Mixed precision algorithms: an overview

Theo Mary
Sorbonne Université, CNRS, LIP6

NHR PerfLab Seminar Series, 12 December 2023

Slides available at
https://bit.ly/NHRmixed
@' n‘?;;@

3.
=T
=5

bitly,

fp32

fpl6 bfloat16

https://bit.ly/NHRmixed

Floating-point arithmetics

number of bits
signif. (t) exp. range u=2""!

113 15 10%4932 1 x 1073

fp128 quadruple

fpl6 11 5 10%° 5x107*
bfloat16 half 8 8 10%%® 4x10°3
fp8 (e4m3) sarter 4 4 10%2 6 x 10~2
£p8 (e5m2) 4 3 5 108 1x10°!

The unit roundoff u = 27t determines the relative accuracy any number in the representable
range can be approximated with:

If x € R belongs to [eémin, €max], then fl(x) =x(1+6), [§| <u

Moreover the standard model of arithmetic is

flixopy) =(xopy)(1+96), |6 <u,forope {+,—, x,+}

2/46

Pros and cons of lower precisions

®) Storage, data movement and communications are all proportional to total number
of bits (mantissa + exponent)
lower precision = lighter computations

©) Speed of computations also generally proportional
o on most architectures, fp32 is 2x faster than fp64
o on some architectures, fp16/bfloat16 up to 16x faster than fp32

lower precision = faster computations

© Power consumption is proportional to the square of the number of mantissa bits
o fpl6 (11 bits) consumes 5x less energy than fp32 (24 bits)
o bfloatl6 (8 bits) consumes 9 less energy than fp32

lower precision = greener computations

© Errors are proportional to the unit roundoff

lower precision = lower accuracy
3/46

Mixed precision algorithms

Mix several precisions in the same code with the goal of
e Getting the performance benefits of low precisions

e While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable
precision, Transprecision, Dynamic precision, ...

4/46

Mixed precision algorithms

Mix several precisions in the same code with the goal of
e Getting the performance benefits of low precisions

e While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable
precision, Transprecision, Dynamic precision, ...

How to select the right precision for the right variable/operation
¢ Precision tuning: autotuning based on the source code

© Does not need any understanding of what the code does
® Does not have any understanding of what the code does

¢ In linear algebra: exploit as much as possible the knowledge we have about
the code

4/46

5/46

Acta Numerica (2022), pp. 347414
doi:10.1017/80962492922000022

Mixed precision algorithms in
numerical linear algebra

Nicholas J. Higham
Department of Mathematics, University of Manchester,
Manchester, M13 9PL, UK
E-mail: nick.higham@manchesterac.uk

Theo Mary
Sorbonne Université, CNRS, LIP6,
Paris, F-75005, France
E-mail: theo.mary@lip6.fr

https://bit.ly/mixed-survey

CONTENTS

Introduction

Floating-point arithmetics
Rounding error analysis model
Matrix multiplication
Nonlinear equations

Tterative refinement for Ax = b
Direct methods for Ax = b
Tterative methods for Ax = b
Mixed precision orthogonalization and QR factoriza-
tion

10 Least squares problems

Il Eigenvalue decomposition

12 Singular value decomposition
13 Multiword arithmetic

14 Adaptive precision algorithms
15 Miscellany

R=l- S e Y L

39
42
43
46
47
50
52

https://bit.ly/mixed-survey

Linear systems

Solution of Ax = b:
e Direct methods

o Robust, black box solvers
o High time and memory cost for factorization of A

e |terative methods

o Low time and memory per-iteration cost
o Convergence is application dependent

6/46

Linear systems

Solution of Ax = b:
e Direct methods

o Robust, black box solvers
o High time and memory cost for factorization of A
= Need fast factorization

e |terative methods

o Low time and memory per-iteration cost
o Convergence is application dependent
= Need good preconditioner

6/46

Linear systems

Solution of Ax = b:
e Direct methods

o Robust, black box solvers
o High time and memory cost for factorization of A
= Need fast factorization

e |terative methods

o Low time and memory per-iteration cost
o Convergence is application dependent
= Need good preconditioner

= Mixed precision / approximate factorizations bridge the gap

o as approximate fast direct methods
o as high quality preconditioners

6/46

Direct solver with LU factorization

Standard method to solve Ax = b:
1. Factorize A= LU, where L and U are lower and upper triangular
2. Solve Ly = b and Ux =y

In uniform precision u, the computed X satisfies

[| Ax—b]|
e Backward error W < f(n)ppu = O(u)

e Forward error ”>|<|Xﬁ(” < f(n)pnk(A)u = O(k(A)u),
with r(A) = [|A][[A~H]|

7/46

LU-based refinement (LU-IR)

Factorize A= LU
Solve Ax; = b via x; = U~}(L™1b)
repeat
ri = b— AX,'
Solve Ad; = r; via di = U"Y(L71r;)
Xi+1 = X; + dj
until converged

8/46

https://dl.acm.org/doi/abs/10.1145/321386.321394

LU-based refinement (LU-IR)

Factorize A= LU in precision u

Solve Ax; = b via x; = UL(L™1b) in precision u

repeat
ri = b — Ax; in precision u
Solve Ad; = r; via d; = U=Y(L™1r;) in precision u
Xj+1 = Xj + d; in precision u

until converged

[3) Wilkinson (1948) [3) Moler (1967)

2

Assuming k(A)u < 1:

| Ax—b]|
e Backward error ”A”||X”+||b” = O(u)

e Forward error ”>|(| ﬂ(” O(u)

8/46

https://dl.acm.org/doi/abs/10.1145/321386.321394

LU-IR with fp32 LU

Factorize A= LU in precision ug
Solve Axy = b via x3 = U~Y(L™1b) in precision ug
repeat
ri = b — Ax; in precision u
Solve Ad; = r; via d; = U~(L™1r;) in precision ug
Xi+1 = Xj + d; in precision u
until converged

with uf = fp32 and u = fp64
[2) Langou et al (2006) [3 Buttari et al (2007) [Baboulin et al (2009)

9/46

https://ieeexplore.ieee.org/abstract/document/4090224
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1016/j.cpc.2008.11.005

LU-IR with fp32 LU

Factorize A= LU in precision ug
Solve Axy = b via x3 = U~Y(L™1b) in precision ug
repeat
ri = b — Ax; in precision u
Solve Ad; = r; via d; = U~(L™1r;) in precision ug
Xj+1 = Xj + d; in precision u
until converged

with uf = fp32 and u = fpb4
[2) Langou et al (2006) [3 Buttari et al (2007) [Baboulin et al (2009)
e For n X n matrices:
o O(n?) flops in fp32
o O(n?) flops per iteration in fp64
e Assuming r(A)ug < 1:
o Backward error m = O(u)

= O(r(A)u)

o Forward error ”
9/46

https://ieeexplore.ieee.org/abstract/document/4090224
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1016/j.cpc.2008.11.005

LU-IR with CELL processor

IBM Cell 3.2 GHz Ax = b Performance

200 == == === =00
=4=SP Peak

CELL processor (2006—2008) o | E%%%él:%lem
fp64 peak: 21 GFLOPS —=DP Ax-b IBM
fp32 peak: 205 GFLOPS

= 10x speedup! 50

GFlop/s

10/46

https://ieeexplore.ieee.org/abstract/document/4090224

NVIDIA GPUs

NVIDIA Hopper (H100) GPU

Peak performance (TFLOPS)

P100 V100 A100 H100

2016 2018 2020 2022
fp64 5 8 10 — 20 33 — 67
fp32 10 16 20 67
tfloat32 - - 160 495
fpl6é 20 125 40 — 320 134 — 990
bfloatl6 - - 40 — 320 134 — 990
fp8 - - -— 1979

with tensor cores

11/46Since A100, 16-bit arithmetic is 16 x faster than 32-bit

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs carry out a fixed size (e.g., 4 x 4) matrix

multiplication :
A B + C
E) E

fp32 fpl16 fp16 fp32

D =

e Performance boost vs fp32: 8-16x speedup vs fp32

12/46

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs carry out a fixed size (e.g., 4 x 4) matrix

multiplication :
A B + C
[x X x x|
= +
xoxoxox || I

D =
fp32 fpl6 fpl6 fp32

e Performance boost vs fp32: 8-16x speedup vs fp32
e Accuracy boost vs fpl6: let C = AB, with A € R™*" B € R"*P, the computed

C satisfies nuyg (fp16)
\E — C| S alAl|B|, ¢n =< 2ujs+ nus, (tensor cores)
nus, (fp32)

12/46 [3) Blanchard, Higham, Lopez, M., Pranesh (2020)

https://epubs.siam.org/doi/10.1137/19M1289546

Block LU factorization

e Block version to use matrix—matrix operations

for k=1:n/b do
Factorize Ly Ukk = Akk (with unblocked alg.)
fori=k+1:n/bdo
Solve L,'k Ukk = A,'k and ka Uk,' = Ak,' for L,-k and Uk,'
end for
fori=k+1:n/bdo
for j=k+1:n/bdo

A,'J' — A,'j — Z,'k Ukj
end for
end for
end for

13/46

Block LU factorization

e Block version to use matrix—matrix operations

o O(n?) part of the flops done with tensor cores

for k=1:n/b do
Factorize Ly Ukk = Akk (with unblocked alg.)
fori=k+1:n/bdo
Solve L,'k Ukk = A,'k and ka Uk,' = Ak,' for L,-k and Uk,'
end for
fori=k+1:n/bdo
forj=k+1:n/bdo
L <+ ﬂlﬁ(Lijg) gvnd Ui + f|16(Uk,')
Ajj < Ajj — LixUyj using tensor cores
end for
end for
end for

13/46

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis and gives same bounds
to first order [2) Blanchard et al. (2020)

Standard fpl6 Tensor cores Standard fp32

nuye 2uq6 + Nz Nusz,

1074 | | ——1pl6
2 1 —e— tensor cores
I ¥ —e—fp32

1077]

¢ 1
-6 | .
§ L\‘\‘\‘\'_\"\N'

o7 fe_e_e/a\ve,e\e/e\e/e\j

|]
10,000 20,000 30,000 40,000
14/46 Matrix size: n

Backward error

https://epubs.siam.org/doi/10.1137/19M1289546

Impact on iterative refinement

Results from [3 Haidar et al. (2018)

20— T T T T T -
FP16-TC->64 dhgesv
18+ FP16->64 dhgesv
FP32->64 dsgesv E
16 *FP54 dgesv rveesarnmreree e
18l 4
@ 12+
S0} 3
=

o N A O
T
(%]
@
=]

14k 18k 22k 26k 30k 34k
Matrix size

2k 4k 6k 8k10k

e TC accuracy boost can be critical!

e TC performance suboptimal here = why?
15/46

https://ieeexplore.ieee.org/abstract/document/8665777

LU factorization is memory bound

e LU factorization is traditionally a compute-bound operation. . .

e With Tensor Cores, flops are 8-16x faster

e Matrix is stored in fp32 = data movement is unchanged
= LU with tensor cores becomes memory-bound !

50 T T T T i T T T T T
10°° -
— 40| | //'—*\a—./a
&
S 5 1074 |
= 30 N g
e 5}
’ g
g 20 - RN b
£ E]
8 ——1pl6 a ——fp16
;:E) 10 —e— tensor cores (A in fp32) | 1070 F —o— tensor cores (A in fp32) o
0 .
I L L L L 107 I L L ! !
10,000 20,000 30,000 40,000 50,000 10,000 20,000 30,000 40,000 50,000
Matrix size: n Matrix size: n

16/46

LU factorization is memory bound

e LU factorization is traditionally a compute-bound operation. . .

e With Tensor Cores, flops are 8-16x faster

e Matrix is stored in fp32 = data movement is unchanged
= LU with tensor cores becomes memory-bound !

50 ™ T T T T T
1077 4
a0l /hw‘
£
Q 5 107 |
= =
2 30| E
3
~ °
g En ,
£ 20 —”; /—o/",—‘—__‘
g
g . —— p16 A —— £pl6 .
& 0 —e— tensor cores (A in fp32) | 10 F —e— tensor cores (A in fp32)
—+— tensor cores (A in fp16) —+— tensor cores (A in fp16)
0 |
107"

10,000 20,000 30,000 40,000 50,000 10,000 20,000 30,000 40,000 50,000

PR Matrix size: n
Matrix size: n

e |dea: store matrix in fpl6

16/46 ® Problem: huge accuracy loss, tensor cores accuracy boost completely negated

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

17/46

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:
1. Mixed fp16/fp32 representation

Matrix after 2 steps:

17/46

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:
1. Mixed fp16/fp32 representation

Matrix after 2 steps:

read
write

17/46

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:
1. Mixed fp16/fp32 representation
2. Right-looking — left-looking factorization

Matrix after 2 steps:

[]fp16
B 32
read
write

17/46 O(n®) fp32 + O(n?) fp16 — O(n?) fp32 + O(n?) fp16

Experimental results

18/46

Performance (TFLOPS)

50 T T T T] T T T T T
b 1073 | e
10l N
5 107°F E
30 |- E & 1
3 < o
g -5
20 | E 1077
2t
—— fpl6 8 —=—fp16
10 —e— tensor cores (A in fp32) | 107°F —e—tensor cores (A in p32) -
—— tensor cores (A in fpl6) - —+— tensor cores (A in fpl6) |
0 —a— left-looking tensor cores s —+— left-looking tensor cores |
— | | | | |
10 600 20 600 30 600 40 600 50 600 10 10,000 20,000 30,000 40,000 50,000
Matrix size: n Matrix size: n
Nearly 50 TFLOPS without significantly impacting accuracy

[2) Lopez and M. (2020)

Even more critical on A100:
50 TFLOPS (A in fp32) — 175 TFLOPS (A in fpl6+left-looking)

http://eprints.maths.manchester.ac.uk/2782/

Challenges of fp16 LU

Use of fpl6 presents two risks:
e Overflow/underflow in the LU factors
o NLIUJII < f(n)pnl|All = even if A fits in the range, its LU factors may not
o [3 Higham, Pranesh, Zounon (2019) : two-sided diagonal scaling A’ +— D,AD, so that
JAl <c
o To minimize underflow and better utilize the range of fpl6, helpful to take c as close as

possible to maximum safe value
© [2) Zounon et al. (2020) : appearance of subnormal numbers (in fp32) can lead to

slowdowns if they are not flushed to zero

e Loss of positive definiteness
o Rounding a posdef A to fpl6 might make it indefinite = Cholesky factorization breaks

down
o [Higham & Pranesh (2021) : factorize A+ oD instead (D = diag(A), o = O(uis))

19/46

https://epubs.siam.org/doi/abs/10.1137/18M1229511
http://eprints.maths.manchester.ac.uk/2811/
https://epubs.siam.org/doi/abs/10.1137/19M1298263

Three-precision LU-IR

Factorize A= LU in precision ug
Solve Ax; = b via x; = UTL(L™1b) in precision ug
repeat
r; = b — Ax; in precision u,
Solve Ad; = r; via d; = U~Y(L™1r;) in precision ug
Xi+1 = Xj + d; in precision u
until converged
e.g., with us = fpl6, u = fp32, and u, = fp64
[3) Carson and Higham (2018)

20/46

https://doi.org/10.1137/17M1140819

Three-precision LU-IR

Factorize A= LU in precision ug
Solve Ax; = b via x; = UTL(L™1b) in precision ug
repeat
r; = b — Ax; in precision u,
Solve Ad; = r; via d; = U™Y(L™1r;) in precision ug
Xi+1 = Xj + d; in precision u
until converged
e.g., with us = fpl6, u = fp32, and u, = fp64
[3) Carson and Higham (2018)

Assuming k(A)ug < 1:

|AX—b]|
o Backward error W = O(U)

e Forward error ”)I(I ﬂ(” = O(u + x(A)uy)

20/46Three-precision LU-IR is as general (as modular) as possible

https://doi.org/10.1137/17M1140819

GMRES-based IR (GMRES-IR)

Factorize A = LU in precision ug
Solve Axy = b via x; = UY(L™1b) in precision ug
repeat
r; = b — Ax; in precision u,
Solve UYL YAd; = U~1L~1r; with GMRES in precision u
with products with U™1L™1A in precision u?
Xi+1 = Xj + d; in precision u
until converged

[3) Carson and Higham (2017)

¢ Replace LU solver by preconditioned GMRES:
© GMRES can be asked to converge to accuracy u < ug
o Ii(A) often smaller than x(A)
= Ad; = 7, is solved with accuracy ¢; = r(A)u
o Convergence condition improved from x(A)us < 1 to r(A)u < 1
e The catch: the matrix—vector products are with A= U"L71A, introduce an extra
21/46 K(A) unless performed in higher precision

https://epubs.siam.org/doi/abs/10.1137/17M1122918

LU-IR vs GMRES-IR

uf u u, max k(A) Forward error
LU-IR fp32 fp64 fpl28 108 10716
GMRES-IR fp32 fp64 fpl28 10 10-16
LU-IR fpl6 fp64 fpl28 103 10716
GMRES-IR fpl6 fp64 fpl28 10! 10-16

GMRES-IR can handle much more ill-conditioned matrices.

22/46

LU-IR vs GMRES-IR

uf u u, max k(A) Forward error
LU-IR fp32 fp64 fpl28 108 10716
GMRES-IR fp32 fp64 fpl28 10 10-16
LU-IR fpl6 fp64 fpl28 103 10716
GMRES-IR fpl6 fp64 fpl28 10! 10-16

GMRES-IR can handle much more ill-conditioned matrices.
However: LU solves are performed in precision u? instead of ug
= practical limitation

22/46

Rethinking GMRES-IR

e Goal: solve Ad; = r; with GMRES and bound ¢; = ||d; — d;||/||d;]|

o In what precision do we really need to run GMRES?
o How much extra precision is really needed in the matvec products?

Solve Ax; = b by LU factorization in precision ug
repeat
ri = b — Ax; in precision u,
Solve UL YAd; = U~1L~1r; with GMRES in precision u

except products with U™1L™1A in precision u?

Xj+1 = Xj + d; in precision u
until converged

23/46

Rethinking GMRES-IR

e Goal: solve Ad; = r; with GMRES and bound ¢; = ||d; — d;||/||d;]|

o In what precision do we really need to run GMRES?
o How much extra precision is really needed in the matvec products?

Solve Ax; = b by LU factorization in precision ug
repeat
ri = b — Ax; in precision u,
Solve U™1L7YAd; = U~1L~'r; with GMRES in precision U
except products with U~1L=1A in precision U?
Xj+1 = Xj + d; in precision u
until converged

23/46

Rethinking GMRES-IR

e Goal: solve Ad; = r; with GMRES and bound ¢; = ||d; — d;||/||d;]|

o In what precision do we really need to run GMRES?
o How much extra precision is really needed in the matvec products?

Solve Ax; = b by LU factorization in precision ug
repeat
ri = b — Ax; in precision u,
Solve U=LL=1Ad; = U~1L~1r; with GMRES i1 precision Ug
except products with U"XL=1A in precision Up
Xj+1 = Xj + d; in precision u
until converged

Relax the requirements on the GMRES precisions: run at precision 11, < u with
matvecs at precision u, < u?

= FIVE precisions in total!

23/46 What can we say about the convergence of this GMRES-IR5?

Two-precision GMRES

¢ Unpreconditioned GMRES in precision 11, for Ax = b:

o Backward error of order 11, [Paige, Rozloznik, Strakos (2006)
o Forward error of order x(A)u,

 Two-precision preconditioned GMRES for Ax = b:
o Backward error of order k(A)u, + u.

o Forward error of order x(A)(rk(A)u, + 11.)

o k(A) < (1+ k(A)ug)?

Side-result: generalization of the backward stability of GMRES to a preconditioned
two-precision GMRES
[2) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

24/46

https://epubs.siam.org/doi/10.1137/050630416
https://hal.archives-ouvertes.fr/hal-03190686

Five-precision GMRES-IR

Solve Ax; = b by LU factorization in precision ug
repeat
r; = b — Ax; in precision u,
Solve UL YAd; = U~L~'r; with GMRES
except products with U"XL™1A in precision up
Xj+1 = Xj + d; in precision u
until converged

Theorem (convergence of GMRES-IR5)

Under the condition (i + r(A)u,)k(A)2us? < 1, the forward error converges to its

limiting accuracy 1% = x|

< uk(A)+u
x| '
[2) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)

25/46

https://hal.archives-ouvertes.fr/hal-03190686

Meaningful combinations

With five arithmetics (fpl6, bfloatl6, fp32, fp64, fp128) there are over 3000 different
combinations of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can be lowered without
worsening either the limiting accuracy or the convergence condition.

Filtering rules

e ul<u <u<uf ® up, <u, up =u, up > u all possible
° up < ug ® ug>u
° up <ug * ug < uf, Ug = uf, ug > uy all possible

26/46

Performance—robustness tradeoff

Meaningful combinations of GMRES-IR5 for uf = fpl6 and u = fp64

Convergence Condition

e tp max(r(A))

LU-IR 2 x 103
bfloat16 fp32 3 x 104
fp16 fp32 4 x 10*
fp16 fp64 9 x 10*
£p32 fp64 8 x 106
fp64 fp64 3 x 107
fp64 fp128 2 x 101!

Five combinations between LU-IR and Carson & Higham’s GMRES-IR = More flexible
precisions choice to fit at best the hardware constraints and the problem difficulty.

27/46

Right-preconditioned / flexible GMRES

e What about solving AUT*L=1y = b with flexible GMRES ?

e Stability not provable as easily/unconditionally as in the left-preconditioned case
(3 Arioli and Duff (2009) [2) Carson and Dauzickaité (2023)
... but works very well in practice

= Can relax the need to apply preconditioner in higher precision, at the cost of using
flexible GMRES

28/46

https://etna.math.kent.edu/vol.33.2008-2009/pp31-44.dir/
https://arxiv.org/abs/2303.11901

Sparse matrices

Fill-in: nnz(A) < nnz(LU)

©

29 /46®

Original matrix Factorized matrix

§ &8 8 B g
7
§ & 8 8

Memory footprint of high-precision copy of A negligible = modern IR saves memory
(not the case for dense systems!)

Matvecs with A cheap compared with LU solves = can afford to compute residual
very accurately!

Relative weight of refinement is higher: O(n?) vs O(n®) for dense = O(n*/3) vs
O(n?) for sparse (at best, even worse for 2D problems) = less room to amortize
iterations

Higher weight of symbolic operations

Sparse LU-IR vs GMRES-IR

Results with the MUMPS solver
[) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2023)

Matrix

ElectroPhys10M
Bump_2911
DrivAer6M
Queen_4147
tminlet3M
perf009ar
elasticity-3d
Ifm_augbM
Long_Coup_dt0
CarBody25M
thmgaz

e Up to 2x time and memory reduction, even for ill-conditioned problems
30/46 © GMRES-IR usually more expensive than LU-IR, but more robust

https://dl.acm.org/doi/10.1145/3582493

Cheaper preconditioners than LU

Compute M~t =~ A~! and x; = M~1b in precision ug
repeat
ri = b — Ax; in precision u,
Solve M~YAd; = M~1r; with GMRES i1 precision ug
except products with M~1A in precision u,
Xi+1 = Xj + d;j in precision u
until converged

e Replace U™1L~! with general M~1
e Equivalent to restarted GMRES

31/46

https://epubs.siam.org/doi/abs/10.1137/0913048
https://dl.acm.org/doi/abs/10.1145/1377596.1377597
https://link.springer.com/chapter/10.1007/978-3-030-63393-6_4
https://arxiv.org/abs/2105.07544

Cheaper preconditioners than LU

Initialize xq
repeat
ri = b — Ax; in precision u; = uyjgp
Solve Ad; = r; with GMRES 1 precision v, — up

Xi+1 = Xj + d; in precision u = up;gy,
until converged

e Replace U™1L~! with general M~1
e Equivalent to restarted GMRES
* No preconditioner (M = I): mixed precision inner—outer scheme

[Turner and Walker (1992) [2) Buttari et al. (2008)
[3 Lindquist et al. (2020) [2) Loe et al. (2021)

31/46

https://epubs.siam.org/doi/abs/10.1137/0913048
https://dl.acm.org/doi/abs/10.1145/1377596.1377597
https://link.springer.com/chapter/10.1007/978-3-030-63393-6_4
https://arxiv.org/abs/2105.07544

Sparsification (dropping)

Dropping: replace with zero any value sufficiently small

laj| < €l|Al = aj+0

dro,
arop,

M EEEEREEEEIN
§8839888885.
:

sparse A sparser A

32/46

Sparsification (dropping)

Dropping: replace with zero any value sufficiently small

aj| <€Al = aj <0

dro,
arop,

§8839888885.

sparser A

dro, -
arop,

nz=anias

nz=243703

32/46 LU factors incomplete LU

Data sparsification (low-rank approximations)

Low-rank compression: given A = UL VT if we truncate singular vectors associated
with o; < ¢, we obtain A such that HA Al <e

J
y.T
4=
=
i Ajj 'm
O
I_

Block Low Rank
[3) Amestoy et al. (2015, 2017, 2019)

Compress Ajj such that ”’Zu — Ajjll < €A
o If ||Aj]| < €||All = Ajj < 0 (drop block)
53/46 ® Otherwise replace Aj; with ’Zu = X Y,-J-T

https://dl.acm.org/doi/10.1145/3242094

BLR + IR

Error analysis: replace ug by ug + € in the convergence conditions
[2) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2023)

Example on tminlet3M matrix
fp64 MUMPS reference: time — 295.5 memory — 241.1

fp32 MUMPS

34/46

https://dl.acm.org/doi/10.1145/3582493

BLR + IR

Error analysis: replace ug by ug + € in the convergence conditions
[2) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2023)

Example on tminlet3M matrix
fp64 MUMPS reference: time — 295.5 memory — 241.1

fp32 MUMPS
e=10"%

34/46

https://dl.acm.org/doi/10.1145/3582493

BLR + IR

Error analysis: replace ug by ug + € in the convergence conditions
[2) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2023)

Example on tminlet3M matrix
fp64 MUMPS reference: time — 295.5 memory — 241.1

fp32 MUMPS
e=10"%
e=10"°

34/46

https://dl.acm.org/doi/10.1145/3582493

BLR + IR

Error analysis: replace ug by ug + € in the convergence conditions
[2) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2023)

Example on tminlet3M matrix
fp64 MUMPS reference: time — 295.5 memory — 241.1

fp32 MUMPS
e=10"%
e=10"°
e=10"%

e GMRES-IR allows to push BLR further!

34/46

https://dl.acm.org/doi/10.1145/3582493

Adaptive precision sparsification

e Sparsification only deals in absolutes:
either we keep the data at full accuracy, or we discard it completely!
e We need a new paradigm that uses multiple, gradual levels of approximation

= Adaptive precision sparsification

64 bits
a T
+ b
Discarded bits

Adapt the precisions to the data at hand by storing and computing “less important”
(usually meaning smaller) data in lower precision

35/46

Adaptive precision SpMV

e Goal: compute the SpMV y = Ax with accuracy € using g precisions
up <e<up<...<lUg

e Split elements a;; on each row i into g buckets Bjy, ..., Big, where bucket Bjy uses
precision ug

36,46

https://hal.science/hal-03561193

Adaptive precision SpMV

e Goal: compute the SpMV y = Ax with accuracy € using g precisions
up <e<up<...<lUg

e Split elements a;; on each row i into g buckets Bjy, ..., Big, where bucket Bjy uses
precision ug

e How should we build the buckets?

|aij| < €l|A] = drop
|aji| € [el|All /uks1, €llAll/ux) = place in B
|a’.l| > €||A||/U2 = place in Bil

9 6IIAII €IIAII/Us 6||A||/tlz +00

drop precision u3 precision up precision uj

36/46

https://hal.science/hal-03561193

Adaptive precision SpMV

e Goal: compute the SpMV y = Ax with accuracy € using g precisions
up <e<up<...<lUg

e Split elements a;; on each row i into g buckets Bjy, ..., Big, where bucket Bjy uses
precision ug

e How should we build the buckets?

|aij| < €[|All = drop
|aji| € [el|All /uks1, €llAll/ux) = place in B
|a’.l| > €HA||/U2 = place in Bil

9 6IIAII €IIAII/Ua 6IIAII/Uz +00

drop precision u3 precision up precision uj

e Theorem: the computed y satisfies ||y — y|| < ce|All||x]|
36/46 [2 Graillat, Jézéquel, M., Molina (2022)

https://hal.science/hal-03561193

Adaptive precision SpMV: results

e Experimental results on 36-core computer
e Adaptive algorithm uses fp64, fp32, and dropping and € = 2733

e Comparison vs uniform fp64

Matrix backward error
fp64 adaptive
Hook_1498 3e-16 7e-16
Flan_1565 3e-16 3e-16
Long_Coup_dt0 5e-16 2e-15
imagesensor 2e-16 9e-16
power9 le-16 4e-16
nv2 2e-16 2e-15

37/46

Seven-precision SpMV

Emulated formats

Bits
Format Signif.(t) Exponent Range u=2"t
bf16 8 8 10+38 4% 1073
£p24 16 8 10538 21075
£p32 24 8 10+¥ 6 x 108
£p40 29 11 10%308 2% 1079
£p4s 37 11 104308 g x 10712
£p56 45 11 10+308 3 10— 14
fp64 53 11 10%308 1 10716
14 T T T
RE 1
£ 1
w
- 08 frrremeeed
= 06 [
E o [I-ﬂ‘
02 ..
o
[7
Matrix
FP84 —— RP5E —— RP48 RP40 FP32 RP24 T RPF16 ——
AP2p=53 =0 AP2p=45 =2 AP2p=37 0 AP2p=29 0 AP2p=24 AP2p=16 0 AP2p=8 =2
AP4p=53 I AP4p=45 EEEE AP4p=37 o= AP4p=29 == AP4,p=24 AP4p=16 = AP4p=8
AP9p=53 mmmmm APOp=45 mEmEm AP9p=37 mmmmm AP9p=29 mmmm APSp=24 APOp-16 = APSp-8 mmmm

38/46 [2) Graillat, Jézéquel, M., Molina, Mukunoki (2023)

https://hal.science/hal-04261073/

GMRES
r=5b-— Axp
B=lrl2
q=r/B
for k=1,2,...do
y = Agx
for j=1: k do
hix = q]y
y =y — hjgq;
end for

hei1k = llyll2
Gk+1 = Y/ hkr1k
Solve ming, ||Hex — Ber 2.
Xk = X0 + Qrck
end for

GMRES-based iterative refinement

GMRES-IR
fori=1,2,...do
ri = b— AX,'_1
Solve Ad; = r; by GMRES
Xj = xji—1 + d;

end for

GMRES
r=5b-— Axp
B =llrll2
q=r/B

for k=1,2,...do
y = Aqk — €low
for j=1: k do
hix = q]y
y =y — hiqj
end for
hei1k = llyl2
Ak+1 = Y/ hiy1k
Solve ming, ||Hex — Ber 2.
Xk = X0 + Qxck
end for

GMRES-based iterative refinement

GMRES-IR

fori=1,2,...do
ri=b— Axi_1 — €pigh
Solve Ad; = r; by GMRES
Xj = xji—1 + d;

end for

GMRES-IR with adaptive precision SpMV

ML _Laplace (€enigh = 2753 restart = 80, Jacobi preconditioner)

3 precisions (fp64 fp32, bfloat16) + dropping
100

—E—Unlform p32, cost 1
2 —o— Uniform bfloat16, cost=0.50
107 ¢ —+— Adaptive €y = 272, cost=0.88/3

10-4 L

Backward error

10-14 I I I I I I I e
500 1000 1500 2000 2500 3000 3500 4000

40/46 Iteration

GMRES-IR with adaptive precision SpMV

ML _Laplace (€enigh = 2753 restart = 80, Jacobi preconditioner)
3 precisions (fp64, fp32, bfloatl6) + dropping

100 : ; ;
—a— Uniform fp32, cost=1
2 —e— Uniform bfloat16, cost=0.50
10°F —»— Adaptive ey = 272, cost=0.88|3
—v— Adaptive €y = 2’20, cost=0.80
10 40 —+— Adaptive €y = 2718, cost=0.68|]
g —o— Adaptive e = 2719, cost=0.61
S
-
5} 10 -6 L
o
-
£
Z 108,
3
m
10 -10 [
10 12 [
10 -14 I I I I I | |

500 1000 1500 2000 2500 3000 3500 4000
40/46 Iteration

Adaptive precision low rank compression

U I8l *

How to increase low-rank compression?

41/46

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

v I8l *

VT

€big

How to increase low-rank compression?

e Standard approach: increase € to discard more vectors

41/46

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

Ul Us g T

VlT precision uy
V2T precision u»
€/u .
2 V3T precision u3

€/U3

How to increase low-rank compression?
e Standard approach: increase € to discard more vectors
e Adaptive precision compression: partition U and V into g groups of decreasing
precisions 1y < e < up < ... < uqg
e Why does it work? B = B + By + B3 with [Bj| < O(||Z||)
[2) Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)

41/46

https://doi.org/10.1093/imanum/drac037

Adaptive precision BLR LU factorization

Stability of LU factorization: LU=A+AA

e Standard LU (Wilkinson) :

Step k:
IAA] S 3n°ppun || Al

® Compute Ly Uk = Ak

; . ® Update
e BLR LU (Higham & M.) : Aj Ay — (AUZY) x (L Ay)
|AA| < (cre + capnur)||All [Higham and M. (2021)
o Adaptive prec. BLR LU (this work) : P
IAA]S (e + capan) | Al v
Example of kernel: LR x matrix multiplication: “ AN .A I_ I_
== —— e |
mIn Im BEE-E
fp64/fp32 fp64 fp64 fp64 fp32 fp64 I_
Compute in fp64 Compute in fp32

42/46

https://doi.org/10.1093/imanum/drab020

Adaptive precision BLR implementation in MUMPS

1) Toward storage gains 2) Toward time gains

- A large number of precisions (current - Small number of precisions
version: 7 formats)

Chosen according to availability in
- For storage only hardware

- For computations

- A preliminary version has been
completed

Ongoing development

43/46

Adaptive precision BLR: results in MUMPS

Matrix LU factors size Backward error
fp64 MUMPS 141

thmgaz BLR double 95 6.4e-14
BLR mixed 59 6.5e-14
fp64 MUMPS 235

knuckle8M BLR double 117 1.6e-10
BLR mixed 71 7.7e-09
fp64 MUMPS 38

perf009ar BLR double 26 1.3e-10
BLR mixed 20 1.4e-10

Memory consumption reduced by up to
e 1.7x (LU factors size)

e 1.4x (total memory, including working arrays)

44/46

Conclusion

A plausible scenario for solving Ax = b in mixed precision:

Compute adaptive precision BLR LU factorization A ~ LU at accuracy ¢¢

Solve Ax; = b with adaptive precision BLR LU solves at accuracy ¢
repeat
Compute r; = b — Ax; with adaptive precision SpMV at accuracy ¢,
Solve Ad; = r; with adaptive precision GMRES preconditioned by BLR LU factors, using
adaptive precision SpMV at accuracy «,,
adaptive precision BLR LU solves at accuracy ¢,
and precision u, for the rest
Xi+1 = X; + d; (in uniform precision u!)
until converged

| Refinement| Modularity Adaptivity

45/46

Slides Survey
https://bit.ly/NHRmixed https://bit.ly/mixed-survey

Thanks! Questions?

https://bit.ly/NHRmixed
https://bit.ly/mixed-survey

