
Hadrien Reynaud - 06/02/2024

Optimised Data Transfer with Alex

+ Fast read/write

+ Not bottlenecked by the network
speed

- Only exists for the duration of the
job

- Moving data takes time from the
total execution time (ie. loss of
compute)

$TMPDIR

Goal
• We want to use rsync to copy data over ssh

• One rsync process copies data at 10Mo/s - 20Mo/s

• The max bandwidth between FAU servers and Alex is ~25Gb/s*

• How do we maximise bandwidth usage ?

• Move the data using parallel processes of rsync, using xargs

• Goal: move 500Go in ~40 minutes

Solution 1 - Fast Data Transfer

*Based on the theoretical link speed between both servers

Pre-requisite
• Data must be stored on a FAU server that can connect to Alex over ssh

• Requires setting up the ssh config on both Alex and the “local” machine

Solution 1 - Fast Data Transfer

1. Password less login
to allow parallel calls

2. Use aliases for ease
of use

Data structure
• Data must be contained in one folder (with any amount of subfolders)

• No limitation on data types, structure, etc…

Solution 1 - Copying data faster

Data compression on host machine
• The data is (1) zipped and (2) split into 100Mo chunks

• The 100Mo chunks are optimal for fast transfer: not to small, easy to parallelise

Solution 1 - Copying data faster

Data pulling in a slurm job
• Retrieve the list of 100Mo parts to transfer

• Call rsync with xargs on that list

•

Solution 1 - Copying data faster

Data reconstruction
• Un-split the zip

• Unzip the data

• Data is ready

Solution 1 - Copying data faster

Limitations
• The host machine must have a high-bandwidth connection to Alex

• By default, host machines limit the number of concurrent ssh connections to 16

• If multiple user or multiple experiments pull from the same host, rsync will fail
and data will not be copied, failing the whole job.

• It is possible to change the ssh server configuration to increase that limit
(requires sudo)

• Your computation cannot start until the data is downloaded, which reduces your
compute time (given the wall time of 24h)

• This approach is interesting if the data transfer time remains low (few hours)

Solution 1 - Copying data faster

Goal
• Start training immediately, without waiting for any data transfer

• Use webdataset to stream the data from any* location

• Reduce compute idle time (=data transfer) to a minimum

• Allows to move 25Tb in ~8 hours (split over 8 nodes)

Solution 2 - Background Data Stream

*Assuming you have access and admin rights / some control over the machine where the data is located

https://github.com/webdataset/webdataset

Pre-requisite
• Data must be stored on a server reachable by Alex (req. proxies)

• The server must be ready to send large amounts of data (req. file server)

• Data must be formatted in the right structure (req. pre-processing)

Solution 2 - Background Data Stream

Data structure
• The data must be organised into tar files and the labels (class, text, etc) into
json/txt files.

1. Split data into ~1Go chunks (ex. group of images + 1 json file)

2. Data chunks are archived into a tar file. Grouped data share their name,
ex: 00001.tar and 00001.json

• This may require lots of pre-processing.

Solution 2 - Background Data Stream

1 chunk

Data serving
• Need to setup a server to send the properly structured data

• Simple solution: NGINX server (python server not powerful enough)

Solution 2 - Background Data Stream

Data pulling in a slurm job
• Switch the usual dataset class for a WebDataset and WebLoader

Solution 2 - Background Data Stream

Data pulling in a slurm job
• Switch the usual dataset class for a WebDataset and WebLoader

Solution 2 - Background Data Stream

Bonus

• WebDataset supports caching the data locally - avoids pulling the same data
multiple times ($TMPDIR is usually 8Tb per node).

• custom_func is an on the fly pre-processing function, can handle all sorts of
processing.

• See https://github.com/webdataset/webdataset to learn more.

Solution 2 - Background Data Stream

https://github.com/webdataset/webdataset

Limitations
• Heavy setup cost (data pre-processing, http server, new data loading)

• Requires a dedicated http file server (can be hosted remotely, ex. AWS, GCP)

• Worth the effort only for large datasets (3Tb+)

Solution 2 - Background Data Stream

Parallel rsync vs WebDataset
Recap

rsync + xargs

+ Simple to setup

+ Easy to modify / adapt

+ Fits all datasets

- Blocks the job until data is
transferred

• Best for <2Tb datasets (<3h
transfer)

WebDataset

+ Computation can start
immediately

+ Scales infinitely

- Long / difficult to setup

- May not fit all datasets

• Best for 2Tb+ datasets

Thank you

