3
TUDelft

Efficient Schwarz Domain Decomposition Preconditioning
Techniques on Current Hardware Using FROSch

Alexander Heinlein! Sivasankaran Rajamanickam? Ichitaro Yamazaki?
SIAM Conference on Parallel Processing for Scientific Computing (PP24), Baltimore, Maryland, U.S.,
March 5 - 8, 2024

!Delft University of Technology

2Sandia National Laboratories

Solving A Model Problem

a(x)=1 heterogeneous a(x)

Consider a diffusion model problem:
—V - (a(x)Va(x)) = f in Q=[0,1],
w=0 ondQ.

Discretization using finite elements yields a
sparse linear system of equations

Ku="f.

. Rajamanickam, |. Yamazaki (TU Delft, SNL)

Direct solvers

For fine meshes, solving the system using a direct
solver is not feasible due to superlinear
complexity and memory cost.

Iterative solvers

Iterative solvers are efficient for solving sparse
linear systems of equations, however, the
convergence rate generally depends on the
condition number x (A). It deteriorates, e.g., for

= fine meshes, that is, small element sizes h

maxy a(x)

= |arge contrasts miny ()

SIAM PP24

Solving A Model Problem

a(x)=1 heterogeneous a(x)

Consider a diffusion model problem:
—V - (a(x)Va(x)) = f in Q=[0,1],
w=0 ondQ.

Discretization using finite elements yields a
sparse linear system of equations

Ku="f.

Direct solvers

For fine meshes, solving the system using a direct
solver is not feasible due to superlinear
complexity and memory cost.

Iterative solvers

Iterative solvers are efficient for solving sparse
linear systems of equations, however, the
convergence rate generally depends on the
condition number x (A). It deteriorates, e.g., for

= fine meshes, that is, small element sizes h

maxy a(x)

= |arge contrasts miny ()

= We introduce a preconditioner M~! ~ A~! to improve the condition number:

M tAu= M"1f

. Rajamanickam, |. Yamazaki (TU Delft, SNL)

SIAM PP24

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Overlap 6 = 1h Solution of local problem

Based on an overlapping domain decomposition, we

define a one-level Schwarz operator
—1 N T -1
Mzl K = Z,-:1 RTK'RK,

where R; and RI.—r are restriction and prolongation
operators corresponding to Q/, and K := R,-KR,.T.

Condition number estimate:
1
=i
K (Moe K) < C (1 + %)

with subdomain size H and overlap width 9.

Lagrangian coarse space

Coarse triangulation Coarse solution

The two-level overlapping Schwarz operator reads
—il —14T W il
My, K= oK, "¢ K + g . R, K. "RiK,
coarse level — global first level — local
where ® contains the coarse basis functions and
Ky := ¢ TK®; cf., e.g., Toselli, Widlund (2005).
The construction of a Lagrangian coarse basis requires
a coarse triangulation.

Condition number estimate:
H
=il
K (Mog,K) < C (1 + E)

SIAM PP24

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner Lagrangian coarse space

Coarse triangulation Coarse solution

Overlap 6 = 1h Solution of local problem

—al,
—B— MGl,,5=1h

Diffusion model problem in two dimensions,

[

H/h = 100
400 =

) 00 | - |- Mgg ., 6=2h il

—B— Mg, §=1h X

-E- Mgg.,, § =2h -

200

iterations

--------------------- e

| | | |
400 600 800 1,000
subdomains (= # MPI ranks)

SIAM PP24

A. Heinlein, S. Rajamanickam, |. Yamazaki (TU Delft, SNL)

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

= Object-oriented C++ domain decomposition solver framework with

MPI-based distributed memory parallelization
iNES = Part of TRILINOS with support for both parallel linear algebra packages

Z Rils
EPETRA and TPETRA

= Node-level parallelization and performance portability on CPU and GPU

architectures through KOkkoS and KOKKOSKERNELS
= Accessible through unified TRILINOS solver interface STRATIMIKOS

Methodology

= Parallel scalable multi-level Schwarz domain decomposition
preconditioners

= Algebraic construction based on the parallel distributed system matrix

= Extension-based coarse spaces

Team (active)

= Filipe Cumaru (TU Delft) = Alexander Heinlein (TU Delft)

= Kyrill Ho (UCologne) = Axel Klawonn (UCologne)

= Siva Rajamanickam (SNL) = Friederike Réver (TUBAF)

= Oliver Rheinbach (TUBAF) = Lea SaBmannshausen (UCologne)

= Ichitaro Yamazaki (SNL)

, S. Rajamanickam, I. Yamazaki (TU Delft, SNL) SIAM PP24

Algorithmic Framework for FROSch

First level — Overlapping DD

In FROSCcH, the overlapping subdomains
i, ..., Q) are constructed by recursively

addlng layers of elements to the

nonoverlapping subdomains; this can be

performed based on the sparsity pattern of K.

Nonoverl. DD Overlap § = 1h
First level —
The overlapping matrices

K; = RIKR/

can easily be extracted from K since R; is just

a global-to-local index mapping.

A. Heinlein, S. Rajamanickam, |. Yamazaki (TU Delft, SNL)

= Overlap § = 2h
Computation K; =

Coarse level — Interface basis

1. Algebraic identification of interface components:

K: - -

. Interface basis = partition of unity X null space

Extensions into interior

Coarse level —

vertex basis function

The values in the interior of the subdomains are
computed via the extension operator:

o ¥ _ —K, 'K or
~lor| or '

(For elliptic problems: energy-minimizing extension)

edge basis function

SIAM PP24

Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja—Smith—Widlund)

RGDSW (Reduced dimension GDSW)

NN

= Dohrmann, Klawonn, Widlund (2008) = Dohrmann, Widlund (2017)
= Dohrmann, Widlund (2009, 2010, 2012) = H., Klawonn, Knepper, Rheinbach, Widlund (2022)

MsFEM (Multiscale Finite Element Method) Q1 Lagrangian / piecewise bilinear

= Hou (1997), Efendiev and Hou (2009) Piecewise linear interface partition of unity functions

* Buck, lliev, and Andri (2013) and a structured domain decomposition.
= H., Klawonn, Knepper, Rheinbach (2018)

S. Rajamanickam, |. Yamazaki (TU Delft, SIAM PP24

Weak Scalability up to 64k MPI ranks / 1.7b Unknowns (3D Poisson; Juqueen)

Model problem: Poisson equation in 3D Coarse solver: MUMPS (direct)
Largest problem: 374805361 / 1732323601 unknowns

O GDSW lIterations O GDSW Total © RGDSW Option 1 Total © RGDSW Option 2.2 Total
0 RGDSW Option 1 Iterations # GDSW Setup # RGDSW Option 1 Setup 4 RGDSW Option 2.2 Setup
O RGDSW Option 2.2 lterations ¢ GDSW Solver &+ RGDSW Option 1 Solver & RGDSW Option 2.2 Solver
80 140
70 / /
60 105 f
. 50
2)
—0—0 —=O=T=0=—0=—0=0wg €
@ 40 o= g 70 =2 V.
o e S =S DY g = _.,/
f—
20 35 ‘/:
10
0 0
100 1000 10000 100000 100 1000 10000 100000
Cores # Cores

Cf. Heinlein, Klawonn, Rheinbach, Widlund (2017); computations performed on Juqueen, JSC, Germany.

n, S. Rajamanickam, |. Yamazaki (TU Delft, SN SIAM PP24

Inexact Subdomain Solvers in FROSch

N
M3t K = K10 K + Z;l R'K'RK

3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/J = 10; RGDSW coarse space.

subdomain solver

direct ILU(k) symm. GauB-Seidel Chebyshev polyn.

solver k=2 k=3 | 5sweeps 10 sweeps p==6 p=28
H/h = 20 iter 26 33 30 31 28 34 31
- 14; doilrs setup time 1.89s 0.97s 1.01s 0.89s 0.91s 0.73s 0.71s
- r rank apply time 0.39s 0.27s 0.31s 0.31s 0.35s 0.30s 0.30s
T prec. time 228s | 124s 1.32s 1.20s 1.26s | 1.03s 1.01s
T iter 30 55 46 52 41 59 51
- 105_k d’ofs setup time 12.09s 6.14s 6.26s 5.74s 5.89s 5.55s 5.64s
~r rank apply time 4.21s 1.84s 1.96s 2.66s 3.28s 2.52s 2.47s
e prec. time || 16.30s | 7.98s 8.22s 8.40's 9.18s | 8.16s 8.1ls
H/h = 60 iter OOM 81 64 76 56 88 74
- 350_k d’ofs setup time - | 47.29s 47.87s 45.14s 45.08s | 45.44s 45.49s
- r rank apply time - | 10.79s 9.98s 13.00s 16.16s | 11.95s 12.09s
e prec. time - | 58.08s 57.85s | 58.15s 61.25s | 57.39s 57.50s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

A. Heinlein, S. Rajamanickam, |. Yamazaki (TU Delft, SNL) SIAM PP24

Inexact Subdomain Solvers in FROSch

N
M3t K = K10 K + Z;l R'K'RK

3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/J = 10; RGDSW coarse space.

subdomain solver

direct ILU(k) symm. GauB-Seidel Chebyshev polyn.

solver k=2 k=3 | 5sweeps 10 sweeps p=2©6 p=28
H/h = 20 iter 26 33 30 31 28 34 31
- 14; doilrs setup time 1.89s 0.97s 1.01s 0.89s 0.91s 0.73s 0.71s
- r rank apply time 0.39s 0.27s 0.31s 0.31s 0.35s 0.30s 0.30s
T prec. time 228s | 124s 1.32s 1.20s 126s | 1.03s 1.01s
T iter 30 55 46 52 41 59 51
- 105_k d’ofs setup time 12.09s 6.14s 6.26s 5.74s 5.89s 5.55s 5.64s
- ¢ rank apply time 4.21s 1.84s 1.96s 2.66s 3.28s 2.52s 2.47s
e prec. time || 16.30s | 7.98s 8.22s 8.40s 9.18s | 8.16s 8.1ls
H/h = 60 iter OOM 81 64 76 56 88 74
- 350_k d’ofs setup time - | 47.29s 47.87s 45.14s 45.08s | 45.44s 45.49s
- r rank apply time - | 10.79s 9.98s 13.00s 16.16s | 11.95s 12.09s
e prec. time - | 58.08s 57.85s | 58.15s 61.25s | 57.39s 57.59s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).

A. Heinlein, S. Rajamanickam, |. Yamazaki (TU Delft, SNL) SIAM PP24

Inexact Extension Solvers in FROSch

—14T
®— —K,, "Kr,®r _ b, .
Pr br
3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/§ = 10; RGDSW coarse space.
extension solver direct preconditioned GMRES (rel. tol. = 10~%)

(10 Gauss—Seidel sweeps for Iver ILU(k) symm. GauB-Seidel Chebyshev polyn.

the subdomain solver) solve k=2 k=3 | 5sweeps 10 sweeps p==©6 p=28
H/h = 20 iter 28 28 28 28 28 28 28
N 14; do;’s setup time 0.89s 0.93s 0.89s 0.78s 0.83s 0.79s 0.84s
- r rank apply time 0.35s 0.35s 0.34s 0.36s 0.34s 0.35s 0.34s
il prec. time 123s | 1.28s 1.23s 1.14s 117s | 1.14s 1.18s
H/h = 40 iter 41 41 41 41 41 41 41
N 105_k d’ofs setup time 5.72s 4.16s 4.61s 4.26s 4.64s 4.27s 4.33s
- ' rank apply time 3.33s 3.33s 3.30s 3.33s 3.30s 3.28s 3.29s
i prec. time 9.04s 7.49s 7.92s 7.59s 7.95s 7.55s 7.62s
H/h = 60 iter 56 56 56 56 56 56 56
N 350_k d;)fs setup time 45.16s | 17.75s 18.16s 17.98s 19.34s | 17.93s 18.04s
Ner rank apply time 15.83s | 18.04s 17.08s 16.26s 15.81s | 16.19s 16.44s
> prec. time || 60.99s | 35.79s 35.25s | 34.24s 35.15s | 34.12s 34.49s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
A. Heinlein, S. Rajamanickam, |. Yamazaki (TU Delft, SNL) SIAM PP24

Inexact Extension Solvers in FROSch

[0}

Pr br
3D Laplacian; 512 MPI ranks = 512 (= 8 x 8 x 8) subdomains; H/§ = 10; RGDSW coarse space.
extension solver direct preconditioned GMRES (rel. tol. = 10~%)
10 Gauss—Seidel sweeps for ILU(k symm. GauB-Seidel Chebyshev polyn.
Iver

the subdomain solver) solve k=2 k=3 | 5sweeps 10 sweeps p==©6 p=28
H/h = 20 iter 28 28 28 28 28 28 28
N 14; do;’s setup time 0.89s 0.93s 0.89s 0.78s 0.83s 0.79s 0.84s
- r rank apply time 0.35s 0.35s 0.34s 0.36s 0.34s 0.35s 0.34s
il prec. time 123s | 1.28s 123s 1.14s 117s | 1.14s 1.18s
H/h = 40 iter 41 41 41 41 41 41 41
N 105_k d’ofs setup time 5.72s 4.16s 4.61s 4.26s 4.64s 4.27s 4.33s
- ' rank apply time 3.33s 3.33s 3.30s 3.33s 3.30s 3.28s 3.29s
i prec. time 9.04s | 7.49s 7.92s 7.59s 7.95s | 7.55s 7.62s
H/h = 60 iter 56 56 56 56 56 56 56
N 350_k d;)fs setup time 45.16s | 17.75s 18.16s 17.98s 19.34s | 17.93s 18.04s
- K apply time 15.83s | 18.04s 17.08s 16.26s 15.81s | 16.19s 16.44s
el prec. time || 60.99s | 35.79s 35.25s | 34.24s 35.15s | 34.12s 34.49s

INTEL MKL PARDISO; ILU / symmetric GauB-Seidel / Chebyshev polynomials from IFPACK2.

Parallel computations on dual-socket Intel Xeon Platinum machine at Sandia National Laboratories (Blake).
A. Heinlein, S. Rajamanickam, |. Yamazaki (TU Delft, SNL) SIAM PP24

Performing the Subdomain Solves on
GPUs

Sparse Triangular Solver in KokkosKernels (Amesos2 — SuperLU/Tacho)

uperLU & SpTRSV

= Supernodal LU factorization
with partial pivoting
Triangular solver with level-set
scheduling (KOKKOSKERNELS);
cf. Yamazaki, Rajamanickam,
Ellingwood (2020)

Lovl 4

Level 3

ovel 2

1

= Multifrontal factorization with
pivoting inside frontal matrices
Implementation using KOKKOS
using level-set scheduling

Cf. Kim, Edwards, Rajamanickam (2018)

S. Rajamanickam, |. Yamazaki (TU Delft,

Three-Dimensional Linear Elasticity
SUPERLU - weak scaling

— Weak Scalability of FROSch

TACHO — weak scaling

10? T S e— T 10? T T T T T T
{B—e/” —— 42 MPI ranks / node
—&— 6 GPUs & 6 MPI ranks (MPS) / node
—&— 6 GPUs & 12 MPI ranks (MPS) / node
S—E/E’——E‘E —5— 6 GPUs & 24 MPI ranks (MPS) / node
© —&— 6 GPUs & 36 MPI ranks (MPS) / node
g 6 GPUs & 42 MPI ranks (MPS) / node
e 0 m—y—————————————— 101 F E
2 b,
- & /—’4(
- m— e
100 L | | | | | | 100 L | | | | | |
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
10t — T T T T T T 101 T T T T T T
—— 42 MPI ranks / node
—8—6 GPUs & 6 MPI ranks (MPS) / node
—&— 6 GPUs & 12 MPI ranks (MPS) / node
—5— 6 GPUs & 24 MPI ranks (MPS) / node
—&— 6 GPUs & 36 MPI ranks (MPS) / node
§ 6 GPUs & 42 MPI ranks (MPS) / node
£ /a—g//
S 7
2
| | | | | | | | I | | | | |

nodes
Computations on Summit (OLCF): 42 IBM

Power9 CPU cores and 6 NVIDIA V100 GPUs

per node.

SNL) SIAM

nodes
Yamazaki, Heinlein,
Rajamanickam (2023)

PP24

Three-Dimensional Linear Elasticity — ILU Subdomain Solver

[ILU level | 0 1 2 3] "ILU variants
setup = KOKKOSKERNELS ILU (KK)
2 No 1.5 1.9 3.0 4.8)
5IND 16 26 4.4 7.4 = Iterative FASTILU (Fast); cf. Chow,
Patel (2015) and Boman, Patel,

[SES() - D L 28 Chow, Rajamanickam (2016)
> | KK(ND) 17 2.0 2.9 5.2 _ o
& [Fast(No) 15 16 21 3.2| No reordering (No) and nested dissection

Fast(ND) 15 1.7 25 45| (ND)
speedup 1.0x 1.2x 1.4x 1.5x LU

12
solve U (‘cpu)

> | No 2.55 (158) 3.60 (112) 5.28 (99) 6.85 (88) —&- ILU(GPU)
o 10 (| —=— FasTILU (GPU)
G| ND 4.17 (227) 5.36 (134) 6.61 (105) 7.68 (88)

KK(No) [3.81(158) 4.12(112) 4.77 (99) 5.65 (88)| ¢
S| KK(ND) | 2.89 (227) 4.27 (134) 557 (105) 6.36 (88)| =
O | Fast(No) | 1.14 (173) 1.11 (141) 1.26 (134) 1.43 (126) g

Fast(ND) | 1.49 (227) 1.15 (137) 1.10 (109) 1.22 (100)
speedup 2.2x 3.2x 4.3x 4.8x
Computations on Summit (OLCF): Yamazaki, Heinlein,
42 IBM Power9 CPU cores and 6 NVIDIA Rajamanickam (2023)

V100 GPUs per node. ILU level

A. Heinlein, S. Rajamanickam, I. Yamazaki (TU Delft SIAM PP24

Three-Dimensional Linear Elasticity — Weak Scalability Using ILU(1)

nodes 1 2 4 8 16
dofs 648 K 1.2M 2.6 M 52M 10.3M
setup
CPU 1.9 2.2 2.4 2.4 2.6
2 KK 1.4 2.0 2.2 2.4 2.8
O | Fast 1.5 2.2 2.3 2.5 2.8
speedup 1.3x 1.0x 1.0x 1.0x 0.9x
solve
CPU 3.60 (112) 7.26 (84) 6.93 (78) 6.41 (75) 4.1 (109)
2 KK 43 (119) 3.9 (110) 4.8(105) 4.3 (97) 4.9 (109)
O | Fast 1.2 (154) 1.0 (133) 1.1 (130) 1.3 (117) 1.6 (131)
speedup 3.3x 3.8x 3.4x 2.5% 2.6x

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6

NVIDIA V100 GPUs per node.
Related works

Yamazaki, Heinlein, Rajamanickam (2023)

= One-level Schwarz with local solves on GPU: Luo, Yang, Zhao, Cai (2011)
= Solves of dense local Schur complement matrices in BDDC on GPUs: Sistek & Oberhuber

(2022)

A. Heinlein, S. Rajamanickam, |. Yamazaki (TU Delft, SNL)

SIAM PP24

Learning Extension Operators Using
Graph Neural Networks

Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions
pi(w;) = 6,

on specifically chosen sets of nodes {w;};. The values in the remaining nodes are then obtained by
extending the values into the adjacent subdomains. Examples:

Subdomain-based GDSW

[] [] o] o] o] o]

[] [] o] o] o] o]

(<] (<] o] o] o] o]

(<] (<] o] o] o] o]

= The w; are based on = The wj are based on = Lagrangian: geometric ext.

nonoverl. subdomains ; partition of the interface = MsFEM: geometric and
= No extensions needed = Energy-minimizing exts. energy-minimizing exts.
Cf. Nicolaides (1987) B el e s

energy-minimizing exts.

A. Heinlein, S. Rajamanickam, |. Yamazaki (TU Delft, SNL) SIAM PP24

Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions
pi(w;) = 6,

on specifically chosen sets of nodes {w;};. The values in the remaining nodes are then obtained by

extending the values into the adjacent subdomains. Examples:

Observation 1 Observation 2

Energy-minimizing extensions

= are algebraic:

=1
v, = —K” KIrVr
(with Dirichlet b. c.)
= can be costly: solving a Heterogeneous: jgn: = 1; ctgark = 10°
problem in the interior The performance may strongly

depend on extension operator:

coarse space | its. K

= Lagrangian: geometric ext.
= MsFEM: geometric and

energy-minimizing exts.
= RGDSW: algebraic and
energy-minimizing exts.

S. Rajamanickam, |. Yamazak - SIAM PP24

Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions
pi(w;) = 6,

on specifically chosen sets of nodes {w;};. The values in the remaining nodes are then obtained by

extending the values into the adjacent subdomains. Examples:

Observation 1 Observation 2

Energy-minimizing extensions

= are algebraic:

=1
v, = —K” KIrVr

(with Dirichlet b. c.)
= can be costly: solving a
problem in the interior The performance may strongly
depend on extension operator:

Heterogeneous: uight = 1; ctgark = 10°

coarse space | its. K

= Lagrangian: geometric ext.

= MsFEM: geometric and
energy-minimizing exts.

= RGDSW: algebraic and
energy-minimizing exts.

— Improving efficiency & robustness via machine learning.

S. Rajamanickam, |. Yamazak SIAM PP24

Related Works

This overview is not exhaustive:
Coarse spaces for domain decomposition methods

= Prediction of the geometric location of adaptive constraints (adaptive BDDC & FETI-DP as well as
AGDSW): Heinlein, Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021, 2022)

= Prediction of the adaptive constraints: Klawonn, Lanser, Weber (preprint 2023, 2024)

= Prediction of spectral coarse spaces for BDDC for stochastic heterogeneities: Chung, Kim, Lam, Zhao
(2021)

= Learning interface conditions and coarse interpolation operators: Taghibakhshi et al. (2022, 2023)

Algebraic multigrid (AMG)
= Prediction of coarse grid operators: Tomasi, Krause (2023)

= Coarsening: Taghibakhshi, MacLachlan, Olson, West (2021); Antonietti, Caldana, Dede (2023)

An overviews of the state-of-the-art on domain decomposition and machine learning in early 2021 and 2023:

\ A. Heinlein, A. Klawonn, M. Lanser, J. Weber \ A. Klawonn, M. Lanser, J. Weber
Combining machine learning and domain Machine learning and domain decomposition
decomposition methods for the solution of methods — a survey
partial differential equations — A review arXiv:2312.14050. 2023

GAMM-Mitteilungen. 2021.

A. Heinlein, S. Rajamanickam, |. Yamazaki (TU Delft, SNL) SIAM PP24

Prediction via Graph Convolutional Networks

Graph convolutional networks (GCNs) introduced in Kipf and
Welling (2017) are an example of graph neural networks (GNNs)

graph convolution

and are well-suited for learning operations on simulation meshes: Z e
Y = apaFx
= Generalization of classical convolutional neural networks 4 groph Laplacion,
(aj) train. params

(CNNs) LeCun (1998) to graph-based data sets.

= Consist of message passing layers, which perform a graph
convolution operation on each node of the graph.

= Graph convolutions are invariant to position and
permutation of the input vector.

Local approach ‘ ;

= Input: subdomain matrix K; | ‘

= Qutput: basis functions {ga?"}j

on the same subdomain

= Training on subdomains with
varying geometry

= [nference on unseen

subdomains

S. Rajamanickam, |. Yamazak . SIAM PP24

Theory-Inspired Design of the GNN-Based Coarse Space

Null space property Explicit partition of unity
Any extension-based coarse space built from a partition of To explicitly enforce that the basis

unity on the domain decomposition interface satisfies the functions (cpj)j form a partition of unity
null space property necessary for numerical scalability: 5

Pj
== >
’ >k Pr
Z + Z where the ¢ are the outputs of the
: :
o0, o, GNN.

” Initial Learned
Initial and target 1 Message-Passing 5 Message-Passing

= Initial function: partition of
unity that is constant in the

interior ol X %}

0o °

= Target function:

= linear on the edges

100 Message-Passing

= energy-minimizing in the 1y T T
interior

. Rajamanickam, |. Yamazaki (TU Delft, SIAM PP24

Theory-Inspired Design of the GNN-Based Coarse Space

Null space property Explicit partition of unity

Any extension-based coarse space built from a partition of To explicitly enforce that the basis

unity on the domain decomposition interface satisfies the functions (cpj)j form a partition of unity
null space property necessary for numerical scalability: B
SOJ - Zk Sbk’
Z + Z where the ¢ are the outputs of the
by o, GNN.

” Initial Learned
Initial and target 1 Message-Passing 5 Message-Passing

= Initial function: partition of

unity that is constant in the
interior

P X %\27
10\\\\3%%‘«2%/%/ W

0o °

= Target function:

100 Message-Passing

= linear on the edges
= energy-minimizing in the 1y T T
interior

— Information transport via

message passing

S. Rajamanickam, |. Yamazaki (TU Delft, SIAM PP24

Numerical Results — Weak Scaling Study

Model pl’OblemZ 2D Lap|aCi3n nx=128 with np=64 nx=512 with np=1024

100 100 nx=256 with np=256 10°
T
H T ——one-level
model problem discretized e o et
. .. . — — two-level (init)
using finite differences on a — — two-level(interior predict)
) 107 two-level(edge & interior predict) 10—1 i 10—1 4
structured grid
one-level : 58 one-level : 104 one-level : 262
R two-level : 19 two-level : 20 two-level : 21
—Au=1 in Q7 102 init 42 102 init .48 102 init .49
E interior :26 interior :21 interior :26
u= 0 on 89 [full :19 full 123 full 122
-)

decomposed using METIS:

FROSch

= FROSCH is based on the Schwarz framework and
energy-minimizing coarse spaces, which provide numerical
scalability using only algebraic information for a variety of
applications

Subdomain solves on GPUs

= Subdomain solves make up a major part of the total solver time.

= Using the GPU triangular solve from KOKKOSKERNELS, we can
speed up the solve phase of FROSCH. It can be further
improved using ILU.

Learning extension operators

= Extensions are a major component in the construction of coarse
spaces for domain decomposition methods.

= Using GNNs and known properties from the theory, we can
learn extension operators that lead to a scalable coarse spaces.

Thank you for your attention!

nx=128 with np=64

one-level : 506
Init: 305

Linear : 124
MsFEM : 36
FENN(edge): 64)

50 100 150 200
Iteration

	Performing the Subdomain Solves on GPUs
	Learning Extension Operators Using Graph Neural Networks
	Appendix

