

NHR PerfLab Seminar – Erlangen, Germany -- October 2023

Facing Challenges in Computational Fluid Mechanics with Lattice Boltzmann Methods, OpenLB and High Performance Computers

Tim Bingert, Fedor Bukreev, Shota Ito, Julius Jeßberger, <u>Mathias J. Krause</u>, Adrian Kummerländer, Jan E. Marquardt, Stephan Simonis, Anas Selmi, Dennis Teutscher, Mingliang Zhong

Lattice Boltzmann Research Group (LBRG)

Institute for Applied and Numerical Mathematics (IANM) Institute of Mechanical Process Engineering an Mechanics (MVM) Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

www.openlb.net

Challenges in (Computational) Fluid Mechanics

Challenge 1: Turbulence

- capture small scales
- models inaccurate or expensive

Challenge 2: Suspensions

- capture effects of small particles
- models inaccurate or expensive

Challenge 3: Optimal Control / Optimization

- enable model calibration & optimization
- formulation problem dependent, expensive

Kwak, D., Kiris, C., Kim, C. S. (2005) Comput Fluids, 34(3), pp.283-299

Slotnick, J., Khodadoust, A., Alonso, J. et al. (2014). NASA TR, no. NASA/CR-2014-218178

Mathias J. Krause

Facing the Challenges: Compute Power Available

19/10/2023

Lattice Boltzmann Research Group, KIT

3

Mathias J. Krause

Facing the Challenges: LBRG's Solution Approach

Parallel Homogenized Lattice Boltzmann Methods (HLBM)

- physical mesoscopic model
- algorithmic properties / parallelism
- LB approach as PDE solver

Sustainable Research & Education

- beyond one PhD cycle
- open (source) community
- method AND application view
- interdisciplinary
- modern C++, CI, GIT, ..

Challenge 1:

DNS/LES instead of RANS

Challenge 2:

resolve particles' shape, force, ...

Challenge 3:

algorithmic differentiation & adjoints, combine measurement & simulation

Mathias J. Krause

5

Mathias J. Krause

19/10/2023

6

Mathias J. Krause

Overview LBM & OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

19/10/2023

7

Mathias J. Krause

Overview LBM & OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

19/10/2023

Mathias J. Krause

LBM as Generic PDE Solver [4]

macroscopic:

9

Mathias J. Krause

Lattice Boltzmann Methods (LBM)

Idea: coupling model parameter $h \in \mathbb{R}_{>0}$ with discretisation parameter: Lattice DdQq

Macroscopic moments:

density
$$\rho = \sum_{i=0}^{q-1} f_i$$
, velocity $\rho u = \sum_{i=0}^{q-1} v_i f_i$

Time loop
$$t = t_0, t_0 + h^2, t_0 + 2h^2, ..., t_1$$

Position space loop $r \in \Omega_h$

(1) Collision $\tilde{f}_i(t, r) = f_i(t, r) - \frac{1}{3\nu + 1/2} \left(f_i(t, r) - M_{f_i}^{eq}(t, r) \right)$ (2

2) Streaming
$$f_i(t+h^2, r+h^2v_i) = \tilde{f}_i(t, r)$$

Homogenization Limits of Stationary Navier-Stokes Equations for Porous Media Fluid Flows

Theorem [Allaire]: Three homogenization limits of stationary Navier-Stokes equations (dependent on scaling of obstacles (ratio σ_{ϵ}) being small/critical/large):

1. If $\lim_{\epsilon \to 0} \sigma_{\epsilon} = +\infty$, *u* and *p* converge strongly to solution of stationary NSE:

$$\begin{cases} \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} - \boldsymbol{\mu} \boldsymbol{\Delta} \boldsymbol{u} = \boldsymbol{F} - \boldsymbol{\nabla} \boldsymbol{p} & \text{in } \boldsymbol{\Omega}, \\ \text{div } \boldsymbol{u} = \boldsymbol{0} & \text{in } \boldsymbol{\Omega}. \end{cases}$$

2. If $\lim_{\epsilon \to 0} \sigma_{\epsilon} = \sigma > 0$, *u* and *p* converge weakly to solution of Brinkman-type law (BTL)

$$\begin{aligned} \mathbf{u} \cdot \nabla \mathbf{u} &- \mu \Delta \mathbf{u} + \frac{\mu}{\sigma^2} \mathbf{M} \mathbf{u} = \mathbf{F} - \nabla p & \text{in } \Omega, \\ \text{div } \mathbf{u} &= 0 & \text{in } \Omega. \end{aligned}$$

3. If $\lim_{\epsilon \to 0} \sigma_{\epsilon} = 0$, \boldsymbol{u} and p converge strongly to solution of Darcy's law (DL) $\begin{cases} \mu \mathbf{M} \boldsymbol{u} = \boldsymbol{F} - \boldsymbol{\nabla} p & \text{in } \Omega, \\ \text{div } \boldsymbol{u} = 0 & \text{in } \Omega. \end{cases}$

Allaire (1991). Archive for Rational Mechanics and Analysis, 113, 209-259

Mathias J. Krause

Homogenization Limits of Non-stationary Navier-Stokes Equations for Porous Media Fluid Flows

Hypothesis: Three homogenization limits of non-stationary Navier-Stokes equations (dependent on scaling of obstacles (ratio σ_{ϵ}) being small/critical/large):

1. If $\lim_{\epsilon \to 0} \sigma_{\epsilon} = +\infty$, *u* and *p* converge weakly to solution of non-stationary NSE:

$$\begin{cases} \partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} - \boldsymbol{\mu} \boldsymbol{\Delta} \boldsymbol{u} = \boldsymbol{F} - \boldsymbol{\nabla} p & \text{in } \Omega, \\ \text{div } \boldsymbol{u} = 0 & \text{in } \Omega. \end{cases}$$

2. If $\lim_{\epsilon \to 0} \sigma_{\epsilon} = \sigma > 0$, u, p converge weakly to solution of evolutionary Brinkman-type law (eBTL)

$$\begin{cases} \partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} - \mu \Delta \boldsymbol{u} + \frac{\mu}{\sigma^2} \mathbf{M} \boldsymbol{u} = \boldsymbol{F} - \boldsymbol{\nabla} p & \text{in } \Omega, \\ \text{div } \boldsymbol{u} = 0 & \text{in } \Omega. \end{cases}$$

3. If $\lim_{\epsilon \to 0} \sigma_{\epsilon} = 0$, *u* and *p* converge weakly to solution of time-dependent Darcy's law (tDL)

$$\begin{cases} \partial_t \boldsymbol{u} + \boldsymbol{\mu} \boldsymbol{M} \boldsymbol{u} = \boldsymbol{F} - \boldsymbol{\nabla} p & \text{in } \Omega, \\ \text{div } \boldsymbol{u} = 0 & \text{in } \Omega. \end{cases}$$

Simonis, Hafen, Jeßberger, Dapelo, Krause (2023). Submitted.

Mathias J. Krause

Homogenized LBM (HLBM)

- If porosity structure is approx. isotropic, we can reduce **M** to its eigenvalue *K* (permeability).
- Use homogenized lattice Boltzmann equation to approximate eBTL (case 2).

$$f_i^h(t+h^2) - f_i^h(t) = -\frac{1}{3\nu + \frac{1}{2}} \left[f_i^h(t) - M_{f_i^h}^{eq}(n_{f_i^h}, \frac{d_h u_{f_i^h}}{d_h})(t) \right]$$

• with porous Maxwellian

$$M_{f_{i}^{h}}^{eq}(n_{f_{i}^{h}}, \boldsymbol{d_{h}}\boldsymbol{u}_{f_{i}^{h}}) = \frac{w_{i}}{w}n_{f_{i}^{h}} \left[1 + 3h^{2}\boldsymbol{d_{h}}\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{f_{i}^{h}} - \frac{3}{2}h^{2}\boldsymbol{d_{h}^{2}}\boldsymbol{u}_{f_{i}^{h}}^{2} + \frac{9}{4}h^{4}\boldsymbol{d_{h}^{2}}\left(\boldsymbol{v}_{i} \cdot \boldsymbol{u}_{f_{i}^{h}}\right)^{2}\right]$$

- and lattice porosity $d_h = 1 \left(3\nu + \frac{1}{2}\right)\nu h^2 K^{-1}$
- Compute moments of f_i^h :

$$n_{f_i^h} = \sum_i f_i^h$$
 and $u_{f_i^h} = \sum_i v_i f_i^h$

Theorem: If f_i^h , its material derivatives up to order three and its zeroth and first moment are of zeroth order in h, the homogenized lattice BGK Boltzmann equations (HLBGKBE) are **a limit consistent discretization of order** $O(h^2)$ **(i.e. two in space, one in time)** of the eBTL (case 2: critical obstacle size)

Simonis, Hafen, Jeßberger, Dapelo, Krause (2022). Submitted.

Simonis, Krause (2022). arXiv preprint (under review), doi: <u>10.48550/arXiv.2208.06867</u>.

Mathias J. Krause

OpenLB for ..

.. teachers

- practical classes
- workshops

.. applicants and developers

- industry
- academia

in order to establish a strong LBM community.

Current Key Aspects

- Complex geometries
- Cloud computing/ HPC
- Optimisation
- Particle flows
- Turbulent Flows

3rd Spring School 2019, Mannheim, Germany

Mathias J. Krause

OpenLB Community

Mathias J. Krause

OpenLB: Facts and Figures

2D and 3D fluid flow and transport simulations based on LBM

Realisation

- Started in 2006 by Jonas Latt & Mathias J. Krause
- Open source (GPL2)
- C++, object oriented, template-based, modular, extensible
- Hybrid parallelisation: SISD & SIMD using MPI, OpenMP & CUDA

Features in latest release 1.6

- Various lattice types: D2Q9, D3Q15, D3Q19, ...
- Local, non-local, on- and off-lattice boundary conditions
- Collision models: BGK, MRT, Entropic, Cumulant, LES, multi-phase, multicomponent, thermal, reactions, adjoints, free surface, ...
- Many examples on benchmark cases & applications
- Build-in pre-processing from e.g. STL-files, geometry primitives
- Unit conversion for problem set-up in SI-units
- XML interface for input parameters
- Visualization (built-in and VTK), error norms and analysis tools

2009

2007

Mathias J. Krause

Built-in Geometry Creation and Meshing

Mathias J. Krause

Functors & operators templated enables

- platform specific data structures
- code generation using CSE

Block structured data

- stored as Structure Of Arrays
- addressable as fields

enables

- vectorization of collision (step)

→ transparent support for bandwidth-saturating, vectorized executions

[1] Kummerländer et al. (2023). Concurrency and Computation. doi: 10.1002/cpe.7509.

Mathias J. Krause

Parallelisation: Hybrid Concept

Spatial domain decomposition

- Sparse multi-block for complex geometries
- Inter-block: (CUDA-aware) MPI
- Intra-block: OpenMP, AVX512, CUDA, ...

Performance optimization

- C++ templates, CSE with PU-dependent kernel generation
- PU-block assignments:
 - modelled via cost functions depending on decomposition, boundary conditions, bulk model used heterogenous PU, network, ..
 - solved by heuristic [2] and graph-based [1] algorithm

[1] Fietz, et al. (2012). Euro-Par 2012 Parallel Processing.

[2] Kummerländer, et al. (2023). in preparation.

Mathias J. Krause

Efficient LBM on Heterogeneous HPC Systems

Up to 18 billion (10⁹) cells

Up to 1.33 trillion (10¹²) cell updates / second ~0.25 PFLOPs

Translates well to application cases e.g. 600 billion cell updates / second for the turbulent nozzle flow case on 56 GPU nodes.

Example: strong scaling efficiency 0.8 for 575³, 64 - 128 nodes

Scalability benchmarks on HoreKa

(#73 / TOP500, November 2022 – 8 PFLOPs peak)

- OpenLB Release 1.5
- LDC benchmark case
- Hybrid MPI / OpenMP execution utilizing AVX-512 on CPU Partition
- Hybrid MPI / CUDA on GPU partition

Kummerländer, Bukreev, et al. (2022). High Perf Comp in Science and Eng '21 (accepted).

20

Mathias J. Krause

Parallel Performance (CPU, MPI+OpenMP+AVX512) @ HoreKa, KIT, Germany

Mathias J. Krause

Parallel Performance (GPU, CUDA & MPI) @ HoreKa, KIT, Germany

Parallel Performance @ Magnus, Curtin, Australia

Approximately 80% efficiency 1 node ~ 1 cluster (1366 nodes) 46 days ~ 1 hour

23

Mathias J. Krause

Simulation under your Desk

OpenLB Showcase

~160 Million Cells, $\Delta x = 1m$

Simulated on two NVIDIA A5000 GPUs ~4 Billion Cell Updates / Second

Mathias J. Krause

	Multiphase flows		Flows in co geometries porous med	omplex , dia	
Turbulent flows		OpenLB Applicatio	ns		
	Thermal flows	Particle flows		Radiative transpor	t

Krause, M. J., Kummerländer, A., Avis, S. J., Kusumaatmaja, H., Dapelo, D., Klemens, F., Gaedtke, M.,
 Hafen, N., Mink, A., Trunk, R., Marquardt, J. E., Maier, M.-L., Haussmann, M., Simonis, S. (2021).
 Comput Math Appl. 81, 258-288.

25

Mathias J. Krause

Overview LBM & OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

26 19/10/2023

Mathias J. Krause

Aorta Benchmark, DNS

Brute Force Stability / Accuracy [3], BGK for DNS!

Taylor-Green vortex benchmark Re = 1600, diffusive scaling $N \rightarrow \infty$ ($Ma \rightarrow 0$) Axes: Prefactors of kinetic relaxation times. Colormap: Dissipation rate error (wrt. [1]) until t = 10 [s] Finding 1: Stability volume moves towards BGK point (black sphere) with resolution Finding 2: Error minimal MRT [2] configuration (black cube) near to BGK Finding 3: MRT acts as implicit turbulence model (numerical dissipation)

```
[1] Brachet et al. (1983) JFM 130: 411-452.
```


[2] D'Humières et al. (2002) PTRSA 360 (1792): 437-451.

[3] Simonis, Haussmann, Kronberg, Dörfler, Krause (2021). PTRSA 379: 2020405.

Spectral Brute-force Analysis of KBC LBM

(i) Re = 6000, Ma = 0.05, $N = 128, t \approx 6.60$

---- $E(\kappa, t)$ SRT BGK $---C(\kappa, t)$ KBC-N1 $\mathcal{O}(\kappa^{5/3})$ $\mathcal{O}(\kappa^{-5/3})$

Artificial turbulence (stochastic Taylor–Green vortex) Re < 11000, diffusive scaling $N \rightarrow \infty (Ma \rightarrow 0)$

Finding 1: Average EOC \approx 2 (diss. rate psDNS until t = 20 [s])

Finding 2: Relaxation spectrum +5/3-law (turbulence K41)

Finding 3: Entropic relaxation frequenncy limits SRT EOC \approx 1.3

 10^{2}

 \Rightarrow KBC is limit consistent, implicit hyperviscosity model

Velocity magnitude 1.3e-03 0.5 1.0e+00

Time: 0.0000

Turbulent Flows with LBM LES: Combustion Chamber

• Messurement: PIV

- Silicon droplets ~500 nm
- xy-symmetriy plane < U >, $< U_{RMS} >$
- error ~1% for target < U >
- Simulation: Wall-modelled LES

(Smagorinsky–Lilly, van Driest damping, Musker-profile)

- OpenFOAM (FVM, pimpleFOAM ← PISO&SIMPLE)
- OpenLB (LBM, SRT)

 Comparison of OpenFOAM and OpenLB w.r.t.: capability of prediction accuracy (4% to 8%), computational cost, ease of use.

Haussmann, Barreto, Kouyi et al. (2019). Comput. Math. App. 78, 3285–3302.

Haussmann, Ries, Jeppener-Haltenhoff et al. (2020). Computation 2020, 8(2), 43.

Mathias J. Krause

OpenLB (LBM) vs OpenFOAM (FVM)

→ OpenLB is 32x faster

Mathias J. Krause

Coriolis Mass Flowmeter Simulation, LES

Goal: Improve measurement accuracy

- Investigation of pressure drop
 - Comparison with experimental data
- Investigation of vortex phenomena
 - LBM Large Eddy Simulation Smagorinsky model
 - LBM wall function

1.3806+1 0.476 0.55 0.326

Haussmann, M., Reinshaus, P., Simonis, S. et al. (2020). Preprint arXiv:2005.04070 [physics.comp-ph].

Haussmann, M., Barreto, A. C., Kouyi, G. L. et al. (2019). Comput. Math. with Appl., 78(10), 3285.

Mathias J. Krause

Safety Valve Simulation, LES

Goal: avoid chatter

- → vary shape of disk
- 3D transient turbulent simulation
- 1 billion degrees of freedom
- parallelization: 30 days → 1 day
 64 cores → 2.048 cores
- optimize shape of disk

۲

Mathias J. Krause

Thermal Flow for Thermal Comfort, LES

Goal: Improve thermal comfort

control flow patterns by change of design and flow conditions of

- Heating
- Air condition
- Ventilator

Benchmark study:

- Re=29,000
- Pe=20,600
- LES Smagorinsky type
- 130 mio. grid cells

resolved me

Siodlaczek, M., Gaedtke, M., Simonis S. *et al.* (2020). Submitted to Build Environ.

Mathias J. Krause

Thermal Flow in Refrigerated Vehicles, LES

Goal: Improve the insulation efficiency

- ➔ exchange insulation material
 - extruded polysterol (XPS) by
 - vacuum insulation panels (VIP)

Convection in vehicle's cooling chamber:

- Air conditioning volume flow of $990 \frac{m^3}{h}$
- Turbulent free jet, Re = 28,000
- Large eddy simulation (LES) Smagorinsky
- Resolved heat flux through insulation walls
- Utilizing conjugated heat transfer implementation

Gaedtke, M., Wachter, S., Raedle, M. et al. (2018). Comput. Math. with Appl., 76(10), 2315-2329.

<u>Ross-Jones, J., Gaedtke, M., Sonnick, S. et al. (2019). Comput. Math. with Appl., 77(1), 209-221.</u>

Mathias J. Krause

Optimal Mixing & Reactions

Goal:

Optimize design & process parameters for better mixing, to save costs or energy

Challenge:	Mixing at Batchelor scale (< Kolmogorov length) vs. process scale (~1m)
Model:	Optimization problem with a PDE system as side condition

Mathias J. Krause

Overview LBM & OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

37 19/10/2023

Mathias J. Krause

Fine Particle Fractionation, Particle

Challenge: Low selectivity in the range from 100 nm to $10 \mu m$ **Goal: Improvement of separation processes**

→ Simulation of a large number of arbitrary shaped particles

Method needs to account for surface structure

38

HLBM for Resolved Particle Simulations

 $\widetilde{\boldsymbol{u}} = d\boldsymbol{u}_f + (1-d)\boldsymbol{U}^{\boldsymbol{B}}$

HLBM – Particle Representation

- No need for second grid
- No interpolation
- Smooth transition, e.g. $\varepsilon \coloneqq 2h$
- Example for a sphere:

• With:
$$\varphi(x) = \|x - x^B\|_2 - r^B + \frac{\varepsilon}{2}$$

•
$$d(\mathbf{x}) = \begin{cases} 0, & \text{for } \varphi(\mathbf{x}) \le 0\\ \sin^2\left(\frac{\pi\varphi(\mathbf{x})}{2\varepsilon}\right), & \text{for } \varphi(\mathbf{x}) \in (0,\varepsilon)\\ 1, & \text{for } \varphi(\mathbf{x}) \ge 0 \end{cases}$$

0

40

Mathias J. Krause

a_S	Shortest half axis			$ ho_p$	Particle density			κ _{con}	Convexity			λ_{CSF}	Corey shape factor		
a_I	a_I Intermediate half axis			Е	Elongation			ψ	Sphericity			λ_H	Hofmann shape entropy		
a_L	a_L Longest half axis			F	Flatness			κ _{rnd}	Roundness			λ_{LR}	Le Roux shape factor		
	aL	a _I	as	ξ_1	ξ_2	$ ho_{ m P}$	E	F	κ _{con}	ψ	ψ_{\perp}	$\kappa_{\rm rnd}$	$\lambda_{\rm CSF}$	$\lambda_{ m H}$	λ_{LR}
a_{L}	1.0	0.55	0.04	0.41	0.17	0.03	0.74	0.51	0.65	0.52	0.64	0.68	0.67	0.73	0.75
a_{I}	0.55	1.0	0.57	0.39	0.47	0.08	0.13	0.13	0.63	0.61	0.47	0.85	0.05	0.04	0.02
$a_{\rm S}$	0.04	0.57	1.0	0.18	0.57	0.03	0.44	0.72	0.41	0.45	0.31	0.61	0.73	0.64	0.65
ξı	0.41	0.39	0.18	1.0	0.02	0.08	0.19	0.15	0.47	0.44	0.31	0.57	0.18	0.21	0.21
ξ2	0.17	0.47	0.57	0.02	1.0	0.03	0.16	0.36	0.07	0.05	0.23	0.34	0.34	0.32	0.31
$\rho_{\rm p}$	0.03	0.08	0.03	0.08	0.03	1.0	0.02	0.1	0.03	0.05	0.04	0.05	0.08	0.02	0.03
Ê	0.74	0.13	0.44	0.19	0.16	0.02	1.0	0.45	0.33	0.2	0.47	0.17	0.72	0.85	0.84
F	0.51	0.13	0.72	0.15	0.36	0.1	0.45	1.0	0.07	0.01	0.0	0.01	0.94	0.79	0.83
$\kappa_{\rm con}$	0.65	0.63	0.41	0.47	0.07	0.03	0.33	0.07	1.0	0.93	0.75	0.86	0.17	0.22	0.23
ψ	0.52	0.61	0.45	0.44	0.05	0.05	0.2	0.01	0.93	1.0	0.73	0.86	0.08	0.1	0.12
ψ_{\perp}	0.64	0.47	0.31	0.31	0.23	0.04	0.47	0.0	0.75	0.73	1.0	0.74	0.18	0.2	0.23
$\kappa_{\rm rnd}$	0.68	0.85	0.61	0.57	0.34	0.05	0.17	0.01	0.86	0.86	0.74	1.0	0.06	0.08	0.11
$\lambda_{\rm CSF}$	0.67	0.05	0.73	0.18	0.34	0.08	0.72	0.94	0.17	0.08	0.18	0.06	1.0	0.92	0.95
$\lambda_{ m H}$	0.73	0.04	0.64	0.21	0.32	0.02	0.85	0.79	0.22	0.1	0.2	0.08	0.92	1.0	0.99
λ_{LR}	0.75	0.02	0.65	0.21	0.31	0.03	0.84	0.83	0.23	0.12	0.23	0.11	0.95	0.99	1.0

Measured: ~70.000 CPU-hours ~ 8 CPU-years → Thanks to HPC done in a few days

Drag correlation ($R_a^2 = 0.96$)

- Found most important parameters
 - Elongation
 - Roundness
 - Reynolds number
 - Hofmann shape entropy λ_H

- Mean deviation
 - Current (training): 2.84%
 - Current (test): 2.65%
 - Ganser: 86.26%
 - Hölzer & Sommerfeld: 23.65%
 - Bagheri & Bonadonna: 17.70%
 - Dioguardi & Mele: 26.97%

Terminal settling velocity ($R_a^2 = 0.86$)

- Found most important parameters
 - Particle density ρ_p
 - Roundness
 - Sphericity
 - Hofmann shape entropy
- Mean deviation
 - Current (training): 5.50%
 - Current (test): 4.63%
 - Haider & Levenspiel: 57.85%
 - Dellino: 27.85%

E

Krnd

Re

 κ_{rnd}

ψ

 λ_H

Discrete contact model

43

19/10/2023

Goal: Shape-dependent contact forces

→ Normal force $F_n = E^* k n_c \sqrt{Vd} (1 + c\dot{d})$

Non-constant parameters derived from mesh-based algorithm

Mathias J. Krause

Rebounding sphere in viscous fluid

Application to hindered settling

Goal: Examine shape-dependency of settling particle collectives

- → Challenges: Arbitrary shapes, computational effort
- High particle volume fractions (up to 30%)
- Hundreds/Thousands of surface resolved particles
- Shape-dependent four-way coupling

19/10/2023

44

Mathias J. Krause

Exhaust Treatment by Wall-flow Filters, Particle

Goal: Investigation of particle-layer rearrangement

- → simulation of resolved particulate flows
- Ash accumulates, forms specific deposition patterns
- Patterns evolve due to oxidation during the filter regeneration
- Effect of deposition patterns:
 - change in filter efficiency
 - increase of pressure loss

Hafen, N., Dittler, A., Krause, M. J. (2020). Submitted to Philos. Trans. R. Soc. A.

Mathias J. Krause

Damage Potential of Fruit Pieces

Goal: Investigation of coarsely dispersed suspens with high particle volume fractions

→ realistic shapes are important for accurate results Challenges:

- Modelling (four-way coupling, phys. properties, ...)
- High computational effort

Solutions: (HLBM + discrete contact treatment via overlap volume

x-Position in m

46 19/10/2023

Mathias J. Krause

Micro Filtration, Particle

Goal: design of an efficient filter

- → vary shape of filter and flow conditions
- geometry from μCT scans
- 2D and 3D transient simulation slip flow
 - particles (Lagrange)
 - air as density (Euler)

Augusto, L. D. L. X., Ross-Jones et al. (2018). Commun Comput Phys, 23, 910-931.

Mathias J. Krause

Magnetic Spiral Separator, Particle

Goal: basic understanding, increase efficiency 3D simulation with LBM - carrier fluid (Euler) - magnetic field (Euler) - magnetic particles (Lagrange) 0.850 status of activity (-) 0.450 -0.5 0 0.00 -0.450 -0.900

Maier, M. L., Milles, S. *et al.* (2018). Comput. Math. with Appl., 76(11-12), 2744-2757.

Maier, M. L., Henn, T., Thaeter, G. et al. (2017). Chem Eng Technol, 40(9), 1591-1598.

Mathias J. Krause

Particulate Flows in Buildings, Particle & LES

Goal: Understand and control virus risk in buildings

- ➔ combine sub-grid particle model & LES
 - evaluate situations
 - window open
 - person moving
 - aeration system design

Photobioreactor Simulation, Complex System

Mathias J. Krause

Overview LBM & OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

51 19/10/2023

Mathias J. Krause

Optimal Control Solution Strategies

[1] <u>Pingen, Evgrafov, Maute (2007). Struct Multidisc Optim 34(6), 507-524.</u>

[2] Tekitek, Bouzidi, Dubois et al. (2006). Comput Fluids, 35(8-9), 805-813.

[3] <u>Krause (2010). Dissertation, KIT Karlsruhe.</u>

Mathias J. Krause

CFD-MRI: Basic Algorithm, Optimization

53

Validation II: Qualitative Study - MRI Data (2)

Velocity profile for different lines through the plane

→ Measurement noise drastically reduced

19/10/2023

54

Mathias J. Krause

→ Synthetic Measurement vs. True Data: rel. error 61.5% → CFD-MRI Data (Synthetic M.) vs. True Data: rel. error 0.68%

55

Mathias J. Krause

CFD-MRI: Applications Sponge & Aorta, Optimization

Klemens, Schuhmann, Guthausen et al. (2018). Comput Fluids, 166, 218-224.

Klemens, Schuhmann, Balbierer et al. (2020). Comput Fluids, 197, 104391.

Mathias J. Krause

Overview LBM & OpenLB

Challenge I -- Turbulence

Challenge II -- Suspensions

Challenge III -- Optimization

Summary

19/10/2023

57

Mathias J. Krause

Summary: Facing Challenges in CFD

(H)LBM & OpenLB as Fast, Stable & Accurate Generic PDE Solver

LBM & *OpenLB*: open source meshing and high performance at your fingertips!

Mathias J. Krause

Questions?

59 19/10/2023

www.openlb.net

7th Spring School: LBM with OpenLB Software Lab

7th Spring School

Lattice Boltzmann Methods with OpenLB Software Lab

Heidelberg, Germany, March 4–8, 2024

- For scientists and industrial users
 Option Beginners: comprehensive theoretical lectures on LBM, mentored training on case studies using OpenLB (www.openlb.net),
 Option Advanced: bring your own problem
- Knowledge exchange, networking at poster session, coffee breaks and excursion

Academia 420 € / Industry 1.770 € for 5 days course including course material, 5x lunch, 2x dinner, coffee breaks and excursion

HEIDELBERGER AKADEMIE DER WISSENSCHAFTEN Akademie der Wissenschaften des Landes Baden-Württemberg

Executive committee

Stephan Simonis, Shota Ito, Kerstin Dick, Mathias J. Krause **Invited speakers**

Timm Krüger, Halim Kusumaatmaja, Francois Dubois, Timothy Reis, Martin Frank

19/10/2023

Mathias J. Krause