

Summary

- Computer arithmetic operates with finite precisions
- Implement your algorithms with caution:
 - select suitable and stable algorithm
 - trade-off between more accurate or fast version
 - reduce impact of compiler optimization
- accurate and reliable computing can be reinstalled
- Future Work
 - ▶ pipelined CG and automatic choice of k = 20 100 for residual replacement
 - theoretical analysis
 - more examples

Thank you for your attention !1

 $^1 {\rm This}$ research is partially funded by EuroHPC JU CoE CEEC (No. 101093393) and IT Dept at Uppsala University

