AN

-

”

2

-

-
B

ptimised Data Transfer with Alex

W

06/02/20

e

et

; "“ -

24

e iy

-

’

e ——

| e——
-~

.’1:’-

-

.

T
..

/)

N

Ists for the duration of the

+ Not bottlenecked by the network
- Moving data takes time from the
total execution time (ie. loss of

'
Ir
0 3 =
O,
Q8 35, 3 3
S 5 =3 = =
& D c O
= L =25 oxel 3
$+ _

Solution 1 - Fast Data Transfer
Goal

« We want to use rsync to copy data over ssh

« One rsync process copies data at 10Mo/s - 20Mo/s

» The max bandwidth between FAU servers and Alex is ~25Gb/s*

« How do we maximise bandwidth usage ?

 Move the data using parallel processes of rsync, USINg xargs

e Goal: move 500Go in ~40 minutes

*Based on the theoretical link speed between both servers

Solution 1 - Fast Data Transfer

Pre-requisite

e Data must be stored on a FAU server that can connect to Alex over ssh

 Requires setting up the ssh config on both Alex and the “local” machine

On the "local" machine
Host alex

HostName alex.nhr.fau.de
User bl80dcl8
IdentityFile ~/.ssh/1d_rsa

1. Password less login
to allow parallel calls

2. Use aliases for ease

On Alex
of use

Host harendotes # <-- name of the local machine

HostName t1dea-harendotes.ailbe.uni-erlangen.de
User at/70emtic

IdentityFile ~/.ssh/1d_rsa

Solution 1 - Copying data faster

Data structure

 Data must be contained in one folder (with any amount of subfolders)

* No limitation on data types, structure, etc...

v EchoNet-Dynamic
v Videos

© 0X1A0A263B22CCD966.avi
© O0X1A2A76BDB5B98BED.avi
© 0X1A2C60147AF9FDAE.avi

B9 FileList.csv

B VolumeTracings.csv

Solution 1 - Copying data faster

Data compression on host machine
 The datais (1) zipped and (2) split into 100Mo chunks

e The 100Mo chunks are optimal for fast transfer: not to small, easy to parallelise

cd /parent/of/data/folder/

create zip archive with 0 compression (faster unzip)
zip -0 -r data.zip data/

mkdir data_parts

split the zip file into 100Mo chunks
split -b 100M data.zip data_parts/part_

Solution 1 - Copying data faster

Data pulling in a slurm job

* Retrieve the list of 100Mo parts to transfer

e Call rsync with xargs on that list

Prepare reception folder on local node disk
mkdir -p "$TMPDIR/data_parts”

Path to the data on the FAU server
remote _data="/path/to/data_parts”

Get List of data parts
List=%$(ssh harendotes "find '$remote_data' -name 'part *'")

Copy all parts, using 16 parallel processes
echo "$list" | xargs -I {} -P 16 rsync -az harendotes:"{}" "$TMPDIR/data_parts"

Solution 1 - Copying data faster

Data reconstruction

* Un-split the zip
 Unzip the data

 Data is ready

merge all the parts back itnto a zip file
cat $TMPDIR/data_parts/part_* > "$TMPDIR/data.zi1p"”

unzip the data locally
unzip -q "$TMPDIR/data.zip" -d "$TMPDIR/data/"

Solution 1 - Copying data faster

Limitations

* The host machine must have a high-bandwidth connection to Alex

« By default, host machines limit the number of concurrent ssh connections to 16

o |f multiple user or multiple experiments pull from the same host, rsync will fall
and data will not be copied, failing the whole job.

e |tis possible to change the ssh server configuration to increase that limit
(requires sudo)

* Your computation cannot start until the data is downloaded, which reduces your
compute time (given the wall time of 24h)

* This approach is interesting if the data transfer time remains low (few hours)

Solution 2 - Background Data Stream
Goal

o Start training immediately, without waiting for any data transfer

« Use webdataset to stream the data from any* location

 Reduce compute idle time (=data transfer) to a minimum

* Allows to move 25Tb in ~8 hours (split over 8 nodes)

https://github.com/webdataset/webdataset

*Assuming you have access and admin rights / some control over the machine where the data is located

Solution 2 - Background Data Stream

Pre-requisite
 Data must be stored on a server reachable by Alex (req. proxies)
* The server must be ready to send large amounts of data (req. file server)

 Data must be formatted in the right structure (req. pre-processing)

allow i1nternet access

export http_proxy=http://proxy.rrze.unit-erlangen.de:80
export https_proxy=http://proxy.rrze.uni-erlangen.de:80

allow local (FAU) servers access
export no_proxy="localhost,127.0.0.1,
export NO_PROXY="localhost,127.0.0.1,

Solution 2 - Background Data Stream

Data structure

 The data must be organised into tar files and the labels (class, text, etc) into
json/txt files.

1. Split data into ~1Go chunks (ex. group of images + 1 json file)

2. Data chunks are archived into a tar file. Grouped data share their name,

ex: 00001.tar and OOOOl.jSOn v WebVid2M
{} 00000_stats.json
= 00000.parquet
= 00000.tar
* This may require lots of pre-processing. {} 00001_stats.json

= 00001.parquet

= 00001.tar

{} 00002_stats.json
= 00002.parquet
= 00002.tar

Solution 2 - Background Data Stream

Data serving

* Need to setup a server to send the properly structured data

 Simple solution: NGINX server (python server not powerful enough)

sudo apt tnstall nguinx
sudo systemctl start nguinx

sudo nano /etc/nginx/sites-availlable/default

In nano
server {

Listen :80 default_server; # set the connection port

root /path/to/data/folder; # set the path to the data

[...]
}

ctrl + s, ctrl + x to save and extit

sudo nginx -t # check that the configuration works
sudo systemctl reload nguinx

Solution 2 - Background Data Stream

Data pulling in a slurm job

e Switch the usual dataset class for a WebDataset and WeblLoader

webdataset wds

chunks = "http://10.XX.XX.XX/data/{00000..00543}.tar"

trainset wds .WebDataset(chunks, resampled= , cache dir= , Shardshuffle=

trailnset traitnset.shuffle(1000).decode("ptl").map(custom_func)

trainset trainset.batched(64)

Solution 2 - Background Data Stream

Data pulling in a slurm job

e Switch the usual dataset class for a WebDataset and WeblLoader

traitnloader wds .WeblLoader(trainset, batch _size= , hum_workers=4)

traitnloader traitnloader.unbatched().shuffle(1000).batched(64)

trainloader tratnloader.with_epoch(100 000)

batch traitnloader:
image, label = [batched_output_of_custom_func]

Solution 2 - Background Data Stream

Bonus

 WebDataset supports caching the data locally - avoids pulling the same data
multiple times ($TMPDIR is usually 8Tb per node).

 custom func is an on the fly pre-processing function, can handle all sorts of
processing.

o See https://qgithub.com/webdataset/webdataset to learn more.

https://github.com/webdataset/webdataset

Solution 2 - Background Data Stream

Limitations

 Heavy setup cost (data pre-processing, http server, new data loading)

 Requires a dedicated http file server (can be hosted remotely, ex. AWS, GCP)
* Worth the effort only for large datasets (3Tb+)

Recap

Parallel rsync vs WebDataset

+ Simple to setup + Computation can start
Immediately

+ Easy to modify / adapt

+ Scales infinitely
+ Fits all datasets

- Long / difficult to setup
- Blocks the job until data is

transferred - May not fit all datasets

 Best for <2Tb datasets (<3h Best for 2Tb+ datasets
transfer)

Thank you

