Mixed precision algorithms: an overview

Theo Mary
Sorbonne Université, CNRS, LIP6
NHR PerfLab Seminar Series, 12 December 2023
Slides available at
https://bit.ly/NHRmixed

Floating-point arithmetics

	number of bits				
		signif.	(t)	exp.	range

The unit roundoff $u=2^{-t}$ determines the relative accuracy any number in the representable range can be approximated with:

If $x \in \mathbb{R}$ belongs to [$e_{\min }, e_{\max }$], then $\mathrm{fl}(x)=x(1+\delta), \quad|\delta| \leq u$
Moreover the standard model of arithmetic is

$$
\mathrm{fl}(x \text { op } y)=(x \text { op } y)(1+\delta), \quad|\delta| \leq u, \text { for op } \in\{+,-, \times, \div\}
$$

Pros and cons of lower precisions

©
Storage, data movement and communications are all proportional to total number of bits (mantissa + exponent)
lower precision \Rightarrow lighter computationsSpeed of computations also generally proportional

- on most architectures, fp 32 is $2 \times$ faster than fp64
- on some architectures, fp16/bfloat16 up to $16 \times$ faster than fp 32

lower precision \Rightarrow faster computations

Power consumption is proportional to the square of the number of mantissa bits- fp16 (11 bits) consumes $5 \times$ less energy than fp32 (24 bits)
- bfloat16 (8 bits) consumes $9 \times$ less energy than fp 32
lower precision \Rightarrow greener computationsErrors are proportional to the unit roundoff lower precision \Rightarrow lower accuracy

Mixed precision algorithms

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable
precision, Transprecision, Dynamic precision, ... precision, Transprecision, Dynamic precision,

Mixed precision algorithms

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

How to select the right precision for the right variable/operation

- Precision tuning: autotuning based on the source code
() Does not need any understanding of what the code does
;) Does not have any understanding of what the code does
- In linear algebra: exploit as much as possible the knowledge we have about the code

Acta Numerica (2022), pp. 347-414
doi: 10.1017/S0962492922000022

Mixed precision algorithms in numerical linear algebra

Nicholas J. Higham
Department of Mathematics, University of Manchester,
Manchester, M1 3 9PL, UK
E-mail: nick.higham@manchester:ac.uk

Theo Mary

Sorbonne Université, CNRS, LIP6
Paris, F-75005, France
E-mail: theo.mary@lip6.fr

https://bit.ly/mixed-survey

CONTENTS

1 Introduction 2
2 Floating-point arithmetics 6
3 Rounding error analysis model 14
4 Matrix multiplication 15
5 Nonlinear equations 18
6 Iterative refinement for $A x=b \quad 22$
7 Direct methods for $A x=b \quad 25$
8 Iterative methods for $A x=b \quad 35$
9 Mixed precision orthogonalization and QR factoriza-
tion
10 Least squares problems 42
11 Eigenvalue decomposition 43
12 Singular value decomposition 46
13 Multiword arithmetic 47
14 Adaptive precision algorithms 50
15 Miscellany 52

Linear systems

Solution of $A x=b$:

- Direct methods
- Robust, black box solvers
- High time and memory cost for factorization of A
- Iterative methods
- Low time and memory per-iteration cost
- Convergence is application dependent

Linear systems

Solution of $A x=b$:

- Direct methods
- Robust, black box solvers
- High time and memory cost for factorization of A
\Rightarrow Need fast factorization
- Iterative methods
- Low time and memory per-iteration cost
- Low time and memory per-iteration co
\Rightarrow Need good preconditioner

Linear systems

Solution of $A x=b$:

- Direct methods
- Robust, black box solvers
- High time and memory cost for factorization of A
\Rightarrow Need fast factorization
- Iterative methods
- Low time and memory per-iteration cost
- Convergence is application dependent
\Rightarrow Need good preconditioner
\Rightarrow Mixed precision / approximate factorizations bridge the gap
- as approximate fast direct methods
- as high quality preconditioners

Standard method to solve $A x=b$:

1. Factorize $A=L U$, where L and U are lower and upper triangular
2. Solve $L y=b$ and $U x=y$

In uniform precision u, the computed \widehat{x} satisfies

- Backward error $\frac{\|A \hat{X}-b\|}{\|A\| \hat{x}\|+\|\|\|} \leq f(n) \rho_{n} u=O(u)$
- Forward error $\frac{\|\hat{x}-x\|}{\|x\|} \leq f(n) \rho_{n} \kappa(A) u=O(\kappa(A) u)$, with $\kappa(A)=\|A\|\left\|A^{-1}\right\|$

```
Factorize \(A=L U\)
Solve \(A x_{1}=b\) via \(x_{1}=U^{-1}\left(L^{-1} b\right)\)
repeat
    \(r_{i}=b-A x_{i}\)
    Solve \(A d_{i}=r_{i}\) via \(d_{i}=U^{-1}\left(L^{-1} r_{i}\right)\)
    \(x_{i+1}=x_{i}+d_{i}\)
until converged
```

```
Factorize \(A=L U\) in precision \(\mathbf{u}\)
Solve \(A x_{1}=b\) via \(x_{1}=U^{-1}\left(L^{-1} b\right)\) in precision \(\mathbf{u}\)
repeat
    \(r_{i}=b-A x_{i}\) in precision \(\mathbf{u}^{2}\)
    Solve \(A d_{i}=r_{i}\) via \(d_{i}=U^{-1}\left(L^{-1} r_{i}\right)\) in precision \(\mathbf{u}\)
    \(x_{i+1}=x_{i}+d_{i}\) in precision \(\mathbf{u}\)
until converged
```

目 Wilkinson (1948) 国 Moler (1967)

Assuming $\kappa(A) \mathbf{u}<1$:

- Backward error $\frac{\|A \hat{X}-b\|}{\|A\|\|\hat{x}\|+\|b\|}=O(\mathbf{u})$
- Forward error $\frac{\|\widehat{x}-x\|}{\|x\|}=O(\mathbf{u})$

Factorize $A=L U$ in precision \mathbf{u}_{f}
Solve $A x_{1}=b$ via $x_{1}=U^{-1}\left(L^{-1} b\right)$ in precision \mathbf{u}_{f}

repeat

$r_{i}=b-A x_{i}$ in precision \mathbf{u}
Solve $A d_{i}=r_{i}$ via $d_{i}=U^{-1}\left(L^{-1} r_{i}\right)$ in precision \mathbf{u}_{f}
$x_{i+1}=x_{i}+d_{i}$ in precision \mathbf{u}
until converged

$$
\text { with } \mathbf{u}_{\mathrm{f}} \equiv \mathrm{fp} 32 \text { and } \mathbf{u} \equiv \mathrm{fp} 64
$$

国 Langou et al（2006）且 Buttari et al（2007）且 Baboulin et al（2009）

Factorize $A=L U$ in precision \mathbf{u}_{f}
Solve $A x_{1}=b$ via $x_{1}=U^{-1}\left(L^{-1} b\right)$ in precision \mathbf{u}_{f}

repeat

$r_{i}=b-A x_{i}$ in precision \mathbf{u}
Solve $A d_{i}=r_{i}$ via $d_{i}=U^{-1}\left(L^{-1} r_{i}\right)$ in precision \mathbf{u}_{f}
$x_{i+1}=x_{i}+d_{i}$ in precision \mathbf{u}
until converged

$$
\text { with } \mathbf{u}_{\mathrm{f}} \equiv \mathrm{fp} 32 \text { and } \mathbf{u} \equiv \mathrm{fp} 64
$$

国 Langou et al（2006）且 Buttari et al（2007）国 Baboulin et al（2009）
－For $n \times n$ matrices：
－$O\left(n^{3}\right)$ flops in fp 32
－$O\left(n^{2}\right)$ flops per iteration in fp64
－Assuming $\kappa(A) \mathbf{u}_{\mathrm{f}}<1$ ：
－Backward error $\frac{\|A \widehat{x}-b\|}{\|A\|\|\hat{\|}\|+\|b\|}=O(\mathbf{u})$
－Forward error $\frac{\|\hat{x}-x\|}{\|x\|}=O(\kappa(A) \mathbf{u})$

IBM Cell 3.2 GHz Ax = b Performance

CELL processor (2006-2008) fp64 peak: 21 GFLOPS fp32 peak: 205 GFLOPS $\Rightarrow 10 \times$ speedup!

NVIDIA Hopper (H100) GPU

Peak performance (TFLOPS)				
	P100	V100	A100	H100
	2016	2018	2020	2022
fp64	5	8	$10 \rightarrow 20$	$33 \rightarrow 67$
fp32	10	16	20	67
tfloat32	--	--	160	495
fp16	20	125	$40 \rightarrow 320$	$134 \rightarrow 990$
bfloat16	--	--	$40 \rightarrow 320$	$134 \rightarrow 990$
fp8	--	--	--	1979
with tensor cores				

$11 / 46$ Since A100, 16 -bit arithmetic is $16 \times$ faster than 32 -bit

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs carry out a fixed size (e.g., 4×4) matrix multiplication :

- Performance boost vs $\mathrm{fp} 32: 8-16 \times$ speedup vs fp 32

Tensor cores units available on NVIDIA GPUs carry out a fixed size (e.g., 4×4) matrix multiplication :

- Performance boost vs $\mathrm{fp} 32: 8-16 \times$ speedup vs fp 32
- Accuracy boost vs fp 16 : let $C=A B$, with $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, the computed \widehat{C} satisfies

$$
|\widehat{C}-C| \lesssim c_{n}|A||B|, \quad c_{n}= \begin{cases}n u_{16} & (\mathrm{fp} 16) \\ 2 u_{16}+n u_{32} & (\text { tensor cores }) \\ n u_{32} & (\mathrm{fp} 32)\end{cases}
$$

[- Blanchard, Higham, Lopez, M., Pranesh (2020)

- Block version to use matrix-matrix operations

```
for k=1: n/b do
    Factorize L Lkk}\mp@subsup{U}{kk}{}=\mp@subsup{A}{kk}{}\quad\mathrm{ (with unblocked alg.)
    for i=k+1: n/b do
        Solve Lik U}\mp@subsup{U}{kk}{}=\mp@subsup{A}{ik}{}\mathrm{ and }\mp@subsup{L}{kk}{}\mp@subsup{U}{ki}{}=\mp@subsup{A}{ki}{}\mathrm{ for Lik and U}\mp@subsup{U}{ki}{
    end for
    for i=k+1:n/b do
        for }j=k+1:n/b do
            Aij}\leftarrow\mp@subsup{A}{ij}{}-\mp@subsup{\widetilde{L}}{ik}{}\mp@subsup{\widetilde{U}}{kj}{
        end for
    end for
end for
```

- Block version to use matrix-matrix operations
- $O\left(n^{3}\right)$ part of the flops done with tensor cores

```
for }k=1:n/b\mathrm{ do
    Factorize L}\mp@subsup{L}{kk}{}\mp@subsup{U}{kk}{}=\mp@subsup{A}{kk}{}\quad\mathrm{ (with unblocked alg.)
    for i=k+1: n/b do
        Solve Lik U}\mp@subsup{U}{kk}{}=\mp@subsup{A}{ik}{}\mathrm{ and }\mp@subsup{L}{kk}{}\mp@subsup{U}{ki}{}=\mp@subsup{A}{ki}{}\mathrm{ for Lik and U}\mp@subsup{U}{ki}{
    end for
    for i=k+1:n/b do
        for j}=k+1:n/b do
            \mp@subsup{L}{ik}{}}\leftarrow\mp@subsup{\textrm{fl}}{16}{}(\mp@subsup{L}{ik}{*})\mathrm{ and }\mp@subsup{\widetilde{U}}{ki}{}\leftarrow\mp@subsup{\widetilde{fl}}{16}{}(\mp@subsup{U}{ki}{}
            A
        end for
    end for
end for
```


LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis and gives same bounds to first order Blanchard et al. (2020)

Standard fp16	Tensor cores	Standard fp32
$n u_{16}$	$2 u_{16}+n u_{32}$	$n u_{32}$

- TC accuracy boost can be critical!
- TC performance suboptimal here \Rightarrow why?

Results from 国 Haidar et al. (2018)

-

LU factorization is memory bound

- LU factorization is traditionally a compute-bound operation...
- With Tensor Cores, flops are $8-16 \times$ faster
- Matrix is stored in $\mathrm{fp} 32 \Rightarrow$ data movement is unchanged
\Rightarrow LU with tensor cores becomes memory-bound !

LU factorization is memory bound

- LU factorization is traditionally a compute-bound operation...
- With Tensor Cores, flops are $8-16 \times$ faster
- Matrix is stored in $\mathrm{fp} 32 \Rightarrow$ data movement is unchanged
\Rightarrow LU with tensor cores becomes memory-bound!

- Idea: store matrix in fp16
- Problem: huge accuracy loss, tensor cores accuracy boost completely negated

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss：
1．Mixed fp16／fp32 representation

Matrix after 2 steps：

0 （

．
正

 ， 路 （

$$
\begin{aligned}
& \square \mathrm{fp} 16 \\
& \square \mathrm{fp} 32
\end{aligned}
$$

\square
保
\qquad

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss：
1．Mixed fp16／fp32 representation
Matrix after 2 steps：
\square

\square
\square fp32
read
＠write
fp16
家

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation
2. Right-looking \rightarrow left-looking factorization

Matrix after 2 steps:

\square fp16 $\square \mathrm{fp} 32$

Write

$$
O\left(n^{3}\right) \mathrm{fp} 32+O\left(n^{2}\right) \mathrm{fp} 16 \rightarrow O\left(n^{2}\right) \mathrm{fp} 32+O\left(n^{3}\right) \mathrm{fp} 16
$$

Experimental results

－Nearly 50 TFLOPS without significantly impacting accuracy
⿴⿱冂一⿱一一⿴囗十一 Lopez and M．（2020）
－Even more critical on A100：

Use of fp16 presents two risks:

- Overflow/underflow in the LU factors
- $\|\mid L\| U\left\|\left\|\leq f(n) \rho_{n}\right\| A\right\| \Rightarrow$ even if A fits in the range, its LU factors may not
- 且 Higham, Pranesh, Zounon (2019) : two-sided diagonal scaling $A^{\prime} \leftarrow D_{r} A D_{c}$ so that $\|A\| \leq c$
- To minimize underflow and better utilize the range of fp16, helpful to take c as close as possible to maximum safe value
- 且 Zounon et al. (2020) : appearance of subnormal numbers (in fp32) can lead to slowdowns if they are not flushed to zero
- Loss of positive definiteness
- Rounding a posdef A to fp16 might make it indefinite \Rightarrow Cholesky factorization breaks down
- 잉 Higham \& Pranesh (2021) : factorize $A+\sigma D$ instead $\left(D=\operatorname{diag}(A), \sigma=O\left(u_{16}\right)\right)$

Factorize $A=L U$ in precision \mathbf{u}_{f}
Solve $A x_{1}=b$ via $x_{1}=U^{-1}\left(L^{-1} b\right)$ in precision \mathbf{u}_{f} repeat
$r_{i}=b-A x_{i}$ in precision \mathbf{u}_{r}
Solve $A d_{i}=r_{i}$ via $d_{i}=U^{-1}\left(L^{-1} r_{i}\right)$ in precision \mathbf{u}_{f}
$x_{i+1}=x_{i}+d_{i}$ in precision \mathbf{u}
until converged
e.g., with $\mathbf{u}_{\mathbf{f}} \equiv \mathrm{fp} 16, \mathbf{u} \equiv \mathrm{fp} 32$, and $\mathbf{u}_{\mathbf{r}} \equiv \mathrm{fp} 64$

을 Carson and Higham (2018)

```
Factorize \(A=L U\) in precision \(\mathbf{u}_{\mathbf{f}}\)
Solve \(A x_{1}=b\) via \(x_{1}=U^{-1}\left(L^{-1} b\right)\) in precision \(\mathbf{u}_{\mathrm{f}}\)
repeat
    \(r_{i}=b-A x_{i}\) in precision \(\mathbf{u}_{r}\)
    Solve \(A d_{i}=r_{i}\) via \(d_{i}=U^{-1}\left(L^{-1} r_{i}\right)\) in precision \(\mathbf{u}_{f}\)
    \(x_{i+1}=x_{i}+d_{i}\) in precision \(\mathbf{u}\)
until converged
    e.g., with \(\mathbf{u}_{\mathrm{f}} \equiv \mathrm{fp} 16, \mathbf{u} \equiv \mathrm{fp} 32\), and \(\mathbf{u}_{\mathbf{r}} \equiv \mathrm{fp} 64\)
                            目 Carson and Higham (2018)
```

Assuming $\kappa(A) \mathbf{u}_{\mathrm{f}}<1$:

- Backward error $\frac{\|A \hat{x}-b\|}{\|A\|\|\hat{x}\|+\|b\|}=O(\mathbf{u})$
- Forward error $\frac{\|\hat{x}-x\|}{\|x\|}=O\left(\mathbf{u}+\kappa(A) \mathbf{u}_{r}\right)$

Three-precision LU-IR is as general (as modular) as possible

```
Factorize \(A=L U\) in precision \(\mathbf{u}_{\mathrm{f}}\)
Solve \(A x_{1}=b\) via \(x_{1}=U^{-1}\left(L^{-1} b\right)\) in precision \(\mathbf{u}_{\mathrm{f}}\)
repeat
    \(r_{i}=b-A x_{i}\) in precision \(\mathbf{u}_{r}\)
    Solve \(U^{-1} L^{-1} A d_{i}=U^{-1} L^{-1} r_{i}\) with GMRES in precision \(\mathbf{u}\)
        with products with \(U^{-1} L^{-1} A\) in precision \(\mathbf{u}^{2}\)
    \(x_{i+1}=x_{i}+d_{i}\) in precision \(\mathbf{u}\)
until converged
```

⿴囗大一一 Carson and Higham (2017)
－Replace LU solver by preconditioned GMRES：
－GMRES can be asked to converge to accuracy $\mathbf{u} \ll \mathbf{u}_{\mathrm{f}}$
－$\kappa(\widetilde{A})$ often smaller than $\kappa(A)$
$\Rightarrow \widetilde{A} d_{i}=\widetilde{r}_{i}$ is solved with accuracy $\phi_{i}=\kappa(\widetilde{A}) \mathbf{u}$
－Convergence condition improved from $\kappa(A) \mathbf{u}_{\mathrm{f}}<1$ to $\kappa(\widetilde{A}) \mathbf{u}<1$
－The catch：the matrix－vector products are with $\widetilde{A}=U^{-1} L^{-1} A$ ，introduce an extra $\kappa(A)$ unless performed in higher precision

LU-IR vs GMRES-IR

	$\mathbf{u}_{\mathbf{f}}$	\mathbf{u}	$\mathbf{u}_{\mathbf{r}}$	$\max \kappa(A)$	Forward error
LU-IR	fp32	fp64	fp128	10^{8}	10^{-16}
GMRES-IR	fp32	fp64	fp128	10^{16}	10^{-16}
LU-IR	fp16	fp64	fp128	10^{3}	10^{-16}
GMRES-IR	fp16	fp64	fp128	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices.

LU-IR vs GMRES-IR

	\mathbf{u}_{f}	\mathbf{u}	$\mathbf{u}_{\mathbf{r}}$	$\max \kappa(A)$	Forward error
LU-IR	fp32	fp64	fp128	10^{8}	10^{-16}
GMRES-IR	fp32	fp64	fp128	10^{16}	10^{-16}
LU-IR	fp16	fp64	fp128	10^{3}	10^{-16}
GMRES-IR	fp16	fp64	fp128	10^{11}	10^{-16}

GMRES-IR can handle much more ill-conditioned matrices.
However: LU solves are performed in precision \mathbf{u}^{2} instead of $\mathbf{u}_{\boldsymbol{f}}$
\Rightarrow practical limitation

- Goal: solve $A d_{i}=r_{i}$ with GMRES and bound $\phi_{i}=\left\|\widehat{d}_{i}-d_{i}\right\| /\left\|d_{i}\right\|$
- In what precision do we really need to run GMRES?
- How much extra precision is really needed in the matvec products?

$$
\begin{aligned}
& \text { Solve } A x_{1}=b \text { by } \mathrm{LU} \text { factorization in precision } \mathbf{u}_{\mathrm{f}} \\
& \text { repeat } \\
& \quad r_{i}=b-A x_{i} \text { in precision } \mathbf{u}_{\mathrm{r}} \\
& \quad \text { Solve } U^{-1} L^{-1} A d_{i}=U^{-1} L^{-1} r_{i} \text { with GMRES in precision } \mathbf{u} \\
& \quad \quad \text { except products with } U^{-1} L^{-1} A \text { in precision } \mathbf{u}^{2} \\
& \quad x_{i+1}=x_{i}+d_{j} \text { in precision } \mathbf{u} \\
& \text { until converged }
\end{aligned}
$$

- Goal: solve $A d_{i}=r_{i}$ with GMRES and bound $\phi_{i}=\left\|\widehat{d}_{i}-d_{i}\right\| /\left\|d_{i}\right\|$
- In what precision do we really need to run GMRES?
- How much extra precision is really needed in the matvec products?

$$
\begin{aligned}
& \text { Solve } A x_{1}=b \text { by LU factorization in precision } \mathbf{u}_{\mathrm{f}} \\
& \text { repeat } \\
& \quad r_{i}=b-A x_{i} \text { in precision } \mathbf{u}_{\mathrm{r}} \\
& \text { Solve } U^{-1} L^{-1} A d_{i}=U^{-1} L^{-1} r_{i} \text { with GMRES in precision } \mathbf{u} \\
& \quad \quad \text { except products with } U^{-1} L^{-1} A \text { in precision } \mathbf{u}^{2} \\
& \quad x_{i+1}=x_{i}+d_{i} \text { in precision } \mathbf{u} \\
& \text { until converged }
\end{aligned}
$$

- Goal: solve $A d_{i}=r_{i}$ with GMRES and bound $\phi_{i}=\left\|\widehat{d}_{i}-d_{i}\right\| /\left\|d_{i}\right\|$
- In what precision do we really need to run GMRES?
- How much extra precision is really needed in the matvec products?

$$
\begin{aligned}
& \text { Solve } A x_{1}=b \text { by LU factorization in precision } \mathbf{u}_{\mathrm{f}} \\
& \text { repeat } \\
& r_{i}=b-A x_{i} \text { in precision } \mathbf{u}_{\mathrm{r}} \\
& \text { Solve } U^{-1} L^{-1} A d_{i}=U^{-1} L^{-1} r_{i} \text { with GMRES in precision } \mathbf{u}_{\mathrm{g}} \\
& \quad \text { except products with } U^{-1} L^{-1} A \text { in precision } \mathbf{u}_{\mathbf{p}} \\
& x_{i+1}=x_{i}+d_{i} \text { in precision } \mathbf{u} \\
& \text { until converged }
\end{aligned}
$$

Relax the requirements on the GMRES precisions: run at precision $u_{\mathrm{g}} \leq \mathbf{u}$ with matvecs at precision $\mathbf{u}_{\mathrm{p}} \leq \mathbf{u}^{2}$
\Rightarrow FIVE precisions in total!
$23 / 46$ What can we say about the convergence of this GMRES-IR5?

- Unpreconditioned GMRES in precision ug_{g} for $A x=b$:
- Backward error of order u_{g} 国 Paige, Rozloznik, Strakos (2006)
- Forward error of order $\kappa(A) \mathrm{ug}_{\mathrm{g}}$
- Two-precision preconditioned GMRES for $\widetilde{A} x=b$:
- Backward error of order $\kappa(A) u_{p}+u_{g}$
- Forward error of order $\kappa(\widetilde{A})\left(\kappa(A) u_{p}+u_{g}\right)$
- $\kappa(\widetilde{A}) \leq\left(1+\kappa(A) u_{f}\right)^{2}$

Side-result: generalization of the backward stability of GMRES to a preconditioned two-precision GMRES
目 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2021)

Theorem (convergence of GMRES-IR5)
Under the condition $\left(\mathrm{u}_{\mathrm{g}}+\kappa(A) \mathbf{u}_{\mathrm{p}}\right) \kappa(A)^{2} \mathbf{u}_{\mathrm{f}}^{2}<1$, the forward error converges to its
limiting accuracy

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \mathbf{u}_{\mathrm{r}} \kappa(A)+\mathbf{u}
$$

国 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2021)

```
Solve \(A x_{1}=b\) by LU factorization in precision \(\mathbf{u}_{\mathrm{f}}\)
```

Solve $A x_{1}=b$ by LU factorization in precision \mathbf{u}_{f}
repeat
repeat
$r_{i}=b-A x_{i}$ in precision \mathbf{u}_{r}
$r_{i}=b-A x_{i}$ in precision \mathbf{u}_{r}
Solve $U^{-1} L^{-1} A d_{i}=U^{-1} L^{-1} r_{i}$ with GMRES in precision u_{g}
Solve $U^{-1} L^{-1} A d_{i}=U^{-1} L^{-1} r_{i}$ with GMRES in precision u_{g}
except products with $U^{-1} L^{-1} A$ in precision \mathbf{u}_{p}
except products with $U^{-1} L^{-1} A$ in precision \mathbf{u}_{p}
$x_{i+1}=x_{i}+d_{i}$ in precision \mathbf{u}
$x_{i+1}=x_{i}+d_{i}$ in precision \mathbf{u}
until converged

```
until converged
```


Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) there are over 3000 different combinations of GMRES-IR5!

They are not all relevant!
Meaningful combinations: those where none of the precisions can be lowered without worsening either the limiting accuracy or the convergence condition.

Filtering rules

- $\mathbf{u}^{2} \leq \mathbf{u}_{\mathbf{r}} \leq \mathbf{u} \leq \mathbf{u}_{\mathbf{f}}$
- $\mathbf{u}_{\mathbf{p}} \leq \mathbf{u}_{\mathbf{g}}$
- $\mathbf{u}_{\mathbf{p}}<\mathbf{u}_{\mathbf{f}}$
- $\mathbf{u}_{\mathbf{p}}<\mathbf{u}, \mathbf{u}_{\mathbf{p}}=\mathbf{u}, \mathbf{u}_{\mathbf{p}}>\mathbf{u}$ all possible
- $\mathbf{u}_{\mathbf{g}} \geq \mathbf{u}$
- $\mathbf{u}_{\mathbf{g}}<\mathbf{u}_{\mathbf{f}}, \mathbf{u}_{\mathbf{g}}=\mathbf{u}_{\mathbf{f}}, \mathbf{u}_{\mathbf{g}}>\mathbf{u}_{\mathbf{f}}$ all possible

Meaningful combinations of GMRES-IR5 for $\mathbf{u}_{\mathrm{f}} \equiv \mathrm{fp} 16$ and $\mathbf{u} \equiv \mathrm{fp} 64$

u_{g}	u_{p}	Convergence Condition $\max (\kappa(A))$
LU-IR		2×10^{3}
bfloat16	fp32	3×10^{4}
fp16	fp32	4×10^{4}
fp16	fp64	9×10^{4}
fp32	fp64	8×10^{6}
fp64	fp64	3×10^{7}
fp64	fp128	2×10^{11}

Five combinations between LU-IR and Carson \& Higham's GMRES-IR \Rightarrow More flexible precisions choice to fit at best the hardware constraints and the problem difficulty.

Right-preconditioned / flexible GMRES

- What about solving $A U^{-1} L^{-1} y=b$ with flexible GMRES ?
- Stability not provable as easily/unconditionally as in the left-preconditioned case国 Arioli and Duff (2009) 且 Carson and Daužickaite (2023)
... but works very well in practice
\Rightarrow Can relax the need to apply preconditioner in higher precision, at the cost of using flexible GMRES

Sparse matrices

Fill-in: $n n z(A) \ll n n z(L U)$

Original matrix

Factorized matrix

(-) Memory footprint of high-precision copy of A negligible \Rightarrow modern IR saves memory (not the case for dense systems!)
(). Matvecs with A cheap compared with LU solves \Rightarrow can afford to compute residual very accurately!
\odot Relative weight of refinement is higher: $O\left(n^{2}\right)$ vs $O\left(n^{3}\right)$ for dense $\Rightarrow O\left(n^{4 / 3}\right)$ vs $O\left(n^{2}\right)$ for sparse (at best, even worse for 2D problems) \Rightarrow less room to amortize iterations
Higher weight of symbolic operations

Sparse LU-IR vs GMRES-IR

Results with the MUMPS solver
目 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2023)

Matrix	time (s)			memory (GB)		
	fp64	fp32	fp32	fp64	fp32	fp32
		+LU-IR	+GMRES-IR		+LU-IR	+GMRES-IR
ElectroPhys10M	265.2	154.0	166.5	272.0	138.0	171.3
Bump_2911	205.4	129.3	144.5	135.7	68.4	77.8
DrivAer6M	91.8	67.6	77.9	81.6	41.7	52.9
Queen_4147	284.2	165.2	184.7	178.0	89.8	114.5
tminlet3M	294.5	136.2	157.9	241.1	121.0	169.9
perf009ar	46.1	57.5	52.0	55.6	28.9	38.1
elasticity-3d	156.7	-	118.6	153.0	-	103.6
Ifm_aug5M	536.2	254.5	269.3	312.0	157.0	187.5
Long_Coup_dt0	67.2	46.6	49.0	52.9	26.7	33.1
CarBody25M	62.9	-	109.8	77.6	-	54.3
thmgaz	97.6	65.4	79.8	192.0	97.7	141.7

- Up to $2 \times$ time and memory reduction, even for ill-conditioned problems
- GMRES-IR usually more expensive than LU-IR, but more robust

Compute $M^{-1} \approx A^{-1}$ and $x_{1}=M^{-1} b$ in precision \mathbf{u}_{f} repeat
$r_{i}=b-A x_{i}$ in precision u_{r}
Solve $M^{-1} A d_{i}=M^{-1} r_{i}$ with GMRES in precision u_{g} except products with $M^{-1} A$ in precision \mathbf{u}_{p}
$x_{i+1}=x_{i}+d_{i}$ in precision \mathbf{u}
until converged

- Replace $U^{-1} L^{-1}$ with general M^{-1}
- Equivalent to restarted GMRES

Cheaper preconditioners than LU

```
Initialize \(x_{1}\)
repeat
    \(r_{i}=b-A x_{i}\) in precision \(\mathbf{u}_{\mathbf{r}} \equiv \mathbf{u}_{\text {high }}\)
    Solve \(A d_{i}=r_{i}\) with GMRES in precision \(\mathrm{u}_{\mathrm{g}} \equiv \mathrm{u}_{\text {low }}\)
    \(x_{i+1}=x_{i}+d_{i}\) in precision \(\mathbf{u} \equiv \mathbf{u}_{\text {high }}\)
until converged
```

－Replace $U^{-1} L^{-1}$ with general M^{-1}
－Equivalent to restarted GMRES
－No preconditioner $(M=I)$ ：mixed precision inner－outer scheme
目 Turner and Walker（1992）
国 Buttari et al．（2008）
国 Lindquist et al．（2020）国 Loe et al．（2021）

 （

 －

2 ．
sp

Dropping：replace with zero any value sufficiently small

$$
\left|a_{i j}\right| \leq \epsilon\|A\| \quad \Rightarrow \quad a_{i j} \leftarrow 0
$$

sparser A

$$
\xrightarrow{\text { drop }}
$$

，


```
    L
```

 ．

\square
\square
 O －都

保

 ／46

Sparsification (dropping)

Dropping: replace with zero any value sufficiently small

$$
\left|a_{i j}\right| \leq \epsilon\|A\| \quad \Rightarrow \quad a_{i j} \leftarrow 0
$$

sparser A

incomplete $L U$
$\xrightarrow{\text { drop }}$

Data sparsification (low-rank approximations)

Low-rank compression: given $A=U \widetilde{\sim} V^{T}$, if we truncate singular vectors associated with $\sigma_{i} \leq \epsilon$, we obtain \widetilde{A} such that $\|\widetilde{A}-A\| \leq \epsilon$

Block Low Rank
Amestoy et al. $(2015,2017,2019)$

Compress $A_{i j}$ such that $\left\|\widetilde{A}_{i j}-A_{i j}\right\| \leq \epsilon\|A\|$:

- If $\left\|A_{i j}\right\| \leq \epsilon\|A\| \Rightarrow A_{i j} \leftarrow 0$ (drop block)
- otherwise replace $A_{i j}$ with $\widetilde{A}_{i j}=X_{i j} Y_{i j}^{\top}$

BLR + IR

Error analysis: replace $\mathbf{u}_{\boldsymbol{f}}$ by $\mathbf{u}_{\mathrm{f}}+\epsilon$ in the convergence conditions目 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2023)

Example on tminlet3M matrix fp64 MUMPS reference: time $\rightarrow 295.5 \quad$ memory $\rightarrow 241.1$

	time (s)		memory (GB)	
	LU-IR	GMRES-IR	LU-IR	GMRES-IR
fp32 MUMPS	136.2	157.9	121.0	169.9

BLR + IR

Error analysis: replace $\mathbf{u}_{\boldsymbol{f}}$ by $\mathbf{u}_{\mathrm{f}}+\epsilon$ in the convergence conditions目 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2023)

Example on tminlet3M matrix fp64 MUMPS reference: time $\rightarrow 295.5 \quad$ memory $\rightarrow 241.1$

	time (s)		memory (GB)	
	LU-IR	GMRES-IR	LU-IR	GMRES-IR
fp32 MUMPS	136.2	157.9	121.0	169.9
$\epsilon=10^{-8}$	149.7	165.3	114.0	161.9

BLR + IR

Error analysis: replace $\mathbf{u}_{\boldsymbol{f}}$ by $\mathbf{u}_{\mathrm{f}}+\epsilon$ in the convergence conditions目 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2023)

Example on tminlet3M matrix fp64 MUMPS reference: time $\rightarrow 295.5 \quad$ memory $\rightarrow 241.1$

	time (s)		memory (GB)	
	LU-IR	GMRES-IR	LU-IR	GMRES-IR
fp32 MUMPS	136.2	157.9	121.0	169.9
$\epsilon=10^{-8}$	149.7	165.3	114.0	161.9
$\epsilon=10^{-6}$	$\mathbf{8 8 . 3}$	98.8	82.4	93.8

BLR + II

Error analysis: replace \mathbf{u}_{f} by $\mathbf{u}_{\mathrm{f}}+\epsilon$ in the convergence conditions目 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2023)

Example on tminlet3M matrix fp64 MUMPS reference: time $\rightarrow 295.5 \quad$ memory $\rightarrow 241.1$

	time (s)		memory (GB)	
	LU-IR	GMRES-IR	LU-IR	GMRES-IR
fp32 MUMPS	136.2	157.9	121.0	169.9
$\epsilon=10^{-8}$	149.7	165.3	114.0	161.9
$\epsilon=10^{-6}$	$\mathbf{8 8 . 3}$	98.8	82.4	93.8
$\epsilon=10^{-4}$	-	105.6	-	$\mathbf{7 0 . 9}$

- GMRES-IR allows to push BLR further!

Adaptive precision sparsification

- Sparsification only deals in absolutes:
either we keep the data at full accuracy, or we discard it completely!
- We need a new paradigm that uses multiple, gradual levels of approximation
\Rightarrow Adaptive precision sparsification

64 bits

$+b$

Discarded bits

Adapt the precisions to the data at hand by storing and computing "less important" (usually meaning smaller) data in lower precision

Adaptive precision SpMV

- Goal: compute the SpMV $y=A x$ with accuracy ϵ using q precisions
$u_{1} \leq \epsilon<u_{2}<\ldots<u_{q}$
- Split elements $a_{i j}$ on each row i into q buckets $B_{i 1}, \ldots, B_{i q}$, where bucket $B_{i k}$ uses precision u_{k} pres

Adaptive precision SpMV

- Goal: compute the SpMV $y=A x$ with accuracy ϵ using q precisions
- Split elements $a_{i j}$ on each row i into q buckets $B_{i 1}, \ldots, B_{i q}$, where bucket $B_{i k}$ uses precision u_{k}
- How should we build the buckets?

$$
u_{1} \leq \epsilon<u_{2}<\ldots<u_{q}
$$

$$
\left\{\begin{array}{lll}
\left|a_{i j}\right| \leq \epsilon\|A\| & \Rightarrow & \text { drop } \\
\left|a_{i j}\right| \in\left[\epsilon\|A\| / u_{k+1}, \epsilon\|A\| / u_{k}\right) & \Rightarrow & \text { place in } B_{i k} \\
\left|a_{i j}\right|>\epsilon\|A\| / u_{2} & \Rightarrow & \text { place in } B_{i 1}
\end{array}\right.
$$

Adaptive precision SpMV

- Goal: compute the SpMV $y=A x$ with accuracy ϵ using q precisions $u_{1} \leq \epsilon<u_{2}<\ldots<u_{q}$
- Split elements $a_{i j}$ on each row i into q buckets $B_{i 1}, \ldots, B_{i q}$, where bucket $B_{i k}$ uses precision u_{k}
- How should we build the buckets?

$$
\left\{\begin{array}{lll}
\left|a_{i j}\right| \leq \epsilon\|A\| & \Rightarrow & \text { drop } \\
\left|a_{i j}\right| \in\left[\epsilon\|A\| / u_{k+1}, \epsilon\|A\| / u_{k}\right) & \Rightarrow & \text { place in } B_{i k} \\
\left|a_{i j}\right|>\epsilon\|A\| / u_{2} & \Rightarrow & \text { place in } B_{i 1}
\end{array}\right.
$$

- Theorem: the computed \widehat{y} satisfies $\|\widehat{y}-y\| \leq c \epsilon\|A\|\|x\|$

Adaptive precision SpMV: results

Matrix	adaptive storage $(\%$ of fp64)	adaptive time (\% of fp64)	backward error fp64 adaptive	
Hook_1498	97%	99%	$3 \mathrm{e}-16$	$7 \mathrm{e}-16$
Flan_1565	78%	82%	$3 \mathrm{e}-16$	$3 \mathrm{e}-16$
Long_Coup_dt0	75%	83%	$5 \mathrm{e}-16$	$2 \mathrm{e}-15$
imagesensor	15%	56%	$2 \mathrm{e}-16$	$9 \mathrm{e}-16$
power9	16%	37%	$1 \mathrm{e}-16$	$4 \mathrm{e}-16$
nv2	19%	26%	$2 \mathrm{e}-16$	$2 \mathrm{e}-15$

Abstract

- Experimental results on 36-core computer - Adaptive algorithm uses $\mathrm{fp} 64, \mathrm{fp} 32$, and dropping and $\epsilon=2^{-53}$ - Comparison vs uniform fp64

Seven-precision SpMV

Emulated formats

Bits

Format	Signif. (t)	Exponent	Range	$u=2^{-t}$
bf16	8	8	$10^{ \pm 38}$	4×10^{-3}
fp24	16	8	$10^{ \pm 38}$	2×10^{-5}
fp32	24	8	$10^{ \pm 38}$	6×10^{-8}
fp40	29	11	$10^{ \pm 308}$	2×10^{-9}
fp48	37	11	$10^{ \pm 308}$	8×10^{-12}
fp56	45	11	$10^{ \pm 308}$	3×10^{-14}
fp64	53	11	$10^{ \pm 308}$	1×10^{-16}

阂 Graillat, Jézéquel, M., Molina, Mukunoki (2023)
FP64
AP2, $\mathrm{p}=53$ AP2,p $=53$
AP4, $p=53$ AP9, $\mathrm{p}=53$ RP56
AP2, $=45$ AP $4, \mathrm{p}=45$
AP4, $\mathrm{p}=45$ AP9, $\mathrm{p}=45$ AP2,p $=37$
AP4,p $=37$ AP $A, p=37$
AP9, $\mathrm{p}=37$ \square AP2, $\mathrm{p}=29$ \square AP2, $\mathrm{p}=24$ AP4,p=24 AP4,p $=24$
AP9, $=24$ $\mathrm{AP} 4, \mathrm{p}=29$
$\mathrm{AP9}, \mathrm{P}=29$

RPF16 \square $\mathrm{AP} 2, \mathrm{p}=8 \square$ AP4, $\mathrm{p}=8$ AP9, $\mathrm{p}=8$

RP24
$\mathrm{p}=16$ AP2, $\mathrm{p}=16$
AP4, $\mathrm{p}=16$ \qquad

GMRES

$$
\begin{aligned}
& r=b-A x_{0} \\
& \beta=\|r\|_{2} \\
& q_{1}=r / \beta \\
& \text { for } k=1,2, \ldots \text { do } \\
& \quad y=A q_{k} \\
& \quad \text { for } j=1: k \text { do } \\
& \quad h_{j k}=q_{j}^{T} y \\
& \quad y=y-h_{j k} q_{j} \\
& \quad \text { end for } \\
& h_{k+1, k}=\|y\|_{2} \\
& \quad q_{k+1}=y / h_{k+1, k} \\
& \quad \text { Solve } \min _{c_{k}}\left\|H c_{k}-\beta e_{1}\right\|_{2} . \\
& \quad x_{k}=x_{0}+Q_{k} c_{k} \\
& \text { end for } \\
& \hline
\end{aligned}
$$

```
for i}=1,2,\ldots\mathrm{ do
    ri}=b-A\mp@subsup{x}{i-1}{
    Solve Ad}\mp@subsup{|}{i}{}=\mp@subsup{r}{i}{}\mathrm{ by GMRES
    xi}=\mp@subsup{x}{i-1}{}+\mp@subsup{d}{i}{
end for
end for
```


GMRES-IR

GMRES

$$
\begin{aligned}
& r=b-A x_{0} \\
& \beta=\|r\|_{2} \\
& q_{1}=r / \beta \\
& \text { for } k=1,2, \ldots \text { do } \\
& \quad y=A q_{k} \rightarrow \epsilon_{\text {low }} \\
& \quad \text { for } j=1: k \text { do } \\
& \quad h_{j k}=q_{j}^{T} y \\
& y=y-h_{j k} q_{j} \\
& \quad \text { end for } \\
& h_{k+1, k}=\|y\|_{2} \\
& q_{k+1}=y / h_{k+1, k} \\
& \quad \text { Solve } \min _{c_{k}}\left\|H c_{k}-\beta e_{1}\right\|_{2} . \\
& \quad x_{k}=x_{0}+Q_{k} c_{k} \\
& \text { end for } \\
& \hline
\end{aligned}
$$

```
```

for i}=1,2,···\mathrm{ do

```
```

for i}=1,2,···\mathrm{ do
ri}=b-A\mp@subsup{x}{i-1}{}->\mp@subsup{\epsilon}{\mathrm{ high}}{
ri}=b-A\mp@subsup{x}{i-1}{}->\mp@subsup{\epsilon}{\mathrm{ high}}{
Solve Ad
Solve Ad
xi}=\mp@subsup{x}{i-1}{}+\mp@subsup{d}{i}{
xi}=\mp@subsup{x}{i-1}{}+\mp@subsup{d}{i}{
end for

```
```

end for

```
```


GMRES-IR

GMRES-IR with adaptive precision SpMV

ML_Laplace $\left(\epsilon_{\text {high }}=2^{-53}\right.$, restart $=80$, Jacobi preconditioner)
3 precisions (fp64, fp32, bfloat16) + dropping

Iteration

GMRES-IR with adaptive precision SpMV

ML_Laplace $\left(\epsilon_{\text {high }}=2^{-53}\right.$, restart $=80$, Jacobi preconditioner)
3 precisions (fp64, fp32, bfloat16) + dropping

Iteration

Adaptive precision low rank compression

How to increase low-rank compression?

Adaptive precision low rank compression

How to increase low-rank compression?

- Standard approach: increase ϵ to discard more vectors

Adaptive precision low rank compression

$$
\epsilon / u_{3}
$$

How to increase low-rank compression?

- Standard approach: increase ϵ to discard more vectors
- Adaptive precision compression: partition U and V into q groups of decreasing precisions $u_{1} \leq \epsilon<u_{2}<\ldots<u_{q}$
- Why does it work? $B=\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}$ with $\left|B_{i}\right| \leq O\left(\left\|\Sigma_{i}\right\|\right)$

国 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)

Adaptive precision BLR LU factorization

Stability of $L U$ factorization: $\widehat{L} \widehat{U}=A+\Delta A$

- Standard LU (Wilkinson) :
$\|\Delta A\| \lesssim 3 n^{3} \rho_{n} u_{1}\|A\|$
- BLR LU (Higham \& M.) :
$\|\Delta A\| \lesssim\left(c_{1} \epsilon+c_{2} \rho_{n} u_{1}\right)\|A\|$ 国 Higham and M. (2021)
- Adaptive prec. BLR LU (this work) :
$\|\Delta A\| \lesssim\left(c_{1}^{\prime} \epsilon+c_{2}^{\prime} \rho_{n} u_{1}\right)\|A\|$

Example of kernel: LR \times matrix multiplication:

Step k :

- Compute $L_{k k} U_{k k}=A_{k k}$
- Update

$$
A_{i j} \leftarrow A_{i j}-\left(A_{i k} U_{k k}^{-1}\right) \times\left(L_{k k}^{-1} A_{k j}\right)
$$

Adaptive precision BLR implementation in MUMPS

1) Toward storage gains

- A large number of precisions (current version: 7 formats)
- For storage only

- A preliminary version has been completed

2) Toward time gains

- Small number of precisions
- Chosen according to availability in hardware
- For computations

- Ongoing development

Adaptive precision BLR: results in MUMPS

Matrix							LU factors size	Total memory	Backward error
thmgaz	fp64 MUMPS	141	194						
	BLR double	95	120	$6.4 \mathrm{e}-14$					
	BLR mixed	59	86	$6.5 \mathrm{e}-14$					
knuckle8M	fp64 MUMPS	235	547						
	BLR double	117	281	$1.6 \mathrm{e}-10$					
	BLR mixed	71	236	$7.7 \mathrm{e}-09$					
perf009ar	fp64 MUMPS	38	58						
	BLR double	26	36	$1.3 \mathrm{e}-10$					
	BLR mixed	20	25	$1.4 \mathrm{e}-10$					

Memory consumption reduced by up to

- $1.7 \times$ (LU factors size)
- $1.4 \times$ (total memory, including working arrays)
1.4×(total memory, including working arrays)

A plausible scenario for solving $A x=b$ in mixed precision:
Compute adaptive precision BLR LU factorization $A \approx L U$ at accuracy ϵ_{f}
Solve $A x_{1}=b$ with adaptive precision BLR LU solves at accuracy ϵ_{f} repeat

Compute $r_{i}=b-A x_{i}$ with adaptive precision SpMV at accuracy ϵ_{r}
Solve $A d_{i}=r_{i}$ with adaptive precision GMRES preconditioned by BLR LU factors, using adaptive precision SpMV at accuracy ϵ_{a},
adaptive precision BLR LU solves at accuracy ϵ_{p}, and precision ug_{g} for the rest
$x_{i+1}=x_{i}+d_{i}$ (in uniform precision $\mathbf{u}!$)
until converged

Refinement

Modularity
Adaptivity

Slides
https://bit.ly/NHRmixed

> Survey
> https://bit.ly/mixed-survey

Thanks! Questions?

