

Efficient Schwarz Domain Decomposition Preconditioning Techniques on Current Hardware Using FROSch

Alexander Heinlein¹ Sivasankaran Rajamanickam² Ichitaro Yamazaki² SIAM Conference on Parallel Processing for Scientific Computing (PP24), Baltimore, Maryland, U.S.,

March 5 - 8, 2024

¹Delft University of Technology

²Sandia National Laboratories

Solving A Model Problem

$$\alpha(x)=1$$

heterogeneous $\alpha(x)$

Consider a diffusion model problem:

$$-\nabla \cdot (\alpha(x)\nabla u(x)) = f \quad \text{in } \Omega = [0, 1]^2,$$

$$u = 0 \quad \text{on } \partial\Omega.$$

Discretization using finite elements yields a **sparse** linear system of equations

$$Ku = f$$
.

Direct solvers

For fine meshes, solving the system using a direct solver is not feasible due to **superlinear complexity and memory cost**.

Iterative solvers

Iterative solvers are efficient for solving sparse linear systems of equations, however, the convergence rate generally depends on the condition number κ (A). It deteriorates, e.g., for

- fine meshes, that is, small element sizes *h*
- large contrasts $\frac{\max_{x} \alpha(x)}{\min_{x} \alpha(x)}$

Solving A Model Problem

$$\alpha(x)=1$$

heterogeneous $\alpha(x)$

Consider a diffusion model problem:

$$-\nabla \cdot (\alpha(x)\nabla u(x)) = f \quad \text{in } \Omega = [0, 1]^2,$$

$$u = 0 \quad \text{on } \partial\Omega.$$

Discretization using finite elements yields a sparse linear system of equations

$$Ku = f$$
.

 \Rightarrow We introduce a preconditioner $M^{-1} \approx A^{-1}$ to improve the condition number:

$$\mathbf{M}^{-1}\mathbf{A}\mathbf{u}=\mathbf{M}^{-1}\mathbf{f}$$

Direct solvers

For fine meshes, solving the system using a direct solver is not feasible due to superlinear complexity and memory cost.

Iterative solvers

Iterative solvers are efficient for solving sparse linear systems of equations, however, the convergence rate generally depends on the **condition number** κ (**A**). It deteriorates, e.g., for

- fine meshes, that is, small element sizes h
- large contrasts $\frac{\max_{x} \alpha(x)}{\min_{x} \alpha(x)}$

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner

Based on an **overlapping domain decomposition**, we define a **one-level Schwarz operator**

$$\mathbf{M}_{\mathrm{OS-1}}^{-1}\mathbf{K} = \sum\nolimits_{i=1}^{N} \mathbf{R}_{i}^{\top}\mathbf{K}_{i}^{-1}\mathbf{R}_{i}\mathbf{K},$$

where \mathbf{R}_i and \mathbf{R}_i^{\top} are restriction and prolongation operators corresponding to Ω_i' , and $\mathbf{K}_i := \mathbf{R}_i \mathbf{K} \mathbf{R}_i^{\top}$.

Condition number estimate:

$$\kappa\left(oldsymbol{\mathcal{M}}_{\mathsf{OS-1}}^{-1}oldsymbol{\mathcal{K}}
ight) \leq C\left(1+rac{1}{H\delta}
ight)$$

with subdomain size H and overlap width δ .

Lagrangian coarse space

The two-level overlapping Schwarz operator reads

$$\mathbf{M}_{\mathrm{OS-2}}^{-1}\mathbf{K} = \underbrace{\Phi \mathbf{K}_{0}^{-1} \Phi^{\top} \mathbf{K}}_{\mathrm{coarse\ level\ - global}} + \underbrace{\sum\nolimits_{i=1}^{N} \mathbf{R}_{i}^{\top} \mathbf{K}_{i}^{-1} \mathbf{R}_{i} \mathbf{K}}_{\mathrm{first\ level\ - local}},$$

where Φ contains the coarse basis functions and $K_0 := \Phi^\top K \Phi$; cf., e.g., Toselli, Widlund (2005).

The construction of a Lagrangian coarse basis requires a coarse triangulation.

Condition number estimate:

$$\kappa\left(\mathbf{M}_{\mathrm{OS-2}}^{-1}\mathbf{K}\right) \leq C\left(1+rac{\mathbf{H}}{\delta}
ight)$$

Two-Level Schwarz Preconditioners

One-level Schwarz preconditioner Lagrangian coarse space Overlap $\delta=1h$ Solution of local problem Coarse triangulation Coarse solution Diffusion model problem in two dimensions, $\begin{aligned} & - \blacksquare - \boldsymbol{M}_{\mathrm{OS-1}}^{-1}, \ \delta = 1h \\ & - \blacksquare - \boldsymbol{M}_{\mathrm{OS-1}}^{-1}, \ \delta = 2h \\ & - \blacksquare - \boldsymbol{M}_{\mathrm{OS-2}}^{-1}, \ \delta = 1h \end{aligned}$ H/h = 100400 # iterations - E- M_{OS-2}^{-1} , $\delta = 2h$ 200

600

400

200

1,000

800

FROSch (Fast and Robust Overlapping Schwarz) Framework in Trilinos

Software

- Object-oriented C++ domain decomposition solver framework with MPI-based distributed memory parallelization
- Part of Trillinos with support for both parallel linear algebra packages EPETRA and TPETRA
- Node-level parallelization and performance portability on CPU and GPU architectures through Kokkos and KokkosKernels
- Accessible through unified TRILINOS solver interface STRATIMIKOS

Methodology

- Parallel scalable multi-level Schwarz domain decomposition preconditioners
- Algebraic construction based on the parallel distributed system matrix
- Extension-based coarse spaces

Team (active)

- Filipe Cumaru (TU Delft)
- Kyrill Ho (UCologne)
- Siva Rajamanickam (SNL)
- Oliver Rheinbach (TUBAF)
- Ichitaro Yamazaki (SNL)

- Alexander Heinlein (TU Delft)
- Axel Klawonn (UCologne)
- Friederike Röver (TUBAF)
- Lea Saßmannshausen (UCologne)

Algorithmic Framework for FROSch

First level – Overlapping DD

In FROSCH, the overlapping subdomains $\Omega'_1,...,\Omega'_N$ are constructed by **recursively** adding layers of elements to the nonoverlapping subdomains; this can be performed based on the sparsity pattern of K.

Nonoverl. DD

Overlap $\delta = 2h$

First level – Computation K_i

The overlapping matrices

$$\mathbf{K}_i = \mathbf{R}_i \mathbf{K} \mathbf{R}_i^{\top}$$

can easily be extracted from K since R_i is just a global-to-local index mapping.

Coarse level - Interface basis

1. Algebraic identification of interface components:

2. Interface basis = partition of unity \times null space

Coarse level - Extensions into interior

The values in the interior of the subdomains are computed via the extension operator:

$$\Phi = \begin{bmatrix} \Phi_I \\ \Phi_\Gamma \end{bmatrix} = \begin{bmatrix} -\boldsymbol{K}_{II}^{-1} \boldsymbol{K}_{I\Gamma}^T \Phi_\Gamma \\ \Phi_\Gamma \end{bmatrix}.$$

(For elliptic problems: energy-minimizing extension)

Examples of FROSch Coarse Spaces

GDSW (Generalized Dryja-Smith-Widlund)

- Dohrmann, Klawonn, Widlund (2008)
- Dohrmann, Widlund (2009, 2010, 2012)

MsFEM (Multiscale Finite Element Method)

- Hou (1997), Efendiev and Hou (2009)
- Buck, Iliev, and Andrä (2013)
- H., Klawonn, Knepper, Rheinbach (2018)

RGDSW (Reduced dimension GDSW)

- Dohrmann, Widlund (2017)
- H., Klawonn, Knepper, Rheinbach, Widlund (2022)

Q1 Lagrangian / piecewise bilinear

Piecewise linear interface partition of unity functions and a structured domain decomposition.

Weak Scalability up to 64 k MPI ranks / 1.7 b Unknowns (3D Poisson; Juqueen)

Model problem: Poisson equation in 3D Coarse solver: MUMPS (direct)

Largest problem: 374 805 361 / 1732 323 601 unknowns

Cf. Heinlein, Klawonn, Rheinbach, Widlund (2017); computations performed on Juqueen, JSC, Germany.

Inexact Subdomain Solvers in FROSch

$$\mathbf{M}_{\mathrm{OS-2}}^{-1}\mathbf{K} = \Phi \mathbf{K}_{0}^{-1}\Phi^{\mathsf{T}}\mathbf{K} + \sum_{i=1}^{N} \mathbf{R}_{i}^{\mathsf{T}}\mathbf{K}_{i}^{-1}\mathbf{R}_{i}\mathbf{K}$$

3D Laplacian; 512 MPI ranks = 512 (= $8 \times 8 \times 8$) subdomains; $H/\delta = 10$; RGDSW coarse space.

	subdomain solver							
		direct	t ILU(k)		symm. Gauß-Seidel		Chebyshev polyn.	
			k = 2	k = 3	5 sweeps	10 sweeps	p = 6	p = 8
H/h — 20	iter	26	33	30	31	28	34	31
$H/h = 20$, $\approx 14 k$ dofs	setup time	1.89 s	0.97 s	1.01 s	0.89 s	$0.91\mathrm{s}$	0.73 s	$0.71\mathrm{s}$
	apply time	0.39 s	0.27 s	0.31 s	0.31 s	0.35 s	0.30 s	0.30 s
per rank	prec. time	2.28 s	1.24 s	1.32 s	1.20 s	1.26 s	1.03 s	1.01 s
H/h — 40	iter	30	55	46	52	41	59	51
$H/h = 40$, $\approx 105 k \text{ dofs}$	setup time	12.09 s	6.14 s	6.26 s	5.74 s	5.89 s	5.55 s	5.64 s
≈ 105 k dois per rank	apply time	4.21 s	1.84 s	1.96s	2.66 s	3.28 s	2.52 s	2.47 s
per rank	prec. time	16.30 s	7.98 s	8.22 s	8.40 s	9.18 s	8.16 s	8.11 s
H/h = 60,	iter	OOM	81	64	76	56	88	74
$\approx 350 k \text{ dofs}$	setup time	_	47.29 s	47.87 s	45.14 s	45.08 s	45.44 s	45.49 s
	apply time	_	10.79 s	9.98 s	13.00 s	16.16 s	11.95 s	12.09 s
per rank	prec. time	-	58.08 s	57.85 s	58.15 s	61.25 s	57.39 s	57.59 s

 ${\tt INTEL\ MKL\ PARDISO;\ ILU\ /\ symmetric\ Gauß-Seidel\ /\ Chebyshev\ polynomials\ from\ IFPACK2}.}$

Inexact Subdomain Solvers in FROSch

$$\mathbf{M}_{\mathrm{OS-2}}^{-1}\mathbf{K} = \Phi \mathbf{K}_{0}^{-1}\Phi^{\mathsf{T}}\mathbf{K} + \sum\nolimits_{i=1}^{N} \mathbf{R}_{i}^{\mathsf{T}}\mathbf{K}_{i}^{-1}\mathbf{R}_{i}\mathbf{K}$$

3D Laplacian; 512 MPI ranks = 512 (= 8 \times 8 \times 8) subdomains; H/δ = 10; RGDSW coarse space.

	subdomain solver							
		direct	t ILU(k)		symm. Gauß-Seidel		Chebyshev polyn.	
			k = 2	k = 3	5 sweeps	10 sweeps	p = 6	p = 8
H/h — 20	iter	26	33	30	31	28	34	31
$H/h = 20$, $\approx 14 k$ dofs	setup time	1.89 s	0.97 s	1.01 s	0.89 s	$0.91\mathrm{s}$	0.73 s	$0.71\mathrm{s}$
	apply time	0.39 s	0.27 s	0.31 s	0.31 s	0.35 s	0.30 s	0.30 s
per rank	prec. time	2.28 s	1.24 s	1.32 s	1.20 s	1.26 s	1.03 s	1.01 s
H/h — 40	iter	30	55	46	52	41	59	51
$H/h = 40$, $\approx 105 k \text{ dofs}$	setup time	12.09 s	6.14 s	6.26 s	5.74 s	5.89 s	5.55 s	5.64 s
≈ 105 k dois per rank	apply time	4.21 s	1.84 s	1.96s	2.66 s	3.28 s	2.52 s	2.47 s
per rank	prec. time	16.30 s	7.98 s	8.22 s	8.40 s	9.18 s	8.16 s	8.11 s
H/h = 60,	iter	OOM	81	64	76	56	88	74
$\approx 350 k \text{ dofs}$	setup time	-	47.29 s	47.87 s	45.14 s	45.08 s	45.44 s	45.49 s
	apply time	-	10.79 s	9.98 s	13.00 s	16.16 s	11.95 s	12.09 s
per rank	prec. time	-	58.08 s	57.85 s	58.15 s	61.25 s	57.39 s	57.59 s

 ${\tt INTEL\ MKL\ PARDISO;\ ILU\ /\ symmetric\ Gaub-Seidel\ /\ Chebyshev\ polynomials\ from\ IFPACK2}.}$

Inexact Extension Solvers in FROSch

$$\Phi = \begin{bmatrix} -\mathbf{K}_{II}^{-1} \mathbf{K}_{\Gamma I}^{T} \Phi_{\Gamma} \\ \Phi_{\Gamma} \end{bmatrix} = \begin{bmatrix} \Phi_{I} \\ \Phi_{\Gamma} \end{bmatrix}.$$

3D Laplacian; 512 MPI ranks = 512 (= 8 \times 8 \times 8) subdomains; H/δ = 10; RGDSW coarse space.

extension solver		direct		precond	itioned GMF	RES (rel. tol.	$= 10^{-4}$)	
(10 Gauss–Seide	(10 Gauss–Seidel sweeps for		ILU(k)		symm. Gauß-Seidel		Chebyshev polyn.	
the subdoma	in solver)	solver	k = 2	k = 3	5 sweeps	10 sweeps	p = 6	p = 8
H/h — 20	iter	28	28	28	28	28	28	28
H/h = 20, $\approx 14 k \text{ dofs}$	setup time	0.89 s	0.93s	0.89s	0.78 s	0.83 s	0.79 s	0.84 s
≈ 14 k dois per rank	apply time	0.35 s	0.35 s	$0.34\mathrm{s}$	0.36 s	$0.34\mathrm{s}$	0.35 s	0.34 s
per rank	prec. time	1.23 s	1.28 s	1.23 s	1.14 s	1.17 s	1.14 s	1.18 s
11/1- 40	iter	41	41	41	41	41	41	41
H/h = 40,	setup time	5.72 s	4.16 s	4.61 s	4.26 s	4.64 s	4.27 s	4.33 s
$\approx 105 k \text{ dofs}$	apply time	3.33 s	3.33 s	3.30 s	3.33 s	3.30 s	3.28 s	3.29 s
per rank	prec. time	9.04 s	7.49 s	7.92s	7.59 s	7.95 s	7.55 s	7.62 s
11/1- 60	iter	56	56	56	56	56	56	56
H/h = 60,	setup time	45.16 s	17.75 s	18.16 s	17.98 s	19.34 s	17.93 s	18.04 s
$\approx 350 k \text{dofs}$	apply time	15.83 s	18.04 s	17.08 s	16.26 s	15.81 s	16.19 s	16.44 s
per rank	prec. time	60.99 s	35.79 s	35.25 s	34.24 s	35.15 s	34.12 s	34.49 s

 ${\tt INTEL\ MKL\ PARDISO;\ ILU\ /\ symmetric\ Gaub-Seidel\ /\ Chebyshev\ polynomials\ from\ IFPACK2}.}$

Inexact Extension Solvers in FROSch

$$\Phi = \begin{bmatrix} -\mathbf{K}_{II}^{-1} \mathbf{K}_{\Gamma I}^{T} \Phi_{\Gamma} \\ \Phi_{\Gamma} \end{bmatrix} = \begin{bmatrix} \Phi_{I} \\ \Phi_{\Gamma} \end{bmatrix}.$$

3D Laplacian; 512 MPI ranks = 512 (= 8 \times 8 \times 8) subdomains; H/δ = 10; RGDSW coarse space.

extension solver (10 Gauss–Seidel sweeps for		direct	preconditioned GMRES (rel. tol. = 10 ⁻⁴)					
		solver	$II \cup I(k)$		symm. G	symm. Gauß-Seidel		Chebyshev polyn.
the subdoma	in solver)	Solver	k = 2	k = 3	5 sweeps	10 sweeps	p = 6	p = 8
H/h — 20	iter	28	28	28	28	28	28	28
$H/h = 20$, $\approx 14 k$ dofs	setup time	0.89 s	0.93s	0.89s	0.78 s	0.83 s	0.79 s	0.84 s
	apply time	0.35 s	0.35 s	$0.34\mathrm{s}$	0.36 s	$0.34\mathrm{s}$	0.35 s	0.34 s
per rank	prec. time	1.23 s	1.28 s	1.23 s	1.14 s	1.17 s	1.14 s	1.18 s
11/1- 40	iter	41	41	41	41	41	41	41
H/h = 40,	setup time	5.72 s	4.16 s	4.61 s	4.26 s	4.64 s	4.27 s	4.33 s
$\approx 105 k \text{dofs}$	apply time	3.33 s	3.33 s	3.30 s	3.33 s	3.30 s	3.28 s	3.29 s
per rank	prec. time	9.04 s	7.49 s	7.92s	7.59 s	7.95 s	7.55 s	7.62 s
11/1- 60	iter	56	56	56	56	56	56	56
$H/h = 60$, $\approx 350 k$ dofs	setup time	45.16 s	17.75 s	18.16 s	17.98 s	19.34 s	17.93 s	18.04 s
	apply time	15.83 s	18.04 s	17.08 s	16.26 s	15.81 s	16.19 s	16.44 s
per rank	prec. time	60.99 s	35.79 s	35.25 s	34.24 s	35.15 s	34.12 s	34.49 s

 ${\tt INTEL\ MKL\ PARDISO;\ ILU\ /\ symmetric\ Gaub-Seidel\ /\ Chebyshev\ polynomials\ from\ IFPACK2}.}$

Performing the Subdomain Solves on

GPUs

Sparse Triangular Solver in KokkosKernels (Amesos2 – SuperLU/Tacho)

SuperLU & SpTRSV

- Supernodal LU factorization with partial pivoting
- Triangular solver with level-set scheduling (KokkosKernels); cf. Yamazaki, Rajamanickam, Ellingwood (2020)

Tacho

- Multifrontal factorization with pivoting inside frontal matrices
- Implementation using Kokkos using level-set scheduling

Cf. Kim, Edwards, Rajamanickam (2018)

Three-Dimensional Linear Elasticity – Weak Scalability of FROSch

Power9 CPU cores and 6 NVIDIA V100 GPUs per node.

Rajamanickam (2023)

Three-Dimensional Linear Elasticity – ILU Subdomain Solver

IL	U level	0	1	2	3			
	setup							
CPU	No	1.5	1.9	3.0	4.8			
P.	ND	1.6	2.6	4.4	7.4			
	KK(No)	1.4	1.5	1.8	2.4			
Ď	KK(ND)	1.7	2.0	2.9	5.2			
GPU	Fast(No)	1.5	1.6	2.1	3.2			
	Fast(ND)	1.5	1.7	2.5	4.5			
sp	eedup	1.0×	1.2×	1.4×	1. 5 ×			
			solve					
CPU	No	2.55 (158)	3.60 (112)	5.28 (99)	6.85 (88)			
D.	ND	4.17 (227)	5.36 (134)	6.61 (105)	7.68 (88)			
	KK(No)	3.81 (158)	4.12 (112)	4.77 (99)	5.65 (88)			
Ď	KK(ND)	2.89 (227)	4.27 (134)	5.57 (105)	6.36 (88)			
GPU	Fast(No)	1.14 (173)	1.11 (141)	1.26 (134)	1.43 (126)			
	Fast(ND)	1.49 (227)	1.15 (137)	1.10 (109)	1.22 (100)			
sp	eedup	2.2×	3.2×	4.3×	4.8×			

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per node.

Yamazaki, Heinlein, Rajamanickam (2023)

ILU variants

- KokkosKernels ILU (KK)
- Iterative FASTILU (Fast); cf. Chow, Patel (2015) and Boman, Patel, Chow, Rajamanickam (2016)

No reordering (No) and nested dissection (ND)

Three-Dimensional Linear Elasticity – Weak Scalability Using ILU(1)

# r	nodes	1	2	4	8	16		
# c	lofs	648 K	1.2 M	2.6 M	5.2 M	10.3 M		
	setup							
СР	U	1.9	2.2	2.4	2.4	2.6		
Ď	KK	1.4	2.0	2.2	2.4	2.8		
GPU	Fast	1.5	2.2	2.3	2.5	2.8		
spe	edup	1.3×	1.0×	1.0×	1.0×	0.9×		
			sol	ve				
CP	U	3.60 (112)	7.26 (84)	6.93 (78)	6.41 (75)	4.1 (109)		
Ď	KK	4.3 (119)	3.9 (110)	4.8 (105)	4.3 (97)	4.9 (109)		
GPU	Fast	1.2 (154)	1.0 (133)	1.1 (130)	1.3 (117)	1.6 (131)		
spe	edup	3.3×	3.8×	3.4×	2.5×	2.6×		

Computations on Summit (OLCF): 42 IBM Power9 CPU cores and 6 NVIDIA V100 GPUs per node.

Yamazaki, Heinlein, Rajamanickam (2023)

Related works

- One-level Schwarz with local solves on GPU: Luo, Yang, Zhao, Cai (2011)
- Solves of dense local Schur complement matrices in BDDC on GPUs: Šístek & Oberhuber (2022)

Learning Extension Operators Using

Graph Neural Networks

Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

$$\varphi_i(\omega_j) = \delta_{ij},$$

on specifically chosen sets of nodes $\{\omega_j\}_j$. The values in the remaining nodes are then obtained by extending the values into the adjacent subdomains. Examples:

Subdomain-based

- The ω_j are based on nonoverl. subdomains Ω_j
- No extensions needed

Cf. Nicolaides (1987)

GDSW

- The ω_j are based on partition of the interface
- Energy-minimizing exts.

Vertex-based

- Lagrangian: geometric ext.
- MsFEM: geometric and energy-minimizing exts.
- RGDSW: algebraic and energy-minimizing exts.

Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

$$\varphi_i(\omega_j) = \delta_{ij},$$

on specifically chosen sets of nodes $\{\omega_j\}_j$. The values in the remaining nodes are then obtained by extending the values into the adjacent subdomains. Examples:

Observation 1

Energy-minimizing extensions

are algebraic:

$$extbf{v}_I = - extbf{K}_{II}^{-1} extbf{K}_{I\Gamma} extbf{v}_{\Gamma}$$
 (with Dirichlet b. c.)

can be costly: solving a problem in the interior

Observation 2

The performance may **strongly depend on extension operator**:

coarse space	its.	κ
_	163	$4.06 \cdot 10^{7}$
Q1	138	$1.07\cdot 10^6$
MsFEM	24	8.05

Vertex-based

- Lagrangian: geometric ext.
- MsFEM: geometric and energy-minimizing exts.
- RGDSW: algebraic and energy-minimizing exts.

Why Learning Extension Operators

Most coarse spaces for Schwarz preconditioners are constructed based on a characteristic functions

$$\varphi_i(\omega_j) = \delta_{ij},$$

on specifically chosen sets of nodes $\{\omega_j\}_j$. The values in the remaining nodes are then obtained by extending the values into the adjacent subdomains. Examples:

Observation 1

Energy-minimizing extensions

• are algebraic:

$$\mathbf{v}_{l} = -\mathbf{K}_{ll}^{-1}\mathbf{K}_{l\Gamma}\mathbf{v}_{\Gamma}$$
 (with Dirichlet b. c.)

can be costly: solving a

can be costly: solving a problem in the interior

Observation 2

The performance may **strongly depend on extension operator**:

coarse space	its.	κ
_	163	$4.06 \cdot 10^{7}$
Q1	138	$1.07\cdot 10^6$
MsFEM	24	8.05

→ Improving efficiency & robustness via machine learning.

Vertex-based

- Lagrangian: geometric ext.
- MsFEM: geometric and energy-minimizing exts.
- RGDSW: algebraic and energy-minimizing exts.

Related Works

This overview is **not exhaustive**:

Coarse spaces for domain decomposition methods

- Prediction of the geometric location of adaptive constraints (adaptive BDDC & FETI-DP as well as AGDSW): Heinlein, Klawonn, Lanser, Weber (2019, 2020, 2021, 2021, 2021, 2022)
- Prediction of the adaptive constraints: Klawonn, Lanser, Weber (preprint 2023, 2024)
- Prediction of spectral coarse spaces for BDDC for stochastic heterogeneities: Chung, Kim, Lam, Zhao (2021)
- Learning interface conditions and coarse interpolation operators: Taghibakhshi et al. (2022, 2023)

Algebraic multigrid (AMG)

- Prediction of coarse grid operators: Tomasi, Krause (2023)
- Coarsening: Taghibakhshi, MacLachlan, Olson, West (2021); Antonietti, Caldana, Dede (2023)

An overviews of the state-of-the-art on domain decomposition and machine learning in early 2021 and 2023:

A. Heinlein, A. Klawonn, M. Lanser, J. Weber Combining machine learning and domain decomposition methods for the solution of partial differential equations — A review GAMM-Mitteilungen. 2021.

A. Klawonn, M. Lanser, J. Weber

Machine learning and domain decomposition
methods – a survey
arXiv:2312.14050. 2023

Prediction via Graph Convolutional Networks

Graph convolutional networks (GCNs) introduced in Kipf and Welling (2017) are an example of graph neural networks (GNNs) and are well-suited for learning operations on simulation meshes:

- Generalization of classical convolutional neural networks (CNNs) LeCun (1998) to graph-based data sets.
- Consist of message passing layers, which perform a graph convolution operation on each node of the graph.
- Graph convolutions are invariant to position and permutation of the input vector.

Local approach

- Input: subdomain matrix K_i
- Output: basis functions $\{\varphi_j^{\Omega_i}\}_j$ on the same subdomain
- Training on subdomains with varying geometry
- Inference on unseen subdomains

Theory-Inspired Design of the GNN-Based Coarse Space

Null space property

Any extension-based coarse space built from a partition of unity on the domain decomposition interface satisfies the null space property necessary for numerical scalability:

Explicit partition of unity

To **explicitly enforce** that the basis functions $(\varphi_j)_i$ form a partition of unity

$$\varphi_j = \frac{\hat{\varphi}_j}{\sum_k \hat{\varphi}_k},$$

where the $\hat{\varphi}_k$ are the outputs of the GNN.

Initial and target

- Initial function: partition of unity that is constant in the interior
- Target function:
 - linear on the edges
 - energy-minimizing in the interior

Theory-Inspired Design of the GNN-Based Coarse Space

Null space property

Any extension-based coarse space built from a partition of unity on the domain decomposition interface satisfies the null space property necessary for numerical scalability:

Explicit partition of unity

To **explicitly enforce** that the basis functions $(\varphi_j)_i$ form a partition of unity

$$\varphi_j = \frac{\hat{\varphi}_j}{\sum_k \hat{\varphi}_k},$$

where the $\hat{\varphi}_k$ are the outputs of the GNN.

Initial and target

- Initial function: partition of unity that is constant in the interior
- Target function:
 - linear on the edges
 - energy-minimizing in the interior
- → Information transport via message passing

Numerical Results – Weak Scaling Study

Model problem: 2D Laplacian model problem discretized using finite differences on a structured grid

$$\begin{split} -\Delta u &= 1 & \text{ in } \Omega, \\ u &= 0 & \text{ on } \partial \Omega, \end{split}$$

decomposed using METIS:

FROSch

 FROSCH is based on the Schwarz framework and energy-minimizing coarse spaces, which provide numerical scalability using only algebraic information for a variety of applications

Subdomain solves on GPUs

- Subdomain solves make up a major part of the total solver time.
- Using the GPU triangular solve from KokkosKernels, we can speed up the solve phase of FROSCH. It can be further improved using ILU.

Learning extension operators

- Extensions are a major component in the construction of coarse spaces for domain decomposition methods.
- Using GNNs and known properties from the theory, we can learn extension operators that lead to a scalable coarse spaces.

Thank you for your attention!