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Figure 6. (color) Spatiotemporal evolution of polarity and velocity fields for (a/ac) = 100. (a), (b), (c) Polarity field across the
computational domain at large times t = 381, 381.2 and 381.4. The polarity field is indicated by cylindrical rods. The Franck
free-energy density of the polarity field (Eq. 5) across the computational domain is color coded. (d), (e), (f) The corresponding velocity
field along with its streamlines at large times t = 381, 381.2 and 381.4. The arrows denote local velocity normalized by the maximum
magnitude of velocity across the computational domain. The direction of the arrows therefore indicate the local flow direction, and the
length of the arrows indicates the relative magnitude of velocity. The one-dimensional curves are the instantaneous streamlines of the
velocity field. The local speed of flow is color coded. See Sec. Model for model details and Sec. Choice of parameters in
Sec. Methods for the parameters used to simulate the model. The horizontal direction towards the right is the positive x-direction and the
vertical direction towards the top is the positive y-direction.
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Figure 3: Layers in the envisioned OpenFPM/
OpenPME stack.

The original PPM programming stack is shown in Figure 2. It is an object-oriented architecture [ADS10] with
support for mixed multi-processing/multi-threading on heterogenous multi-core platforms [AS14], as well as support
for GPU acceleration for the critical particle-mesh and mesh-particle interpolation steps in hybrid particle-mesh
methods [BAS13]. The PPM Library is organized into a core and a numerics part. The core provides the parallel
data structures for particles and meshes, adaptive domain-decomposition schemes, communication mappings,
and dynamic load-balancing methods. The numerics part implements frequently used numerical solvers [SWB+06],
such as FFTs (by wrapping FFTW), multi-grid solvers, and linear systems solvers (wrapping PETSc). The numerics
module is partly implemented using the abstractions provided by the core, and partly wraps existing third-party
libraries. The core is based on MPI as the communication interface, but transparently hides it from the application.
Applications (called “PPM clients”, symbolized by the simulation visualizations on top) are written using a mixture of
direct API calls to the PPM core and/or numerics modules, and PPML DSL statements. This makes use of PPML’s
embedding into Fortran2003.

PPM and PPML in their present form have several limitations. The implementation in Fortran2003 prevents
use on emerging hardware platforms, such as Parallela or HAEC (SFB 912), where Fortran2003 compilers are
not usually available. Moreover, most Fortran2003 compilers do not implement the full language standard or use
vendor-specific extensions, hence hampering code portability. Functionally, PPM is limited to particle-mesh meth-
ods in 2D and 3D, preventing its use for parameter optimization, image processing, and other higher-dimensional
applications. Most importantly, Fortran uses static memory layout for all data structures, and the PPM API is man-
ually overloaded to a limited set of data types that could be foreseen at design time. This prevents the framework
from being generic to different hardware platforms and also does not allow particles to carry arbitrary objects.
The Sbalzarini group hence started designing a successor of PPM in 2014 in a project termed “OpenFPM” (Open
Framework for Particles and Meshes). OpenFPM is based on the same proven abstractions as PPM [Sba10],
but implemented in C++ using full templating and template metaprogramming (TMP). It is generic to arbitrary-
dimensional spaces and allows particles to carry arbitrary objects and types. The TMP layer, together with a
built-in memory manager, also decouples the semantics of any data structure from its physical memory layout,
hence providing compile-time targeting to different hardware platforms. This is illustrated in the lower stack levels
of Figure 3. Currently, a numerics part for OpenFPM is missing, and also a DSL and development environment
are missing. These are the focus of the present project. Hence, the upper part of the figure shows the envisioned
development environment providing a high-level DSL and advanced editing features to end-users. The code gener-
ator of the DSL emits well-formed and optimized C++ code that links with the library. The new architecture provides
a clearer separation between the DSL language, OpenFPM, and the compile-time targets.

Prof. Ivo Sbalzarini also works on the theory and algorithms for particle methods. This included DC-PSE
(mentioned in Section 1.0.1), providing a unifying theory for collocation methods that is fully consistent for arbitrary
linear differential operators on any distribution of particles. This in particular made it possible for particles to self-
organize at runtime, such as to dynamically adapt their number and spatial distribution to developing simulation
[RSS12]. Recently, this has been extended to anisotropic particles that self-organize, further reducing the number
of particles needed to reach a given solution accuracy [HRS15]. Performance models can predict the computational
cost and accuracy of different schemes and enable auto tuning [SRS12]. Moreover, boundary conditions have
traditionally been a problem in particle methods, which has been alleviated by a general framework to impose
arbitrary boundary conditions directly on particles [FDS13].
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data size and processing times. In order to take full advantage
of such representations, however, it is necessary to natively
process the images in the data-reduced representation, ideally
on parallel computer architectures. This enables efficient end-
to-end pipelines that never have to revert to pixels, not even
block-wise. For certain tasks, like graph-cut segmentation, this
has been shown to reduce both memory consumption and
runtime [16]. However, biological image analysis workflows
typically require a wider range of algorithms. Adapting these
algorithms, which have been designed for uniform pixel
grids, to content-adaptive image representations, and effi-
ciently implementing them using sparse data structures on
parallel computers, is not trivial. Particularly challenging is the
efficient implementation on GPUs, which are highly optimized
for processing uniform data structures.

Here, we introduce the data structures and algorithms
required for natively convolving APR images in parallel on
both CPUs and GPUs. Previous formulations of APR con-
volution [16] were restricted to separable kernels and either
required (locally) reconstructing the original pixels prior to
convolving, or were limited to first-neighbor kernels. The
present work extends APR convolution to dense kernels,
proposes strategies for efficient parallel implementation, and
provides scale-adaptive filters that operate on multiple res-
olution levels of an APR without having to reconstruct the
finest level everywhere. We demonstrate the efficiency of this
multi-scale approach, and we present an example of image
deconvolution using the Richardson-Lucy algorithm natively
implemented on the APR.

II. BACKGROUND

For convenience, we recapitulate the fundamental concepts
of the APR, but refer to Ref. [16] and its Supplementary
Material for more details and for mathematical proofs.

A. The Adaptive Particle Representation

The APR optimally adapts the local density of the sampling
P = {(xp, f (xp))}Np

p=1 of some function, signal, or image,
f : Rn → R, defined over ! ⊂ Rn so as to guarantee that
the point-wise reconstruction error, for all of a wide-class
of reconstruction methods f̂ , is bounded everywhere in !
by a user-set constant E relative to a (potentially spatially
varying) local error scale. This places sampling points xp
where they are required in order to approximate the unknown
continuous f within the given error threshold at all original
pixel locations. Figure 1 illustrates the result for a fluorescence
microscopy image. In regions where the signal gradient is
significant, the original (pixel) sampling density is retained.
However, in regions of low signal gradient, such as the
background or homogeneous areas in the interior of objects,
the sampling density is reduced.

Mathematically, the APR bounds the infinity norm of the
relative reconstruction error∥∥∥∥∥

f − f̂
σ

∥∥∥∥∥
∞

≤ E, (1)

where f is the true signal, f̂ the reconstruction, and σ the
local error scale. The reconstruction f̂ at location x can be

Fig. 1. Illustration of a fluorescence microscopy pixel image and a
corresponding Adaptive Particle Representation (APR). The image used is
a crop of Hoechst-stained mouse blastocyst cells [17], available as image set
BBBC032v1 from the Broad Bioimage Benchmark Collection [18]. The top
half of each panel shows the original image (left) and the image reconstructed
from the APR (right). The bottom halves show the sampling points (pixels or
particles) as dots, colored by sample value and scaled according to their spatial
extent. Pixels are uniform across the domain, whereas the APR particles adapt
to the content of the image.

any positive weighted combination of sampled function values
f (xp) within a certain radius R(x) of x, where the function
R : ! → R is called resolution function. Thus, for an APR,
at any location x ∈ !, any reconstruction of the form

f̂ (x) =
∑

xp:|x−xp|≤R(x)

f (xp)wp, (2)

with
∑

p wp = 1 and wp ≥ 01 fulfills the reconstruction
condition in Eq. 1. The resolution function can intuitively be
seen as a local length scale of the signal.

If we consider a signal originally evenly sampled at N
points then, in general dimensions and for arbitrary R(x)
and P , only greedy locally optimal solutions can be found
in quadratic runtime O(N2), becoming infeasible even for
small problems [16]. In the APR both the resolution function
R(x) and the sampling locations xp are therefore restricted
to be power-of-two fractions of the image edge length |!|.
Under these restrictions, globally optimal sampling solutions
can be found in linear time O(N) [16]. The use of power-of-
two decompositions is common in image representations and
image processing algorithms, such as image pyramids [19],
tree-based methods [20], and wavelet decompositions [21].

Considering the analogy of an image pyramid for a function
in one dimension, as illustrated in Fig. 2, the APR corresponds
to a partition of the domain ! across resolution levels l, where
at each location the coarsest element is selected under the
condition that Eq. 1 holds. Intuitively, this can be thought
of as a pruning operation of the full tree, where branches in
areas of low signal gradient (relative to σ ) are cut, and the
sampling values are pushed to coarser ascendant nodes. The
APR particles (green dots in Fig. 2B) thus constitute the leaf
nodes in a pruned tree structure. The locations of particles
are taken to be the centers of the corresponding grid cells
(blue intervals in Fig. 2B), which we refer to as particle cells.
The particle cells partition the image domain, and correspond

1The non-negativity constraint can be relaxed, and classes of adaptation
satisfying higher-order constraints can also be formulated [16].

Incardona et al., ISC, 2021 
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to-end pipelines that never have to revert to pixels, not even
block-wise. For certain tasks, like graph-cut segmentation, this
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runtime [16]. However, biological image analysis workflows
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algorithms, which have been designed for uniform pixel
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ciently implementing them using sparse data structures on
parallel computers, is not trivial. Particularly challenging is the
efficient implementation on GPUs, which are highly optimized
for processing uniform data structures.
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required (locally) reconstructing the original pixels prior to
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the point-wise reconstruction error, for all of a wide-class
of reconstruction methods f̂ , is bounded everywhere in !
by a user-set constant E relative to a (potentially spatially
varying) local error scale. This places sampling points xp
where they are required in order to approximate the unknown
continuous f within the given error threshold at all original
pixel locations. Figure 1 illustrates the result for a fluorescence
microscopy image. In regions where the signal gradient is
significant, the original (pixel) sampling density is retained.
However, in regions of low signal gradient, such as the
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any positive weighted combination of sampled function values
f (xp) within a certain radius R(x) of x, where the function
R : ! → R is called resolution function. Thus, for an APR,
at any location x ∈ !, any reconstruction of the form

f̂ (x) =
∑

xp:|x−xp|≤R(x)

f (xp)wp, (2)

with
∑

p wp = 1 and wp ≥ 01 fulfills the reconstruction
condition in Eq. 1. The resolution function can intuitively be
seen as a local length scale of the signal.

If we consider a signal originally evenly sampled at N
points then, in general dimensions and for arbitrary R(x)
and P , only greedy locally optimal solutions can be found
in quadratic runtime O(N2), becoming infeasible even for
small problems [16]. In the APR both the resolution function
R(x) and the sampling locations xp are therefore restricted
to be power-of-two fractions of the image edge length |!|.
Under these restrictions, globally optimal sampling solutions
can be found in linear time O(N) [16]. The use of power-of-
two decompositions is common in image representations and
image processing algorithms, such as image pyramids [19],
tree-based methods [20], and wavelet decompositions [21].

Considering the analogy of an image pyramid for a function
in one dimension, as illustrated in Fig. 2, the APR corresponds
to a partition of the domain ! across resolution levels l, where
at each location the coarsest element is selected under the
condition that Eq. 1 holds. Intuitively, this can be thought
of as a pruning operation of the full tree, where branches in
areas of low signal gradient (relative to σ ) are cut, and the
sampling values are pushed to coarser ascendant nodes. The
APR particles (green dots in Fig. 2B) thus constitute the leaf
nodes in a pruned tree structure. The locations of particles
are taken to be the centers of the corresponding grid cells
(blue intervals in Fig. 2B), which we refer to as particle cells.
The particle cells partition the image domain, and correspond

1The non-negativity constraint can be relaxed, and classes of adaptation
satisfying higher-order constraints can also be formulated [16].
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Fig. 2. Schematic comparing a regular sampling (pixels) to an APR in one
dimension. (A) shows the pixels as green dots, and successively downsampled
(by factors of 2) super-pixels as yellow dots. This forms an image pyramid
or, by connecting spatially overlapping elements, a full binary tree. The APR
particles (green dots in B) define a partition of the image domain and coincide
with nodes of this tree at different levels of resolution.

exactly to grid cells in the image pyramid. In this way, they
can be described by their resolution level l p and a multi-index
ip = (i p,1, . . . , i p,n) defining the location of the cell in the
grid at level l p . This allows the location xp of a particle cell
to be written in terms of ip and l p as

xp = ip
|!|
2l p

. (3)

For simplicity we assume the image domain ! to be a
hypercube starting at 0 with all edges of length |!| a power of
two. For anisotropic domains, or domains that are not a power
of two, |!| is the maximum edge length extended accordingly.

B. Neighborhood and Reconstruction

The resolution function R(x) is taken to be a piecewise
constant function, defined in terms of the APR particles as:

R(x) =
Np∑

p=1

|!|
2l p

[⌊
x

2l p

⌋
= ip

]
, (4)

where [A] = 1 if A is true and 0 otherwise. Thus, the
value of the resolution function R(x) at any location x ∈ !
is determined solely by the level of the particle cell which
contains x. This is guaranteed to be unique, since the particle
cells partition the image domain !. In the example of Fig. 2B,
evaluating R(x) corresponds to finding the level l for which
the blue interval containing x holds a particle (green dot).
The resolution function then takes the value R(x) = |!|

2l ,

which defines the maximum radius of the reconstruction
neighborhood in Eq. 2.

The reconstruction condition in Eq. 1 is valid for any posi-
tive weighted combination of particles within the radius R(x).
This affords a lot of flexibility in defining different reconstruc-
tion methods. However, in image processing algorithms we
have found that it is often favorable to use the simplest possible
method. That is, to reconstruct the signal at a location x,
we find the particle (x∗

p, f (x∗
p)) whose particle cell contains x

and take f̂ (x) = f (x∗
p). We refer to this as piecewise constant

reconstruction. Compared to more general reconstructions,
this method is computationally efficient to evaluate, as the
reconstructed values do not depend on neighboring particles.

Moreover, this allows an intuitive view of particles and particle
cells as pixels of different sizes. In the remainder of this text,
unless otherwise stated, all reconstructions are assumed to be
piecewise constant.

C. Determining the APR

Computing the APR from a pixel image consists in finding
the largest resolution function R(x) such that Eq. 1 holds
everywhere. However, finding the optimal resolution function,
in general, requires algorithms of quadratic time complexity
O(N2) in the number of pixels N . In order to solve the
problem in linear time, for arbitrary images, the tighter bound

R(x) ≤ min
y:|x−y|≤R(x)

L(y) (5)

is considered, where

L(y) = Eσ (y)

|∇ f (y)| . (6)

Thus, determining the APR requires estimating the gradient
magnitude |∇ f | of the pixel intensity field, as well as the
local error scale σ (x) at the original N pixels. There is
some freedom in choosing how these quantities are computed.
In the implementation of Ref. [16], which we also make use
of here, the intensity gradient is computed using smoothing
cubic B-splines for robust and tunable gradient estimation in
the presence of noise [22]. The local error scale should be
a sufficiently smooth function reflecting the local range of
intensities. We here use a rescaled and smoothed estimate of
the local intensity standard deviation, computed by recursive
filters on the (downsampled by a factor of 2) B-spline image.

Once computed, |∇ f | and σ are combined with the user-
provided error bound E to form L, which is quantized into a
tree structure, and the APR solution is computed using a linear-
time algorithm called the Pulling Scheme [16]. This algorithm
outputs the adaptive tree structure shown in Fig. 2B, which
implicitly defines both the resolution function R(x) and the
particle locations {xp}Np

p=1.

The final step requires determining the particle intensity
values f (xp). Since particles at the finest resolution coincide
with the original pixels, those values remain unchanged.
Intensities at coarser particle locations are resampled. This can
be done in a number of ways. Here, as well as in [16], coarse
particle values are determined by average downsampling the
pixel values. This is simple and provides inhered denoising.
Viewed as an operation on the tree structure, coarse particle
values (i.e., leaf nodes of pruned branches in the tree) are
thus obtained by propagating the values of original leaf nodes
(i.e., pixels) upward, level by level, taking the average of the
combined nodes at each step.

D. APR-Based Image Processing

Similar to pixel images, processing algorithms can be
defined for the APR. For example, the APR naturally lends
itself to graph-cut segmentation where the particles constitute
the nodes of the graph, and edges are drawn between neigh-
bors. Ref. [16] also introduced two types of convolutions for

Incardona et al., ISC, 2021 

Jonsson et al., IEEE TIP, 2022



Multi-level discrete convolution on APR
4198 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

data size and processing times. In order to take full advantage
of such representations, however, it is necessary to natively
process the images in the data-reduced representation, ideally
on parallel computer architectures. This enables efficient end-
to-end pipelines that never have to revert to pixels, not even
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olution levels of an APR without having to reconstruct the
finest level everywhere. We demonstrate the efficiency of this
multi-scale approach, and we present an example of image
deconvolution using the Richardson-Lucy algorithm natively
implemented on the APR.

II. BACKGROUND

For convenience, we recapitulate the fundamental concepts
of the APR, but refer to Ref. [16] and its Supplementary
Material for more details and for mathematical proofs.

A. The Adaptive Particle Representation

The APR optimally adapts the local density of the sampling
P = {(xp, f (xp))}Np

p=1 of some function, signal, or image,
f : Rn → R, defined over ! ⊂ Rn so as to guarantee that
the point-wise reconstruction error, for all of a wide-class
of reconstruction methods f̂ , is bounded everywhere in !
by a user-set constant E relative to a (potentially spatially
varying) local error scale. This places sampling points xp
where they are required in order to approximate the unknown
continuous f within the given error threshold at all original
pixel locations. Figure 1 illustrates the result for a fluorescence
microscopy image. In regions where the signal gradient is
significant, the original (pixel) sampling density is retained.
However, in regions of low signal gradient, such as the
background or homogeneous areas in the interior of objects,
the sampling density is reduced.

Mathematically, the APR bounds the infinity norm of the
relative reconstruction error∥∥∥∥∥

f − f̂
σ

∥∥∥∥∥
∞

≤ E, (1)

where f is the true signal, f̂ the reconstruction, and σ the
local error scale. The reconstruction f̂ at location x can be

Fig. 1. Illustration of a fluorescence microscopy pixel image and a
corresponding Adaptive Particle Representation (APR). The image used is
a crop of Hoechst-stained mouse blastocyst cells [17], available as image set
BBBC032v1 from the Broad Bioimage Benchmark Collection [18]. The top
half of each panel shows the original image (left) and the image reconstructed
from the APR (right). The bottom halves show the sampling points (pixels or
particles) as dots, colored by sample value and scaled according to their spatial
extent. Pixels are uniform across the domain, whereas the APR particles adapt
to the content of the image.

any positive weighted combination of sampled function values
f (xp) within a certain radius R(x) of x, where the function
R : ! → R is called resolution function. Thus, for an APR,
at any location x ∈ !, any reconstruction of the form

f̂ (x) =
∑

xp:|x−xp|≤R(x)

f (xp)wp, (2)

with
∑

p wp = 1 and wp ≥ 01 fulfills the reconstruction
condition in Eq. 1. The resolution function can intuitively be
seen as a local length scale of the signal.

If we consider a signal originally evenly sampled at N
points then, in general dimensions and for arbitrary R(x)
and P , only greedy locally optimal solutions can be found
in quadratic runtime O(N2), becoming infeasible even for
small problems [16]. In the APR both the resolution function
R(x) and the sampling locations xp are therefore restricted
to be power-of-two fractions of the image edge length |!|.
Under these restrictions, globally optimal sampling solutions
can be found in linear time O(N) [16]. The use of power-of-
two decompositions is common in image representations and
image processing algorithms, such as image pyramids [19],
tree-based methods [20], and wavelet decompositions [21].

Considering the analogy of an image pyramid for a function
in one dimension, as illustrated in Fig. 2, the APR corresponds
to a partition of the domain ! across resolution levels l, where
at each location the coarsest element is selected under the
condition that Eq. 1 holds. Intuitively, this can be thought
of as a pruning operation of the full tree, where branches in
areas of low signal gradient (relative to σ ) are cut, and the
sampling values are pushed to coarser ascendant nodes. The
APR particles (green dots in Fig. 2B) thus constitute the leaf
nodes in a pruned tree structure. The locations of particles
are taken to be the centers of the corresponding grid cells
(blue intervals in Fig. 2B), which we refer to as particle cells.
The particle cells partition the image domain, and correspond

1The non-negativity constraint can be relaxed, and classes of adaptation
satisfying higher-order constraints can also be formulated [16].
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Fig. 2. Schematic comparing a regular sampling (pixels) to an APR in one
dimension. (A) shows the pixels as green dots, and successively downsampled
(by factors of 2) super-pixels as yellow dots. This forms an image pyramid
or, by connecting spatially overlapping elements, a full binary tree. The APR
particles (green dots in B) define a partition of the image domain and coincide
with nodes of this tree at different levels of resolution.

exactly to grid cells in the image pyramid. In this way, they
can be described by their resolution level l p and a multi-index
ip = (i p,1, . . . , i p,n) defining the location of the cell in the
grid at level l p . This allows the location xp of a particle cell
to be written in terms of ip and l p as

xp = ip
|!|
2l p

. (3)

For simplicity we assume the image domain ! to be a
hypercube starting at 0 with all edges of length |!| a power of
two. For anisotropic domains, or domains that are not a power
of two, |!| is the maximum edge length extended accordingly.

B. Neighborhood and Reconstruction

The resolution function R(x) is taken to be a piecewise
constant function, defined in terms of the APR particles as:

R(x) =
Np∑

p=1

|!|
2l p

[⌊
x

2l p

⌋
= ip

]
, (4)

where [A] = 1 if A is true and 0 otherwise. Thus, the
value of the resolution function R(x) at any location x ∈ !
is determined solely by the level of the particle cell which
contains x. This is guaranteed to be unique, since the particle
cells partition the image domain !. In the example of Fig. 2B,
evaluating R(x) corresponds to finding the level l for which
the blue interval containing x holds a particle (green dot).
The resolution function then takes the value R(x) = |!|

2l ,

which defines the maximum radius of the reconstruction
neighborhood in Eq. 2.

The reconstruction condition in Eq. 1 is valid for any posi-
tive weighted combination of particles within the radius R(x).
This affords a lot of flexibility in defining different reconstruc-
tion methods. However, in image processing algorithms we
have found that it is often favorable to use the simplest possible
method. That is, to reconstruct the signal at a location x,
we find the particle (x∗

p, f (x∗
p)) whose particle cell contains x

and take f̂ (x) = f (x∗
p). We refer to this as piecewise constant

reconstruction. Compared to more general reconstructions,
this method is computationally efficient to evaluate, as the
reconstructed values do not depend on neighboring particles.

Moreover, this allows an intuitive view of particles and particle
cells as pixels of different sizes. In the remainder of this text,
unless otherwise stated, all reconstructions are assumed to be
piecewise constant.

C. Determining the APR

Computing the APR from a pixel image consists in finding
the largest resolution function R(x) such that Eq. 1 holds
everywhere. However, finding the optimal resolution function,
in general, requires algorithms of quadratic time complexity
O(N2) in the number of pixels N . In order to solve the
problem in linear time, for arbitrary images, the tighter bound

R(x) ≤ min
y:|x−y|≤R(x)

L(y) (5)

is considered, where

L(y) = Eσ (y)

|∇ f (y)| . (6)

Thus, determining the APR requires estimating the gradient
magnitude |∇ f | of the pixel intensity field, as well as the
local error scale σ (x) at the original N pixels. There is
some freedom in choosing how these quantities are computed.
In the implementation of Ref. [16], which we also make use
of here, the intensity gradient is computed using smoothing
cubic B-splines for robust and tunable gradient estimation in
the presence of noise [22]. The local error scale should be
a sufficiently smooth function reflecting the local range of
intensities. We here use a rescaled and smoothed estimate of
the local intensity standard deviation, computed by recursive
filters on the (downsampled by a factor of 2) B-spline image.

Once computed, |∇ f | and σ are combined with the user-
provided error bound E to form L, which is quantized into a
tree structure, and the APR solution is computed using a linear-
time algorithm called the Pulling Scheme [16]. This algorithm
outputs the adaptive tree structure shown in Fig. 2B, which
implicitly defines both the resolution function R(x) and the
particle locations {xp}Np

p=1.

The final step requires determining the particle intensity
values f (xp). Since particles at the finest resolution coincide
with the original pixels, those values remain unchanged.
Intensities at coarser particle locations are resampled. This can
be done in a number of ways. Here, as well as in [16], coarse
particle values are determined by average downsampling the
pixel values. This is simple and provides inhered denoising.
Viewed as an operation on the tree structure, coarse particle
values (i.e., leaf nodes of pruned branches in the tree) are
thus obtained by propagating the values of original leaf nodes
(i.e., pixels) upward, level by level, taking the average of the
combined nodes at each step.

D. APR-Based Image Processing

Similar to pixel images, processing algorithms can be
defined for the APR. For example, the APR naturally lends
itself to graph-cut segmentation where the particles constitute
the nodes of the graph, and edges are drawn between neigh-
bors. Ref. [16] also introduced two types of convolutions for
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the APR, both limited to separable kernels. The first was an
adaptive filtering algorithm that uses optimized data structures
to fetch the neighbors of a particle along a given dimension.
This allows the variable distance between neighboring par-
ticles at different resolution levels to be taken into account,
but is limited to small neighborhoods (direct neighbors in
Ref. [16]). Larger kernels were handled by the second method,
which applies the separable convolution operation on 2D
slices of reconstructed pixel values. The computational cost
is reduced by only applying the convolution to pixels that
intersect with a particle. The resulting algorithm, however,
is not consistent with the pixel operation.

Here, we address all of these issues by providing a data
structure that is more appropriate for the APR memory access
patterns, especially on the GPU, and algorithms to evaluate
convolutions at any resolution level (Section III). We also
extend the notion of APR convolution to dense stencils,
operating natively on multiple resolution levels to avoid pixel
reconstruction (Section IV). Finally, we provide parallel imple-
mentations on both CPUs and GPUs (Section V).

III. DATA STRUCTURES AND ALGORITHMS

We start by detailing data structures and algorithmic strate-
gies that can be used to define and efficiently implement a
wide range of image processing algorithms to natively work
on the APR. This requires sparse tree data structures with
the corresponding iterators, as well as local isotropic patch
reconstruction.

A. Sparse APR Data Structure

As described in Eq. 3, the location xp of a particle (cell)
is defined by its level l p and multi-index ip encoding the
cell coordinates in the grid at the corresponding resolution
level. This definition offers a lot of flexibility in choosing data
structures for storing the APR. Here, we base our design on
the analogy with image pyramids, as illustrated in Fig. 2B.
Since the particle cells partition the image domain, the APR
corresponds to a pyramid of disjoint sparse images, where each
location x ∈ ! is covered by exactly one particle cell at some
resolution level. From this perspective, the APR amounts to
a set of sparse images at different resolutions, which can be
encoded using any sparse array format.

The original APR data structures [16] store the particle
values { f (xp)}Np

p=1 as a single, contiguous vector, while the

spatial coordinates {xp}Np
p=1 are encoded as follows: The levels

and all but one of the spatial dimensions are stored in a
dense array with each “row” in the contiguous dimension2

compressed. The sparse compression is done by storing the
first and last index of each contiguous block of particles,
along with a pointer to the particle values, in a red-black tree
structure. This allows for efficient random access via red-black
tree search in the sparse dimension.

While efficient random access is important in some appli-
cations, we argue that it is not required for most image

2In order to stay consistent with the software libraries, we assume that the
image dimensions are ordered as (z, x, y), where y is contiguous in memory,
i.e., that values at locations (z, x, y) and (z, x, y +1) are adjacent in memory.

Algorithm 1: Linear APR Access Data Structure

Fig. 3. Illustration of the linear access data structure in 2D. The APR
decomposes into a set of sparse grids, one for each resolution level. Each
sparse grid is represented in compressed sparse row (CSR) format. The CSR
data structures of each level are concatenated (yellow and green regions of
the xz_end and y_idx vectors), with an additional vector level_offset
indicating the starting point of each level in xz_end.

processing tasks. Instead, these typically rely on the abil-
ity to iterate over neighborhoods of certain, fixed structure.
Therefore, we here introduce a simplified data structure that
explicitly stores the y-coordinates. This is equivalent to storing
each resolution level l in compressed sparse row (CSR) format
and concatenating the vectors of row offsets and y-indices
for the different levels. Fig. 3 illustrates this data structure in
2D, and Algorithm 1 outlines how sparse rows of particles
are accessed. The particles are indexed linearly in the order
l → z → x → y, with sparse compression along y.
Coordinate indices in the sparse dimension are stored in the
vector y_idx, while the vector xz_end encodes the last
particle index in each sparse row, with one entry for each com-
bination of (l, z, x). An additional vector level_offset
stores the starting point of each level in the xz_end vector.
The metadata required to correctly access these vectors are the

Hierarchy of sparse block grids, one for each 
resolution level, each in CSR format. 

Buffers concatenated with offset index.

Incardona et al., ISC, 2021 

Jonsson et al., IEEE TIP, 2022



Memory benchmark
JONSSON et al.: PARALLEL DISCRETE CONVOLUTIONS ON ADAPTIVE PARTICLE REPRESENTATIONS OF IMAGES 4207

Fig. 8. Memory required to perform one convolution operation on a cubic
image of 10243 pixels and the corresponding APRs at different computational
ratios (CR). Pixel and particle intensities are stored using 32-bit data types.
We neglect the memory required to store the weights of the filter stencil.
The APR memory usage additionally includes the APR access data structure,
as well as the access data structure and values of the APR tree (interior nodes).

requirements for APR convolution when all pixel and particle
intensity values are stored as 32-bit data types. The straight-
forward convolution on pixels requires 8.59 GB of memory,7

exceeding the available VRAM of most modern GPUs. Tiling
strategies must then be implemented to enable processing,
but this is only efficient if image tiles can be transferred
to and from the GPU device concurrently with computation.
This adds complexity to the implementation and most likely
results in a performance penalty. Computing the convolution
natively on an APR with a CR of 20.8 (which is smaller than
the median of real-world microscopy datasets [16]) requires
0.58 GB of memory: 14.8 times less than the equivalent pixel
operation. This makes straightforward processing of the image
possible on almost any currently available GPU.

The memory required for APR convolution decreases
monotonically with increasing CR, as shown in Fig. 8. For
CR≈1, we observe that the memory overhead from the APR
data structures is about 30%. However, this overhead is quickly
amortized for higher CRs, since the size of the xz_end
vector in the LinearAccess data structure is constant (see
Algorithm 1). APR-native convolution at CR≈1020, a value
not uncommon in fluorescence microscopy, requires 25.5 MB
of memory, or 337 times less than the classic pixel-based
implementation.

For GPU implementations, the benefit of reducing the
memory requirement is two-fold: First, it enables larger image
regions to be kept in memory and processed without tiling
strategies. Second, the total amount of data that needs to be
transferred to and from the GPU is reduced proportional to
the CR, alleviating the performance bottleneck from the host-
device transfer bandwidth.

7Throughout this manuscript, we use decimal SI prefixes for Byte multiples,
so for example 1 GB = 109 Byte.

2) Computational Performance: We present benchmark
results for APR convolution using filter stencils of 33 and
53 pixels, respectively. All benchmarks are performed
on an Alienware m15 laptop equipped with a GeForce
RTX 2080 Max-Q GPU and an Intel Core i9-9980HK CPU
running Ubuntu 18.04 and CUDA Toolkit 11.0 RC.

The APR convolution implementation in CUDA consists of
three steps: 1) finding the locations of non-empty sparse rows,8

2) filling the APR tree, and 3) performing the convolution
operation. All of these steps are implemented in CUDA and
performed in sequence. In the benchmark results below, all
three steps are included in the reported times. However,
in practical situations requiring repeated convolutions, step 1
can be reused, and for convolution of the same input with
multiple filters, the tree data can also be reused, leading to
runtimes smaller than those reported here.

Rather than reporting absolute wall-clock times, we put the
results on a more intuitive scale by computing the effective
throughput, which we define as

Effective throughput = size of pixel image in Bytes
total processing time

. (12)

For a pixel algorithm, this is the classic data throughput, i.e.,
the number of Bytes processed per second. For an APR, the
effective throughput states the throughput a pixel algorithm
would need to have in order to achieve the same processing
time. Figure 9 shows the scaling of the effective throughput
for the same synthetic images of different CRs as already used
in Fig. 8, subsampled to size 5123. All data are represented
as 32-bit floating point numbers. Hence, the numerator in
Eq. 12 is 537 MB. The GPU timings include all computational
steps, but exclude the times for host-device data transfers.
The runtimes for the corresponding pixel convolutions are
shown as horizontal lines, as they do not depend on the CR.
The CUDA pixel benchmarks were performed using ArrayFire
v3.8.0 [28] in C++, while the OpenMP benchmarks use our
own implementation.

The effective throughput of the ArrayFire CUDA imple-
mentation is 26.6 GB/s for the 33 filter and 10.7 GB/s for
the larger 55 filter. Our CUDA APR convolutions break even
with the performance of ArrayFire at CR values ≈2. For
higher computational intensity of the operation (i.e., for larger
stencils), APR convolution breaks even earlier. At a CR of
20.8, the 33 and 55 APR convolution speeds correspond to
pixel throughputs of 102.2 and 64.5 GB/s, respectively. That
is 3.8 and 6.0 times faster than the ArrayFire implementa-
tion. For the benchmark image with CR=124, which is well
within the range typical of real-world microscopy images [16],
the effective throughput of APR convolution increases to
455.7 and 299.1 GB/s, respectively. Compared to ArrayFire,
this corresponds to speedup factors of 17 and 28. Considering
the theoretical peak performance of 6.447 TFLOPS (trillion
floating point operations per second) of the benchmark GPU,
the theoretical performance limit for the pixel convolution is
486 GB/s for the 33 filter and 103 GB/s for 55. The effective

8This is not strictly necessary, but we have found that it yields a speedup
of up to a factor of 5 for high CR values, while the additional overhead is
negligible for low CR values.
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TABLE I

PERFORMANCE AND QUALITY METRICS OF THE DECONVOLUTION RESULTS FROM FIG. 10. THE INPUT IMAGE HAS CR=5.3. THE PSF COVERAGE IS
THE FRACTION OF THE TOTAL INTENSITY OF THE PSF INCLUDED IN THE TRUNCATED ARRAY. REPORTED RUNTIMES FOR PIXEL IMAGES USE

DECONVOLUTIONLAB2 [31] (SINGLE-THREADED), WHEREAS APR RUNTIMES USE MULTI-THREADING ON 8 CPU CORES. THE PSNR
AND SSIM VALUES ARE COMPUTED WITH RESPECT TO THE GROUND-TRUTH IMAGE AFTER NORMALIZATION TO ACCOUNT

FOR INTENSITY RANGE DIFFERENCES DUE TO TRUNCATION AND NORMALIZATION OF THE PSF. THE FULL PSF APR
RESULT (MARKED BY *) IS OBTAINED BY DECONVOLVING THE FULL-RESOLUTION RECONSTRUCTED VOLUME AND

RESAMPLING THE RESULT ONTO THE PARTICLES

Fig. 9. Computational performance of APR convolutions using GPU (CUDA)
and CPU (OpenMP) parallelization for 10 synthetic benchmark datasets of
different computational ratios (CR). The effective throughput is calculated as
the size of the original image in GB divided by the processing time in seconds.
GPU processing times include all computations, but exclude data transfers.
The horizontal lines show measurements for pixel convolutions using CUDA
ArrayFire as well as OpenMP. We show results for stencils of size 33 and
53 voxels.

throughput of the 53 APR convolution exceeds this limit for
CR values larger than 30.

The performance of the APR convolution on the multi-
core CPU using OpenMP also scales with CR. Similar to
the CUDA results, the APR performance breaks even with
the corresponding pixel algorithm at CR values ≈2. For large
CR values > 100 . . . 500, APR performance on the CPU even
exceeds pixel performance on the GPU. If data transfer times
to and from the GPU are taken into account, the CPU breaks
even at lower CR values. Comparing the performance of the
APR convolution on the GPU and CPU, we observe that the
GPU implementation (without data transfer times) is 15 to
45 times faster across benchmark datasets and filter sizes. This
is discussed in more detail in Supplementary Material I-B.

In summary, these benchmarks suggest that native APR
convolutions are suited to overcome some of the difficulties
associated with processing large images on the GPU, providing
real-time convolution implementations for edge computing,
or accelerating CPU implementations to achieve GPU-like
performance.

B. Richardson-Lucy Deconvolution

We demonstrate an application of native APR convolution
for image restoration using the iterative Richardson-Lucy (RL)
deconvolution algorithm [29], [30]. Deconvolution is a fre-
quent example of an ill-posed inverse problem in microscopy
image processing. Suppose we have acquired a blurred (from
light diffraction) and noisy (detector shot noise and electronics
noise) image

u = η(i ∗ w), (13)

where i is the imaged sample (e.g., the spatial distribution
of fluorophores in the specimen), w is the point-spread
function (PSF) of the microscope optics, and η models the
noise distribution. Under the assumption of Poisson-distributed
noise, the RL algorithm attempts to recover i from u via the
iterative updates

ik+1 = ik

(
u

ik ∗ w
∗ w†

)
, (14)

which amounts to a fixed-point iteration for maximizing the
likelihood of observing u. Division and multiplication are
element-wise, ∗ denotes discrete convolution, and w† is the
flipped PSF with the order of elements reversed in each
dimension. We adapt this algorithm to the APR by replacing
the convolution operations with their APR-native counterparts
and restricting the PSF stencil to the different APR levels
as described in Eq. 9. In microscopy, the PSF is typically
measured experimentally on a grid of the same size as the
image, and convolutions are applied in the Fourier domain.
Since APR convolution is done in the spatial domain, using
the full PSF quickly becomes computationally infeasible.
Hence, APR deconvolution using the present discrete multi-
level operators requires truncating the PSF.

We evaluate the restoration quality for different truncations
using a synthetic microtubule dataset with known ground
truth [31]. The 3D image is of size 128 × 256 × 512 voxels
(64 MiB, 32-bit values). Figure 10 shows the ground truth
and input images, as well as restorations on pixels and on
APR (CR=5.3) for different PSF truncations. Quantitative
metrics are given in Table I. As a baseline we consider the
result of RL deconvolution using the full PSF on both the
original input pixel image and its APR reconstruction. The
result on the reconstructed volume is further re-sampled onto

GPU: GeForce RTX 2080 / CPU: Intel Core i9-9980HK (8 cores)
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Fig. 10. Maximum-intensity z-projections of the 3D ground truth and corrupted (blurred and noisy) synthetic microtubules dataset (see [31] for details),
as well as APR and pixel restorations obtained by Richardson-Lucy deconvolution using the full-sized PSF and different truncations for different numbers of
iterations. The reference and input data, as well as the full-sized pixel PSF, are taken from http://bigwww.epfl.ch/deconvolution/data/microtubules.

the particles to simulate APR-native processing. This suggests
that there is no significant degradation due to the adaptive
sampling.

Truncation of the PSF has the largest effect on the restora-
tion quality. This is expected, as the chosen truncation sizes of
113, 213, and 413 pixels only capture 6.3%, 12%, and 23.5%
of the total PSF intensity, respectively. However, even with the
PSF truncated to 113 pixels, the APR restoration (APR-RL)
appears to have improved contrast and clearer edges, which
may aid downstream processing tasks. Increasing the PSF

size leads to higher-quality restorations, at the expense of
a proportional (to the number of PSF voxels) increase in
the computational load. The restorations using a PSF of size
213 on both the pixel image and its APR show comparable
quality, both visually and quantitatively, but the APR-native
algorithm requires 10× less memory.

While these results are promising, there are a number of
limitations to APR-native image restoration. Deconvolution
in the Fourier domain using the full PSF is based on a
physically accurate problem formulation, which is crucial in

Ground truth
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the computational load. The restorations using a PSF of size
213 on both the pixel image and its APR show comparable
quality, both visually and quantitatively, but the APR-native
algorithm requires 10× less memory.

While these results are promising, there are a number of
limitations to APR-native image restoration. Deconvolution
in the Fourier domain using the full PSF is based on a
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Figure 2: Human AD brain. a Brain sample before and b after clearing and staining for amyloid
�-plaques and microglia. c Stitched channels (autofluorescence in gray, amyloid �-plaques in cyan
and microglia in magenta). d Magnified view of �-plaques channel in c. e Magnified view of
microglia channel in c. f Segmented amyloid �-plaques (random colors). g Amyloid �-plaques
density (3D filling ratio) highlighting that they are mostly found in the gray matter. h Amyloid
�-plaques segmented and color coded by their cortical depth. White scale bars: 4000 µm. Red
scale bars: 400 µm.

Data-sets Voxel size (x,y,z) nchannel ntiles Size CR⇤ MCR Stitching Segmentation
PV mouse brain (3, 1.4, 1.4) µm 2 72 2.2 TB 79 115 55 s. 1h 18min

Human AD brain sample (4, 1, 1) µm 3 204 3.9 TB 66 117 75 s. 1h 30min

Table 1: Data-sets description. ⇤The CR is computed as the ratio between the total number of
voxels and the total number of particles for the entire data-set.
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Scholler et al., bioRxiv, 2023.
Figure 1: APR-based analysis pipeline. a Magnified view of b. b Raw data en face plane
(PV+ channel) and c corresponding APR converted data for a single tile. d Magnified view of c.
e Horizontal view of the pipeline stitching result. Tiles are displayed in green and red, yielding a
yellow color on overlapping areas. f Magnified horizontal view before (using microscope position)
and g after stitching. The crop was taken where 4 tiles are overlapping: artifacts are clearly present
before the stitching and corrected afterwards. h Horizontal view of segmented (random colored)
PV+ neurons. i Magnified view (maximum intensity projection on 20 planes) before and j after
segmentation. k Horizontal and l coronal views of the autofluorescence channel overlaid with the
Allen Brain Atlas regions boundaries after registration. m Comparison between the number of
segmented PV+ neurons found in our data-set with a previously published reference [9]. For each
brain region the PV+ neuron density is overlayed to the acquired data. White scale bars: 1000 µm.
Red scale bars: 200 µm.
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Conclusions

• Large, sparse images can be represented using the 
Adaptive Particle Representation (APR).

• The APR is globally optimal given a user-provided point-
wise reconstruction worst-case bound.

• It can be constructed in linear time and compressed in 
memory.

• APR supports native image processing, saving both 
memory and compute time.

• APR saves orders of magnitudes in resources for large 
biomedical imaging studies.
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Virtual Reality: Scenery 
• Virtual Reality for biology with user interaction 
• https://github.com/clearvolume/scenery

Model Inference from Data: PDE-STRIDE 
• Infer differential equation models from image data 
• git.mpi-cbg.de/mosaic/software/machine-learning/pde-stride

APR: libAPR / pyAPR / napari-apr 
• Adaptive Particle Representation of images 
• github.com/AdaptiveParticles

http://mosaic.mpi-cbg.de
http://openfpm.mpi-cbg.de
https://github.com/clearvolume


Present Group Collaborators at CSBD External Collaborators

External Funding:

• Abhishek Behera
• Hoang Dao
• Alejandra Foggia
• Nandu Gopan
• Aryaman Gupta
• Krzysztof Gonciarz
• Joel Jonsson
• Johannes Pahlke
• Roua Rouatbi
• Lennart Schulze
• Abhinav Singh
• Philipp Suhrcke
• Justina Stark
• Lucie Weigelt
• Serhii Yaskovets

• Frank Jülicher, MPI-PKS
• Jeronimo Castrillon, TU Dresden, INF
• Stephan Gumhold, TU Dresden, INF
• Raimund Dachselt, TU Dresden, INF
• Axel Voigt, TU Dresden, MATH
• Steffen Frey, Uni Stuttgart
• Christian Müller, LMU+Flatiron CCB
• Urs Greber, University of Zürich, Switzerland
• Jules Scholler, Wyss Neuroscience
• Christophe Lamy, University of Geneva

• Carl Modes
• Tony Hyman
• Stephan Grill
• Pavel Tomancak
• Jesse Veenvliet
• Christoph Zechner
• Marino Zerial
• Scientific Computing Facility
• Light Microscopy Facility

Acknowledgements

Former Group Members
• Yaser Afshar
• Josefine Asmus
• Omar Awilé
• Georgios Bourantas
• Janick Cardinale
• Bevan Cheeseman
• Benjamin Dalton

• Yuanhao Gong 
• Ulrik Günther
• Michael Hecht
• Jo Helmuth
• Karl Hoffmann
• Pietro Incardona
• Surya Maddu
• Alexander Mietke

• Grégory Paul
• Rajesh Ramaswamy
• Sylvain Reboux
• Sophie Schneider
• Birte Schrader
• Anastasia Solomatina
• Tina Subic
• Xun Xiao



Scientific Computing for Systems BiologyIvo F. Sbalzarini 51

Further Reading

sbalzarini-lab.org
For Publications, Code, and additional materials:

@MOSAICgroup1
Follow our announcements on X:

http://sbalzarini-lab.org

