Pipelined Sparse Solvers: Can More Reliable Computations Help Us to Converge Faster?

Roman lakymchuk
joint work with
José Aliaga (UJI), Stef Graillat (SU), Mykhailo Havdiak (LNU)
Uppsala University and Umeå University
Sweden
roman.iakymchuk@it.uu.se

SIAM PP 2024
Baltimore, MD, USA
March 5-8, 2024

Reliable Sparse Solvers

Motivation

Accuracy and Reproducibility of Preconditioned Conjugate Gradient

Matrix	cond (A)	MPI@MN4	MPI+OMP@MN4	MPI	MPI+OMP
gyro_k	$1.10 e+09$	16,557	16,064	16,518	16,623

Iterations converge with tol $=10^{-8}$ for the gyro_k matrix from SuiteSparse

Motivation

Accuracy and Reproducibility of Preconditioned Conjugate Gradient

	$A x=b$
while $\left(\tau>\tau_{\text {max }}\right)$	
Step	Operation
S1:	$w:=A d$
$S 2$:	$\rho:=\beta /<d, w>$
$S 3$:	$x:=x+\rho d$
$S 4$:	$r:=r-\rho w$
S5 :	$z:=M^{-1} r$
$S 6$:	$\beta:=<z, r>$
S7:	$d:=\left(\beta / \beta_{o l d}\right) d+z$
S8:	$\tau:=<r, r>$
end while	

CG Residual - Step S8 - $\sqrt{\sum_{i=0}^{N-1} r_{i}^{2}}$

Iter	Sequential	Parallel w 48 cores
0	0x1.19f179eb7f033p+49	0x1.19f179eb7f033p+49
2	0x1.f86089ece5bd4p+38	0x1.f86089eceaf76p+38
9	0x1.fc59a29d3599ap +28	0x1.fc59a29d32d1bp+28
10	$0 \times 1.74 \mathrm{f} 5 \mathrm{ccc} 1 \mathrm{~d} 03 \mathrm{cbp}+22$	$0 \times 1.74 f 5 \mathrm{ccc} 201246 p+22$
	\cdots	
40	0x1.7031058dd6bcfp-19	0x1.7031058eaf4c2p-19
42	0x1.4828f76d1aa3p-23	0x1.4828f76bda71ap-23
45	0x1.8646260a2dae8p-26	0x1.8646260a6da06p-26
47	0x1.13fa97e1e76bfp-33	0x1.13fa97e240f7cp-33

The matrix is from the finite-difference method of a 3D Poisson's equation with 27 stencil points, $\operatorname{cond}(A)=10^{12}$, $\mathrm{n}=4,019,679$, tol $=10^{-8}$.

Outline

Computer arithmetic \& floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers
Pipelined BiCGStab with residual replacement
Summary

Computer arithmetic \& floating-point numbers

Outline

Computer arithmetic \& floating-point numbers

> Reproducibility/ Robustness of LA kernels and solvers Pipelined BiCGStab with residual replacement Summary

Floating-point arithmetic

- Most real numbers cannot be stored exactly; they need to be rounded and bounded (round-off errors)
- Almost all computer hardware and software support the IEEE Standard for Floating-Point Arithmetic IEEE 754
- IEEE 754 adopted in 1985: formats and operations ($+,-, *, /$)
- Before 1985: each vendor had its own base and formats
- Revised in 2008: $\operatorname{fma}(a, b, c)=a * b+c$ with one rounding
- Latest version IEEE 754-2019 includes binary16
- Yields a machine-independent model of how floating-point arithmetic behaves

Non-associativity

- Floating-point operations $(+, \times)$ are commutative but non-associative
- $(a+b)+c \neq a+(b+c)$
- $(-1+1)+2^{-53} \neq-1+\left(1+2^{-53}\right) \quad$ in double precision

$2^{-53}=(0 . \underbrace{001}_{1 \ldots 52})_{2}$

Non-associativity

- Floating-point operations $(+, \times)$ are commutative but non-associative
- $(a+b)+c \neq a+(b+c)$
- $(-1+1)+2^{-53} \neq-1+\left(1+2^{-53}\right)$ in double precision

$2^{-53}=(\underbrace{0.000}_{1 \ldots 52} 1)_{2}$
- Another example is summation in ascending or descending orders
- Consequence: results of floating-point computations depend on the order of computation especially in parallel

Outline

Computer arithmetic \& floating-point numbers

 Reproducibility/ Robustness of LA kernels and solvers

 Reproducibility/ Robustness of LA kernels and solvers}

Pipelined BiCGStab with residual replacement

Summary

Accurate and reproducible computing

- Reproducibility - ability to obtain bit-wise identical and accurate results from run-to-run on the same input data on the same or different architectures

Challenges

- More heterogenous parallelism of current computers
\rightarrow GPU accelerators, etc.
- A high number of floating-point operations performed
\rightarrow Each of them leads to a round-off error
- Lack of deterministic execution
\rightarrow Dynamic scheduling and compiler optimisation
\rightarrow Different rounding modes, e.g. in TensorCore

Control of errors (1/2)

- "Infinite" precision: reproducible independently from the inputs
- Example: Kulisch accumulator

- Large register of size $2,097(1,022+1,023+52)$ bits
- Divided into digits of size 64 bits stored as unsigned integers
- Due to its size and indirect memory access, Kulisch accumulator is expensive

Control of errors (2/2)

- Error-Free Transformations (EFT) for summation Algorithm $1 \quad$ (Møller-Knuth- $\overline{\text { Algorithm } 2(|a| \geq|b|)}$

Dekker $)$	$(r, s)=\mathrm{fast2} \operatorname{sum}(a, b)$ $(r, s)=2 \operatorname{sum}(a, b)$ $1: r \leftarrow a+b$ 1: $r \leftarrow a+b$ 2: $z \leftarrow r-a$ 2: $z \leftarrow r-a$ 3: $s \leftarrow b-z$ 3: $s \leftarrow(a-(r-z))+(b-z)$ $>l$

- EFT gives access to the rounding errors of individual operations
- Store the result and the error in a short array of the same type as parameters - FP Expansions (FPE)
\rightarrow Example: double-double or quad-double (work well on a set of relatively close numbers)

Reproducible parallel reduction

- Based on FPE with EFT and Kulisch accumulator
- Suitable for CPUs, GPUs, Xeon Phi
- Guarantees "inf" precision
\rightarrow bit-wise reproducibility
${ }^{\text {a }}$ S. Collange et al. Numerical Reproducibility for the Parallel Reduction on Mult and Many-Core Architectures. ParCo, 49, 2015, 83-97

Preconditioned BiCGStab

$$
A x=b
$$

Step	Operation	Kernel	Comm		
S1:	$\hat{p}^{j} \quad:=M^{-1} p^{j}$	Apply precond.	-		
$S 2$:	$s^{j} \quad:=A \hat{p}^{j}$	spmv	Alltoallw		
S3:	$\alpha^{j} \quad:=\left\langle r^{0}, r^{j}\right\rangle /\left\langle r^{0}, s^{j}\right\rangle$	dot product	Allreduce		
S4:	$q^{j} \quad:=r^{j}-\alpha^{j} s^{j}$	axpy-like	-		
S5:	$\hat{q}^{j} \quad:=M^{-1} q^{j}$	Apply precond.	-		
S6:	$y^{j} \quad:=A \hat{q}^{j}$	spmv	Alltoallw		
S7 :	$\omega^{j}:=\left\langle q^{j}, y^{j}\right\rangle /\left\langle y^{j}, y^{j}\right\rangle$	Two dot products	Allreduce		
S8:	$x^{j+1}:=x^{j}+\alpha^{j} \hat{p}^{j}+\omega^{j} \hat{q}^{j}$	Two axpy	-		
S9:	$r^{j+1}:=q^{j}-\omega^{j} y^{j}$	axpy-like	-		
$S 10$:	$\beta^{j}:=\frac{\left\langle r^{0}, r^{j+1}\right\rangle}{\left\langle r^{0}, r^{j}\right\rangle} * \frac{\alpha^{j}}{\omega^{j}}$	dot product	Allreduce		
S11:	$\tau^{j+1}:=\left\\|r^{j+1}\right\\|_{2}$	dot product (l2 norm)	Allreduce		
S12:	$p^{j+1}:=r^{j+1}+\beta^{j}\left(p^{j}-\omega^{j} s^{j}\right)$	Two axpy-like	-		
end while					

Reproducibility: required precision

msc01050 (Boeing)
$N N Z=26,198$
$\operatorname{cond}(A)=9.0 e+15$

gyro_k (Oberwolfach)
$N N Z=1,021,159$
$\operatorname{cond}(A)=1.1 e+09$

[^0]
Re-assuring Reproducibility in Sparse Solvers

 Sources of non-reproducibility- parallel reduction: dot product with MPI_Allreduce
- compiler auto-replacement of $a x+b$ in favor of fma (axpy)
- $a * b+c * d * e$ with or without fma (spmv)

Re-assuring Reproducibility in Sparse Solvers

 Sources of non-reproducibility- parallel reduction: dot product with MPI_Allreduce
- compiler auto-replacement of $a x+b$ in favor of fma (axpy)
- $a * b+c * d * e$ with or without fma (spmv)

Solutions

- Combine arithmetic solutions, reorganization of operations, and sequential executions
\rightarrow aiming for lighter or lightweight approaches
- spmv computes blocks of rows in parallel, but with $a * b+/-c * d$
\rightarrow ensure deterministic execution with explicit fma
- axpy relies explicitly on fma
- accurate and reproducible dot
\rightarrow ExBLAS-based approach
\rightarrow FPE with size 8 and early-exit
- $b=A d d=\frac{1}{\sqrt{N}}(1, \ldots, 1)^{T} \rightarrow b=A d$ and $b=\frac{1}{\sqrt{N}} b$

BiCGStab: convergence

Residual history for $f s _760 _3 d$ ($5.8 \mathrm{~K} \mathrm{nnz}, \mathrm{w} / \mathrm{o}$ precond) tol $=10^{-6}$

PBiCGStab: convergence

Residual history for tmt_unsym (4.58 M nnz) tol $=10^{-6}$ tmt_unsym

iterations
Reliable Sparse Solvers

PBiCGStab: convergence \& reproducibility

Iteration	Residual			
	MPFR	Original 1 proc	Original 8 procs	Exblas \& FPE
0	0x1.3566ea57eaf3fp+2	0x1.3566ea57eab49p+2	0x1.3566ea57eab49p+2	0x1.3566ea57eaf3fp+2
1	$0 \times 1.146 \mathrm{~d} 37 \mathrm{f} 18 \mathrm{fbd} 9 \mathrm{p}+0$	0x1.146d37f18faafp+0	$0 \times 1.146 \mathrm{~d} 37 \mathrm{f} 18 \mathrm{fabp}+0$	$0 \times 1.146 \mathrm{~d} 37 \mathrm{f} 18 \mathrm{fbd} 9 \mathrm{p}+0$
.	\cdots	\cdots	\cdots	\ldots
99	0x1.cedf0ff322158p-13	0x1.88008701ba87p-12	0x1.04e23203fa6fcp-12	0x1.cedf0ff322158p-13
100	0x1.be3698f1968cdp-13	0x1.55418acf1af27p-12	0x1.fbf5d3a5d1e49p-13	0x1.be3698f1968cdp-13
208	20			-20
209	0x1.114dc7c9b6d38p-20	0x1.19b74e383f74ep-18	$0 \times 1 . a 18 \mathrm{fc} 929018 \mathrm{~d} 4 \mathrm{p}-20$	0x1.114dc7c9b6d38p-20
210	0x1.03b1920a49a7ap-20	0x1.19c846848f361p-18	0x1.c7eb5bbc198b1p-20	0x1.03b1920a49a7ap-20

Table: Accuracy and reproducibility of the intermediate and final residual against MPFR for the orsreg_1 matrix $(\operatorname{cond}(A)=6.7 e+03,14 \mathrm{~K} \mathrm{nnz})$.

PBiCGStab: performance (1/2)

Strong scaling for Queen_4147 (316.5M nnz) tol $=10^{-6}$

2×24 core Intel Xeon Gold 6240 R CPU @2.4 GHz

PBiCGStab: performance (2/2)

3D Poisson's equation with 27 stencil points: $n=16 \mathrm{M}$ and tol $=10^{-8}$

Strong scaling on 32 Intel Xeon Gold 6240R nodes

Outline

Computer arithmetic \& floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Preconditioned pipelined BiCGStab

```
```

while (}\tau>\mp@subsup{\tau}{\mathrm{ max }}{}\mathrm{)

```
```

```
```

while (}\tau>\mp@subsup{\tau}{\mathrm{ max }}{}\mathrm{)

```
```

Step	Operation	Kernel	Comm
S1:	$\hat{p}^{j} \quad:=\hat{r}^{j}+\beta^{j-1}\left(\hat{p}^{j-1}-\omega^{j-1} \hat{s}^{j-1}\right)$	Two axpy-like	-
$S 2$:	$s^{j} \quad:=w^{j}+\beta^{j-1}\left(s^{j-1}-\omega^{j-1} z^{j-1}\right)$	Two axpy-like	-
S3	$\hat{s}^{j} \quad:=\hat{w}^{j}+\beta^{j-1}\left(\hat{s}^{j-1}-\omega^{j-1} \hat{z}^{j-1}\right)$	Two axpy-like	-
S4:	$z^{j} \quad: \quad:=t^{j}+\beta^{j-1}\left(z^{j-1}-\omega^{j-1} v^{j-1}\right)$	Two axpy-like	-
S5	$q^{j}{ }^{\text {a }} \quad:=r^{j}-\alpha^{j}{ }^{j}{ }^{j}$	axpy-like	-
S6	\hat{q}^{j}, $:=\hat{r}^{j}-\alpha^{j} \hat{s}^{j}$	axpy-like	-
S7:	$y^{j} \quad:=w^{j}-\alpha^{j} z^{j}$	axpy-like	-
S8	$\left\langle q^{j}, y^{j}\right\rangle,\left\langle y^{j}, y^{j}\right\rangle$	Two dot products	Iallreduce
S9:	$\hat{z}^{j} \quad:=M^{-1} z^{j}$	Apply precond.	-
S10:	$v^{j} \quad:=A \hat{z}^{j}$	spmv	Alltoallw
S11:	$\omega^{j} \quad:=\left\langle q^{j}, y^{j}\right\rangle /\left\langle y^{j}, y^{j}\right\rangle$	Two dot products	Wait for S8
S12:	$x^{j+1}:=x^{j}+\alpha^{j} \hat{p}^{j}+\omega^{j} \hat{q}^{j}$	Two axpy	-
S13:	$r^{j+1}:=q^{j}-\omega^{j} y^{j}$	axpy-like	-
S14:	$\hat{r}^{j+1}:=\hat{q}^{j}-\omega^{j}\left(\hat{w}^{j}-\alpha^{j} \hat{z}^{j}\right)$	Two axpy-like	-
S15:	$w^{j+1}:=y^{j}-\omega^{j}\left(t^{j}-\alpha^{j} v^{j}\right)$	Two axpy-like	-
S16:	$\begin{aligned} & \left\langle r^{0}, r^{j+1}\right\rangle,\left\langle r^{0}, w^{j+1}\right\rangle \\ & \left\langle r^{0}, s^{j}\right\rangle,\left\langle r^{0}, z^{j}\right\rangle \end{aligned}$	Four dot products	Iallreduce
S17: S18:	$\begin{aligned} \hat{w}^{j+1} & :=M^{-1} w^{j+1} \\ t^{j+1} & :=A \hat{w}^{j+1} \end{aligned}$	Apply precond. spmv	Alltoallw
S19:	$\begin{aligned} \beta^{j} & :=\frac{\left\langle r^{0}, r^{j+1}\right\rangle}{\left\langle r^{0}, r^{j}\right\rangle} * \frac{\alpha^{j}}{\omega^{j}} \\ \alpha^{j+1} & :=\frac{\left\langle r^{0}, r^{j+1}\right\rangle}{\left\langle r^{0}, w^{j+1}\right\rangle+\beta^{j}\left\langle r^{0}, s^{j}\right\rangle-\beta^{j} \omega^{j}\left\langle r^{0}, z^{j}\right\rangle} \end{aligned}$	Four dot products	Wait for S16

Kernel
Two axpy-like
Two axpy-like
Two axpy-like
axpy-like
axpy-like
axpy-like
Two dot products
Apply precond.
spmv
Two dot products
Wait for S8
axpy-like
Two axpy-like
Two axpy-like
Four dot products

Apply precond.
spmv
Four dot products
p-BiCGStab: convergence Residual history for orsreg_1 $\begin{gathered}1(2.2 \mathrm{~K} \mathrm{nnz}) \text { tol }=10^{-6} \\ \text { orsreg_1 }\end{gathered}$

2×24 core Intel Xeon Gold 6240R CPU @2.4 GHz

p-BiCGStab: convergence

 Residual history for tmt_unsym ($918 \mathrm{~K} n \mathrm{nz}$) tol $=10^{-6}$ tmt_unsym
2×24 core Intel Xeon Gold 6240R CPU @2.4 GHz

p-BiCGStab: performance

3D Poisson's equation with 27 stencil points: $n=64 \mathrm{M}$ and tol $=10^{-8}$

Strong scaling on 32 Intel Xeon Gold 6240R nodes

p-BiCGStab: residual replacement

- Max attainable accuracy below $\left\|r_{i}\right\| /\left\|r_{0}\right\| \leq 10^{-6}$ can be an issue for p-BiCGStab
- "Several orders of magnitude on maximal attainable precision are typically lost when switching to the pipelined algorithm. "1a
- Cause: 11 axpy operations \rightarrow amplifying local rounding errors

p-BiCGStab: residual replacement

- Max attainable accuracy below $\left\|r_{i}\right\| /\left\|r_{0}\right\| \leq 10^{-6}$ can be an issue for p -BiCGStab
- "Several orders of magnitude on maximal attainable precision are typically lost when switching to the pipelined algorithm. "1a
- Cause: 11 axpy operations \rightarrow amplifying local rounding errors
- Remedy 1: residual replacement strategy to reset residual r_{i} and $\hat{r_{i}}$ to their true values every k iterations
$r_{i}:=b-A x_{i}$,

$$
\hat{r}_{i}:=M^{-1} r_{i}
$$

$$
w_{i}:=A \hat{r}_{i},
$$

$$
s_{i}:=A \hat{p}_{i},
$$

$$
\hat{s}_{i}:=M^{-1} s_{i}
$$

$$
z_{i}:=A \hat{s}_{i} .
$$

- Remedy 2: apply the ExBLAS approach

[^1]
p-BiCGStab w residual replacement (1/2)

convergence

p-BiCGStab w residual replacement (2/2)

convergence

2×14 core Intel Xeon Gold 6132 CPU @2.6 GHz

Outline

Computer arithmetic \& floating-point numbers

Reproducibility/ Robustness of LA kernels and solvers

Pipelined BiCGStab with residual replacement

Summary

Verification of numerical results

How do we verify parallel scientific programs ?

Verification of numerical results

How do we verify parallel scientific programs ?
Comparison against
freq Sequential version
rare MPFR version (sequential)
rare MATLAB version

Verification of numerical results

How do we verify parallel scientific programs ?
Comparison against
freq Sequential version
rare MPFR version (sequential)
rare MATLAB version
Approaches and initiatives

- Numerical verification
- Reproducible solvers with ExBLAS
- Computer arithmetic tools like VerifiCarlo as part of CI/CD
- Detect numerical abnormalities like cancellations, NaNs , etc

Summary

- Computer arithmetic operates with finite precisions
- Implement your algorithms with caution:
- select suitable and stable algorithm
- trade-off between more accurate or fast version
- reduce impact of compiler optimization
- accurate and reliable computing can be reinstalled
- Future Work
- pipelined CG and automatic choice of $k=20-100$ for residual replacement
- theoretical analysis
- more examples

[^2]
Summary

- Computer arithmetic operates with finite precisions
- Implement your algorithms with caution:
- select suitable and stable algorithm
- trade-off between more accurate or fast version
- reduce impact of compiler optimization
- accurate and reliable computing can be reinstalled
- Future Work
- pipelined CG and automatic choice of $k=20-100$ for residual replacement
- theoretical analysis
- more examples

Thank you for your attention ! ${ }^{1}$

[^3]
[^0]: "Reproducibility of Parallel Preconditioned Conjugate Gradient in Hybrid Parallel Environments" Roman lakymchuk, Maria Barreda, Stef Graillat, José I Aliaga, Enrique S Quintana-Orti. IJHPCA, FirstOnline June 17 2020, vol 34, issue 5, pp. 502-518.

[^1]: ${ }^{2}$ S. Cools and W. Vanroose. "The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems". In: Parallel Computing 65 (2017), pp. 1-20.

[^2]: ${ }^{1}$ This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393) and IT Dept at Uppsala University

[^3]: ${ }^{1}$ This research is partially funded by EuroHPC JU CoE CEEC (No. 101093393) and IT Dept at Uppsala University

